1
|
Nthontho KC, Ndlovu AK, Sharma K, Kasvosve I, Hertz DL, Paganotti GM. Pharmacogenetics of Breast Cancer Treatments: A Sub-Saharan Africa Perspective. Pharmgenomics Pers Med 2022; 15:613-652. [PMID: 35761855 PMCID: PMC9233488 DOI: 10.2147/pgpm.s308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer death in low- and middle-income countries, in particular among sub-Saharan African women, where response to available anticancer treatment therapy is often limited by the recurrent breast tumours and metastasis, ultimately resulting in decreased overall survival rate. This can also be attributed to African genomes that contain more variation than those from other parts of the world. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to specific available treatments and the known genetic variabilities associated with metabolism and/or transport of breast cancer drugs, and treatment outcomes when possible. The emphasis is on the African genetic variation and focuses on the genes with the highest strength of evidence, with a close look on CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, CYP19A1, UGT1A4, UGT2B7, UGT2B15, SLC22A16, SLC38A7, FcγR, DPYD, ABCB1, and SULT1A1, which are the genes known to play major roles in the metabolism and/or elimination of the respective anti-breast cancer drugs given to the patients. The genetic variability of their metabolism could be associated with different metabolic phenotypes that may cause reduced patients' adherence because of toxicity or sub-therapeutic doses. Finally, this knowledge enhances possible personalized treatment approaches, with the possibility of improving survival outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Keneuoe Cecilia Nthontho
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Andrew Khulekani Ndlovu
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
2
|
Ndadza A, Thomford NE, Mukanganyama S, Wonkam A, Ntsekhe M, Dandara C. The Genetics of Warfarin Dose-Response Variability in Africans: An Expert Perspective on Past, Present, and Future. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:152-166. [PMID: 30883300 DOI: 10.1089/omi.2019.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coumarins such as warfarin are prescribed for prevention and treatment of thromboembolic disorders. Warfarin remains the most widely prescribed and an anticoagulant of choice in Africa. Warfarin use is, however, limited by interindividual variability in pharmacokinetics and a narrow therapeutic index. The difference in patients' pharmacodynamic responses to warfarin has been attributed to genetic variation in warfarin metabolism and molecular targets (e.g., CYP2C9 and VKORC1) and host-environment interactions. This expert review offers a synthesis of human genetics studies in Africans with respect to pharmacogenetics-informed warfarin dosing. We identify areas that need future research attention or could benefit from harnessing existing pharmacogenetics knowledge toward rational and optimal therapeutics with warfarin in African patients. A literature search was conducted until January 2019. A total of 343 articles were retrieved from nine African countries: Botswana, Ethiopia, Egypt, Ghana, Kenya, South Africa, Sudan, Tanzania, and Mozambique. We found 19 studies on genetics of warfarin treatment specifically among Africans. Genes examined included CYP2C9, VKORC1, CYP4F2, APOE, CALU, GGCX, and EPHX1. CYP2C9*2 and *3 alleles were highly frequent among Egyptians, while rare in other African populations. CYP2C9*5, *8, *9, and *11, and VKORC1 Asp36Tyr genetic variants explained warfarin variability in Africans better, compared to CYP2C9*2 and *3. In Africa, there is limited pharmacogenetics data on warfarin. Therefore, future research and funding commitments should be prioritized to ensure safe and effective use of warfarin in Africa. Lessons learned in Africa from the science of pharmacogenetics would inform rational therapeutics in hematology, cardiology, and surgical specialties worldwide.
Collapse
Affiliation(s)
- Arinao Ndadza
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Ambroise Wonkam
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- 3 Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Saldaña-Cruz AM, León-Moreno LC, Sánchez-Corona J, Santiago DAMD, Mendoza-Carrera F, Castro-Martínez XH, García-Zapién AG, Morán-Moguel MC, Flores-Martínez SE. CYP2C9 and CYP2C19 Allele and Haplotype Distributions in Four Mestizo Populations from Western Mexico: An Interethnic Comparative Study. Genet Test Mol Biomarkers 2016; 20:702-709. [DOI: 10.1089/gtmb.2016.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ana Miriam Saldaña-Cruz
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Lilia Carolina León-Moreno
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - José Sánchez-Corona
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | | | - Francisco Mendoza-Carrera
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Xochitl Helga Castro-Martínez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Alejandra Guadalupe García-Zapién
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - María Cristina Morán-Moguel
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Silvia Esperanza Flores-Martínez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
4
|
