1
|
Yao T, Wu Z, Wang Z, Chen L, Liu B, Lu M, Shen N. Association between angiotensin-converting enzyme inhibitor-induced cough and the risk of lung cancer: a Mendelian randomization study. Front Pharmacol 2023; 14:1267924. [PMID: 37799968 PMCID: PMC10550256 DOI: 10.3389/fphar.2023.1267924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
Background: Observational studies and meta-analyses have demonstrated a positive correlation between the use of angiotensin-converting enzyme inhibitors (ACEIs) and lung cancer. However, the findings remain controversial; furthermore, the relationship between ACEI-induced cough and lung cancer development remains unknown. We used Mendelian randomization (MR) to verify the association between ACEI use, ACEI-induced cough, and the risk of lung cancer. Methods: We performed a two-sample MR analysis to determine the unconfounded relationships between ACE inhibition, which mimics the effects of ACEIs, and genetic proxies for ACEI-induced cough and lung cancer. Single nucleotide polymorphisms that imitate ACE receptors and ACEI-induced cough were collected and integrated into a meta-analysis of existing genome-wide association studies for various lung cancers. The relationship was quantified using inverse variance weighting, weighted median, and MR-Egger methods. Results: A statistically significant association was observed between ACE inhibition and the risk of small cell lung cancer for Europeans (excluding rs118121655/rs80311894). Associations were identified between ACEI-induced cough and the risk of lung cancer for Europeans, although not for Asians, and between ACEI-induced cough and lung adenocarcinoma (excluding rs360206). Conclusion: Our findings reveal a relationship between ACE inhibition and lung cancer development, as well as a significant association between ACEI-induced cough and a higher risk of lung cancer for Europeans. Patients with hypertension who experience dry cough as a side effect of ACEI use should consider switching to an alternative antihypertensive treatment.
Collapse
Affiliation(s)
- Taikang Yao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Peking University, Beijing, China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zilu Wang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Peking University, Beijing, China
| | - Liting Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Peking University, Beijing, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Zhao M, Ma J, Li M, Zhu W, Zhou W, Shen L, Wu H, Zhang N, Wu S, Fu C, Li X, Yang K, Tang T, Shen R, He L, Huai C, Qin S. Different responses to risperidone treatment in Schizophrenia: a multicenter genome-wide association and whole exome sequencing joint study. Transl Psychiatry 2022; 12:173. [PMID: 35484098 PMCID: PMC9050705 DOI: 10.1038/s41398-022-01942-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Risperidone is routinely used in the clinical management of schizophrenia, but the treatment response is highly variable among different patients. The genetic underpinnings of the treatment response are not well understood. We performed a pharmacogenomic study of the treatment response to risperidone in patients with schizophrenia by using a SNP microarray -based genome-wide association study (GWAS) and whole exome sequencing (WES)-based GWAS. DNA samples were collected from 189 patients for the GWAS and from 222 patients for the WES after quality control in multiple centers of China. Antipsychotic response phenotypes of patients who received eight weeks of risperidone treatment were quantified with percentage change on the Positive and Negative Syndrome Scale (PANSS). The GWAS revealed a significant association between several SNPs and treatment response, such as three GRM7 SNPs (rs141134664, rs57521140, and rs73809055). Gene-based analysis in WES revealed 13 genes that were associated with antipsychotic response, such as GPR12 and MAP2K3. We did not identify shared loci or genes between GWAS and WES, but association signals tended to cluster into the GPCR gene family and GPCR signaling pathway, which may play an important role in the treatment response etiology. This study may provide a research paradigm for pharmacogenomic research, and these data provide a promising illustration of our potential to identify genetic variants underlying antipsychotic responses and may ultimately facilitate precision medicine in schizophrenia.
