1
|
Schneider BP, Zhao F, Ballinger TJ, Garcia SF, Shen F, Virani S, Cella D, Bales C, Jiang G, Hayes L, Miller N, Srinivasiah J, Stringer-Reasor EM, Chitalia A, Davis AA, Makower DF, Incorvati J, Simon MA, Mitchell EP, DeMichele A, Miller KD, Sparano JA, Wagner LI, Wolff AC. ECOG-ACRIN EAZ171: Prospective Validation Trial of Germline Predictors of Taxane-Induced Peripheral Neuropathy in Black Women With Early-Stage Breast Cancer. J Clin Oncol 2024; 42:2899-2907. [PMID: 38828938 PMCID: PMC11670807 DOI: 10.1200/jco.24.00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
PURPOSE Black women experience higher rates of taxane-induced peripheral neuropathy (TIPN) compared with White women when receiving adjuvant once weekly paclitaxel for early-stage breast cancer, leading to more dose reductions and higher recurrence rates. EAZ171 aimed to prospectively validate germline predictors of TIPN and compare rates of TIPN and dose reductions in Black women receiving (neo)adjuvant once weekly paclitaxel and once every 3 weeks docetaxel for early-stage breast cancer. METHODS Women with early-stage breast cancer who self-identified as Black and had intended to receive (neo)adjuvant once weekly paclitaxel or once every 3 weeks docetaxel were eligible, with planned accrual to 120 patients in each arm. Genotyping was performed to determine germline neuropathy risk. Grade 2-4 TIPN by Common Terminology Criteria for Adverse Events (CTCAE) v5.0 was compared between high- versus low-risk genotypes and between once weekly paclitaxel versus once every 3 weeks docetaxel within 1 year. Patient-rated TIPN and patient-reported outcomes were compared using patient-reported outcome (PRO)-CTCAE and Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity. RESULTS Two hundred and forty of 249 enrolled patients had genotype data, and 91 of 117 (77.8%) receiving once weekly paclitaxel and 87 of 118 (73.7%) receiving once every 3 weeks docetaxel were classified as high-risk. Physician-reported grade 2-4 TIPN was not significantly different in high- versus low-risk genotype groups with once weekly paclitaxel (47% v 35%; P = .27) or with once every 3 weeks docetaxel (28% v 19%; P = .47). Grade 2-4 TIPN was significantly higher in the once weekly paclitaxel versus once every 3 weeks docetaxel arm by both physician-rated CTCAE (45% v 29%; P = .02) and PRO-CTCAE (40% v 24%; P = .03). Patients receiving once weekly paclitaxel required more dose reductions because of TIPN (28% v 9%; P < .001) or any cause (39% v 25%; P = .02). CONCLUSION Germline variation did not predict risk of TIPN in Black women receiving (neo)adjuvant once weekly paclitaxel or once every 3 weeks docetaxel. Once weekly paclitaxel was associated with significantly more grade 2-4 TIPN and required more dose reductions than once every 3 weeks docetaxel.
Collapse
Affiliation(s)
| | - Fengmin Zhao
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center
| | | | - Sofia F Garcia
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center
| | - Fei Shen
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | - David Cella
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center
| | - Casey Bales
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Guanglong Jiang
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | | | | | | | | | - Andrew A. Davis
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Melissa A. Simon
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | | | | |
Collapse
|
2
|
Cavaletti G, Forsey K, Alberti P. Toxic medications in Charcot-Marie-Tooth patients: A systematic review. J Peripher Nerv Syst 2023; 28:295-307. [PMID: 37249082 DOI: 10.1111/jns.12566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Several widely used medications, with a relevant efficacy profile, are toxic to the peripheral nervous system and an even larger number of agents are suspected to be neurotoxic. There are concerns about the use of these drugs in patients with Charcot-Marie-Tooth disease (CMT), a hereditary motor and sensory neuropathy. This review provides evidence-based updated recommendations on this clinically relevant topic. METHODS A systematic review of the available studies/reports written in English was performed from July to September 2022 including in the search string all reported putative neurotoxic drugs. RESULTS The results of our systematic review provide evidence-based support for the statement that use of vincristine, and possibly paclitaxel, can occasionally induce an atypical, and more severe, course of drug-related peripheral neurotoxicity in CMT patients. It is therefore reasonable to recommend caution in the use of these compounds in CMT patients. However, no convincing evidence for a similar recommendation could be found for all other drugs. INTERPRETATION It is important that patients with CMT are not denied effective treatments that may prolong life expectancy for cancer or improve their health status if affected by non-oncological diseases. Accurate monitoring of peripheral nerve function in CMT patients treated with any neurotoxic agent remains mandatory to detect the earliest signs of neuropathy worsening and atypical clinical courses. Neurologists monitoring CMT patients as part of their normal care package or for natural history studies should keep detailed records of exposures to neurotoxic medications and support reporting of accelerated neuropathy progression if observed.