Collapse
Affiliation(s)
- Mingzhe Zhao
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jingsong Ma
- grid.494629.40000 0004 8008 9315School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang Province China ,grid.494629.40000 0004 8008 9315Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang Province China
| | - Mo Li
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wenli Zhu
- The Fourth People’s Hospital of Wuhu, No.1 East Wuxiashan Road, Wuhu, 241003 China
| | - Wei Zhou
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lu Shen
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hao Wu
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Na Zhang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shaochang Wu
- The Second People’s Hospital of Lishui, No.69 Beihua Road, Lishui, 323020 China
| | - Chunpeng Fu
- The Third People’s Hospital of Shangrao, No.1 Fenghuang East Avenue, Taokan Road, Shangrao, 334000 China
| | - Xianxi Li
- Shanghai Yangpu district mental health center, No.585 Jungong Road, Yangpu District, Shanghai, 900093 China
| | - Ke Yang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Tiancheng Tang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ruoxi Shen
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lin He
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China ,grid.16821.3c0000 0004 0368 8293School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China. .,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China. .,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Lee CJ, Choi B, Pak H, Park JM, Lee JH, Lee SH. Genetic Variants Associated with Adverse Events after Angiotensin-Converting Enzyme Inhibitor Use: Replication after GWAS-Based Discovery. Yonsei Med J 2022; 63:342-348. [PMID: 35352885 PMCID: PMC8965428 DOI: 10.3349/ymj.2022.63.4.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Angiotensin-converting enzyme inhibitors (ACEIs) are medications generally prescribed for patients with high cardiovascular risk; however, they are suboptimally used due to frequent adverse events (AEs). The present study aimed to identify and replicate the genetic variants associated with ACEI-related AEs in the Korean population. MATERIALS AND METHODS A two-stage approach employing genome-wide association study (GWAS)-based discovery and replication through target sequencing was used. In total, 1300 individuals received ACEIs from 2001 to 2007; among these, 228 were selected for GWAS. An additional 336 patients were selected for replication after screening 1186 subjects treated from 2008 to 2018. Candidate genes for target sequencing were selected based on the present GWAS, previous GWASs, and data from the PharmGKB database. Furthermore, association analyses were performed between no AE and AE or cough groups after target sequencing. RESULTS Five genes, namely CRIM1, NELL1, CACNA1D, VOPP1, and MYBPC1, were identified near variants associated with ACEI-related AEs. During target sequencing of 34 candidate genes, six single-nucleotide polymorphisms (SNPs; rs5224, rs8176786, rs10766756, rs561868018, rs4974539, and rs10946364) were replicated for association with all ACEI-related AEs. Four of these SNPs and rs147912715 exhibited associations with ACEI-related cough, whereas four SNPs (rs5224, rs81767786, rs10766756, and rs4974539 near BDKRB2, NELL1, NELL1 intron, and CPN2, respectively) were significantly associated with both categories of AEs. CONCLUSION Several variants, including novel and known variants, were successfully replicated and found to have associations with ACEI-related AEs. These results provide rare and clinically relevant information for safer use of ACEIs.
Collapse
Affiliation(s)
- Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Bogeum Choi
- Kyung Hee University College of Medicine, Seoul, Korea
| | - Hayeon Pak
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jung Mi Park
- Department of Biostatistics and Computing, Graduate School, Yonsei University, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, Korea.