Collapse
Affiliation(s)
- Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
3
|
Khan Z, Jung M, Crow M, Mohindra R, Maiya V, Kaminker JS, Hackos DH, Chandler GS, McCarthy MI, Bhangale T. Whole genome sequencing across clinical trials identifies rare coding variants in GPR68 associated with chemotherapy-induced peripheral neuropathy. Genome Med 2023; 15:45. [PMID: 37344884 DOI: 10.1186/s13073-023-01193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Dose-limiting toxicities significantly impact the benefit/risk profile of many drugs. Whole genome sequencing (WGS) in patients receiving drugs with dose-limiting toxicities can identify therapeutic hypotheses to prevent these toxicities. Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting neurological toxicity of chemotherapies with no effective approach for prevention. METHODS We conducted a genetic study of time-to-first peripheral neuropathy event using 30× germline WGS data from whole blood samples from 4900 European-ancestry cancer patients in 14 randomized controlled trials. A substantial number of patients in these trials received taxane and platinum-based chemotherapies as part of their treatment regimen, either standard of care or in combination with the PD-L1 inhibitor atezolizumab. The trials spanned several cancers including renal cell carcinoma, triple negative breast cancer, non-small cell lung cancer, small cell lung cancer, bladder cancer, ovarian cancer, and melanoma. RESULTS We identified a locus consisting of low-frequency variants in intron 13 of GRID2 associated with time-to-onset of first peripheral neuropathy (PN) indexed by rs17020773 (p = 2.03 × 10-8, all patients, p = 6.36 × 10-9, taxane treated). Gene-level burden analysis identified rare coding variants associated with increased PN risk in the C-terminus of GPR68 (p = 1.59 × 10-6, all patients, p = 3.47 × 10-8, taxane treated), a pH-sensitive G-protein coupled receptor (GPCR). The variants driving this signal were found to alter predicted arrestin binding motifs in the C-terminus of GPR68. Analysis of snRNA-seq from human dorsal root ganglia (DRG) indicated that expression of GPR68 was highest in mechano-thermo-sensitive nociceptors. CONCLUSIONS Our genetic study provides insight into the impact of low-frequency and rare coding genetic variation on PN risk and suggests that further study of GPR68 in sensory neurons may yield a therapeutic hypothesis for prevention of CIPN.
Collapse
Affiliation(s)
- Zia Khan
- Genentech, 1 DNA Way, South San Francisco, 94080, USA.
| | - Min Jung
- Genentech, 1 DNA Way, South San Francisco, 94080, USA
| | - Megan Crow
- Genentech, 1 DNA Way, South San Francisco, 94080, USA
| | - Rajat Mohindra
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Vidya Maiya
- Genentech, 1 DNA Way, South San Francisco, 94080, USA
| | | | | | - G Scott Chandler
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | | | |
Collapse
|
4
|
Rodwin RL, Siddiq NZ, Ehrlich BE, Lustberg MB. Biomarkers of Chemotherapy-Induced Peripheral Neuropathy: Current Status and Future Directions. FRONTIERS IN PAIN RESEARCH 2022; 3:864910. [PMID: 35360655 PMCID: PMC8963873 DOI: 10.3389/fpain.2022.864910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is an often severe and debilitating complication of multiple chemotherapeutic agents that can affect patients of all ages, across cancer diagnoses. CIPN can persist post-therapy, and significantly impact the health and quality of life of cancer survivors. Identifying patients at risk for CIPN is challenging due to the lack of standardized objective measures to assess for CIPN. Furthermore, there are no approved preventative treatments for CIPN, and therapeutic options for CIPN remain limited once it develops. Biomarkers of CIPN have been studied but are not widely used in clinical practice. They can serve as an important clinical tool to identify individuals at risk for CIPN and to better understand the pathogenesis and avenues for treatment of CIPN. Here we review promising biomarkers of CIPN in humans and their clinical implications.