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Collins JM, Lu R, Wang X, Zhu HJ, Wang D. Transcriptional Regulation of Carboxylesterase 1 in Human Liver: Role of the Nuclear Receptor Subfamily 1 Group H Member 3 and Its Splice Isoforms. Drug Metab Dispos 2022; 50:43-48. [PMID: 34697082 PMCID: PMC8969197 DOI: 10.1124/dmd.121.000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Carboxylesterase 1 (CES1) is the predominant carboxylesterase in the human liver, involved in metabolism of both xenobiotics and endogenous substrates. Genetic or epigenetic factors that alter CES1 activity or expression are associated with changes in drug response, lipid, and glucose homeostasis. However, the transcriptional regulation of CES1 in the human liver remains uncertain. By applying both the random forest and Sobol's Sensitivity Indices (SSI) to analyze existing liver RNA expression microarray data (GSE9588), we identified nuclear receptor subfamily 1 group H member 3 (NR1H3) liver X receptor (LXR)α as a key factor regulating constitutive CES1 expression. This model prediction was validated using small interfering RNA (siRNA) knockdown and CRISPR-mediated transcriptional activation of NR1H3 in Huh7 and HepG2 cells. We found that NR1H3's activation of CES1 is splice isoform-specific, namely that increased expression of the NR1H3-211 isoform increased CES1 expression whereas NR1H3-201 did not. Also, in human liver samples, expression of NR1H3-211 and CES1 are correlated, whereas NR1H3-201 and CES1 are not. This trend also occurs during differentiation of induced pluripotent stem cells (iPSCs) to hepatocytes, where only expression of the NR1H3-211 isoform parallels expression of CES1 Moreover, we found that treatment with the NR1H3 agonist T0901317 in HepG2 cells had no effect on CES1 expression. Overall, our results demonstrate a key role of NR1H3 in maintaining the constitutive expression of CES1 in the human liver. Furthermore, our results support that the effect of NR1H3 is splice isoform-specific and appears to be ligand independent. SIGNIFICANCE STATEMENT: Despite the central role of carboxylesterase 1 (CES1) in metabolism of numerous medications, little is known about its transcriptional regulation. This study identifies nuclear receptor subfamily 1 group H member 3 as a key regulator of constitutive CES1 expression and therefore is a potential target for future studies to understand interperson variabilities in CES1 activity and drug metabolism.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Xinwen Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| |
Collapse
|
5
|
Levy I, Szarek E, Maria AG, Starrost M, De La Luz Sierra M, Faucz FR, Stratakis CA. A phosphodiesterase 11 (Pde11a) knockout mouse expressed functional but reduced Pde11a: Phenotype and impact on adrenocortical function. Mol Cell Endocrinol 2021; 520:111071. [PMID: 33127481 PMCID: PMC7771190 DOI: 10.1016/j.mce.2020.111071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023]
Abstract
Phosphodiesterases catalyze the hydrolysis of cyclic nucleotides and maintain physiologic levels of intracellular concentrations of cyclic adenosine and guanosine mono-phosphate (cAMP and cGMP, respectively). Increased cAMP signaling has been associated with adrenocortical tumors and Cushing syndrome. Genetic defects in phosphodiesterase 11A (PDE11A) may lead to increased cAMP signaling and have been found to predispose to the development of adrenocortical, prostate, and testicular tumors. A previously reported Pde11a knockout (Pde11a-/-) mouse line was studied and found to express PDE11A mRNA and protein still, albeit at reduced levels; functional studies in various tissues showed increased cAMP levels and reduced PDE11A activity. Since patients with PDE11A defects and Cushing syndrome have PDE11A haploinsufficiency, it was particularly pertinent to study this hypomorphic mouse line. Indeed, Pde11a-/- mice failed to suppress corticosterone secretion in response to low dose dexamethasone, and in addition exhibited adrenal subcapsular hyperplasia with predominant fetal-like features in the inner adrenal cortex, mimicking other mouse models of increased cAMP signaling in the adrenal cortex. We conclude that a previously reported Pde11a-/- mouse showed continuing expression and function of PDE11A in most tissues. Nevertheless, Pde11a partial inactivation in mice led to an adrenocortical phenotype that was consistent with what we see in patients with PDE11A haploinsufficiency.
Collapse
Affiliation(s)
- Isaac Levy
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA; Endocrine and Diabetes Unit. Edmond and Lily Safra Children's Hospital, Tel-Hashomer. Ramat Gan. Sackler School of Medicine, Ramat-aviv, Israel
| | - Eva Szarek
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Andrea Gutierrez Maria
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Matthew Starrost
- Division of Veterinary Resources, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Maria De La Luz Sierra
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fabio R Faucz
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|