Collapse
Affiliation(s)
- Rozalyn L. Rodwin
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Namrah Z. Siddiq
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
| | - Maryam B. Lustberg
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
- *Correspondence: Maryam B. Lustberg
| |
Collapse
|
5
|
Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:60-74. [PMID: 34481421 PMCID: PMC8716520 DOI: 10.1111/bcpt.13654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity that affects 30%-40% of patients undergoing cancer treatment. Although multiple mechanisms of chemotherapy-induced neurotoxicity have been described in preclinical models, these have not been translated into widely effective strategies for the prevention or treatment of CIPN. Predictive biomarkers to inform therapeutic approaches are also lacking. Recent studies have examined genetic risk factors associated with CIPN susceptibility. This review provides an overview of the clinical and pathologic features of CIPN and summarizes efforts to identify target pathways through genetic and functional studies. Structurally and mechanistically diverse chemotherapeutics are associated with CIPN; however, the current review is focused on microtubule-targeting agents since these are the focus of most pharmacogenetic association and functional studies of CIPN. Genome-wide pharmacogenetic association studies are useful tools to identify not only causative genes and genetic variants but also genetic networks implicated in drug response or toxicity and have been increasingly applied to investigations of CIPN. Induced pluripotent stem cell-derived models of human sensory neurons are especially useful to understand the mechanistic significance of genomic findings. Combined genetic and functional genomic efforts to understand CIPN hold great promise for developing therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Katherina C. Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94143-2911,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Nura El-Haj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-2911
| |
Collapse
|
6
|
Sharma A, Johnson KB, Bie B, Rhoades EE, Sen A, Kida Y, Hockings J, Gatta A, Davenport J, Arcangelini C, Ritzu J, DeVecchio J, Hughen R, Wei M, Thomas Budd G, Lynn Henry N, Eng C, Foss J, Rotroff DM. A Multimodal Approach to Discover Biomarkers for Taxane-Induced Peripheral Neuropathy (TIPN): A Study Protocol. Technol Cancer Res Treat 2022; 21:15330338221127169. [PMID: 36172750 PMCID: PMC9523841 DOI: 10.1177/15330338221127169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Taxanes are a class of chemotherapeutics commonly used to treat various solid tumors, including breast and ovarian cancers. Taxane-induced peripheral neuropathy (TIPN) occurs in up to 70% of patients, impacting quality of life both during and after treatment. TIPN typically manifests as tingling and numbness in the hands and feet and can cause irreversible loss of function of peripheral nerves. TIPN can be dose-limiting, potentially impacting clinical outcomes. The mechanisms underlying TIPN are poorly understood. As such, there are limited treatment options and no tools to provide early detection of those who will develop TIPN. Although some patients may have a genetic predisposition, genetic biomarkers have been inconsistent in predicting chemotherapy-induced peripheral neuropathy (CIPN). Moreover, other molecular markers (eg, metabolites, mRNA, miRNA, proteins) may be informative for predicting CIPN, but remain largely unexplored. We anticipate that combinations of multiple biomarkers will be required to consistently predict those who will develop TIPN. Methods: To address this clinical gap of identifying patients at risk of TIPN, we initiated the Genetics and Inflammatory Markers for CIPN (GENIE) study. This longitudinal multicenter observational study uses a novel, multimodal approach to evaluate genomic variation, metabolites, DNA methylation, gene expression, and circulating cytokines/chemokines prior to, during, and after taxane treatment in 400 patients with breast cancer. Molecular and patient reported data will be collected prior to, during, and after taxane therapy. Multi-modal data will be used to develop a set of comprehensive predictive biomarker signatures of TIPN. Conclusion: The goal of this study is to enable early detection of patients at risk of developing TIPN, provide a tool to modify taxane treatment to minimize morbidity from TIPN, and improved patient quality of life. Here we provide a brief review of the current state of research into CIPN and TIPN and introduce the GENIE study design.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ken B. Johnson
- Department of Anesthesiology, University of Utah, UT, USA
| | - Bihua Bie
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | | | - Alper Sen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Yuri Kida
- Department of Anesthesiology, University of Utah, UT, USA
| | - Jennifer Hockings
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Department of Pharmacy, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alycia Gatta
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
| | | | | | | | - Jennifer DeVecchio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ron Hughen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Mei Wei
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - G. Thomas Budd
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - N. Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Charis Eng
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Foss
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|