Céspedes-Garro C, Fricke-Galindo I, Naranjo MEG, Rodrigues-Soares F, Fariñas H, de Andrés F, López-López M, Peñas-Lledó EM, LLerena A. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin Drug Metab Toxicol 2015; 11:1893-905. [DOI: 10.1517/17425255.2015.1111871] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Gbandi E, Goulas A, Sevastianos V, Hadziyannis S, Panderi A, Koskinas J, Papatheodoridis G, Vasiliadis T, Agapakis D, Protopapas A, Ioannidou P, Zacharakis G, Sinakos E, Koutsounas S, Germanidis G. Common ABCB1 polymorphisms in Greek patients with chronic hepatitis C infection: A comparison with hyperlipidemic patients and the general population. Pharmacol Rep 2015; 68:476-82. [PMID: 26922556 DOI: 10.1016/j.pharep.2015.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hepatitis C virus infectivity and replication efficiency appears to be dependent on the lipid content and organization of the plasma membrane of the host cell, as well as of the intracellular membranous web. As there is increasing awareness of a role played by the efflux pump ABCB1 (p-glycoprotein, P-gp) in lipid homeostasis, its function could be a determinant of chronic HCV infection. The aim of the present study was to examine and compare the distribution of common ABCB1 genotypes in patients with chronic HCV infection (n=168), hyperlipidemic patients (n=168) and a control group (n=173), all from Greece. METHODS Participants were genotyped for the ABCB12677G>T/A and 3435C>T polymorphisms with previously reported PCR-RFLP methods. Genotype and allele frequency distributions were compared between the three groups with the χ(2) test of independence. RESULTS The ABCB1 2677GG (ancestral) genotypes were significantly over-represented in patients with chronic hepatitis C compared to controls (39.3% vs. 26.6%, p=0.015 according to the dominant model). A similar result was obtained when hyperlipidemic patients were compared to controls (45.2% vs. 26.6%, p<0.001 according to the dominant model). Comparison of ABCB1 3435C>T genotype and allele distributions provided similar but not as significant differences. Genotype and allele distributions for both ABCB12677G>T/A and 3435C>T were very similar between HCV patients and hyperlipidemic patients. CONCLUSION Our findings imply an influence of ABCB1 polymorphisms on HCV infectivity, possibly through an effect on lipid homeostasis.
Collapse
Affiliation(s)
- Emma Gbandi
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Athanasia Panderi
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Koskinas
- 2nd Academic Department of Internal Medicine, Hippokration Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Athens University Medical School, Laikon General Hospital of Athens, Athens, Greece
| | - Themistoklis Vasiliadis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Agapakis
- 1st Propedeutic Department of Internal Medicine, AHEPA Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Protopapas
- 1st Propedeutic Department of Internal Medicine, AHEPA Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Ioannidou
- Department of Gastroenterology, Athens University Medical School, Laikon General Hospital of Athens, Athens, Greece
| | - George Zacharakis
- 2nd Department of Gastroenterology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Emmanuil Sinakos
- 4th Department of Internal Medicine, Aristotle University of Thessaloniki Medical School, Hippokration General Hospital, Thessaloniki, Greece
| | | | - Georgios Germanidis
- 1st Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| |
Collapse
|
6
|
Marwa KJ, Schmidt T, Sjögren M, Minzi OMS, Kamugisha E, Swedberg G. Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population: a concern about the metabolism of artemisinin-based combinations. Malar J 2014; 13:420. [PMID: 25363545 PMCID: PMC4228099 DOI: 10.1186/1475-2875-13-420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/25/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Artemisinin-based combinations currently recommended for treatment of uncomplicated Plasmodium falciparum malaria in many countries of sub-Saharan Africa are substrates of CYP enzymes. The cytochrome enzyme system is responsible for metabolism of about 80-90% of clinically used drugs. It is, therefore, important to obtain the pharmacogenetics of the population in the region with respect to these combinations and thereby enable practitioners to predict treatment outcomes. The aim of this study was to detect and determine allelic frequencies of CYP2C8*2, CYP2C8*3, CYP3A4*1B, CYP3A5*3 and CYP2B6*6 variant alleles in a Tanzanian indigenous population. METHODS Genomic DNA extraction from blood obtained from 256 participants who escorted patients at Karume Health Centre in Mwanza Tanzania, was carried out using the Gene JET™ Genomic DNA purification kit (Thermo Scientific). Genotyping for the cytochrome P450 variant alleles was performed using predesigned primers. Amplification was done by PCR while differentiation between alleles was done by restriction fragment length polymorphism (PCR-RFLP) (for CYP2C8*2, CYP2C8*3) and sequencing (for CYP2B6*6, CYP3A5*3 and CYP3A4*1B). RESULTS CYP2C8*2, CYP2C8*3, CYP3A5*3, CYP3A4*1B and CYP2B6*6 variant allelic frequencies were found to be 19,10,16,78 and 36% respectively. CONCLUSION Prevalence of CYP2C8*2, CYP3A5*3, CYP3A4*1B and CYP2B6*6 mutations in a Tanzanian population/subjects are common. The impact of these point mutations on the metabolism of anti-malarial drugs, particularly artemisinin-based combinations, and their potential drug-drug interactions (DDIs) needs to be further evaluated.
Collapse
Affiliation(s)
- Karol J Marwa
- Department of Pharmacology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | | | | | | | | | | |
Collapse
|
7
|
Bains RK, Kovacevic M, Plaster CA, Tarekegn A, Bekele E, Bradman NN, Thomas MG. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genet 2013; 14:34. [PMID: 23641907 PMCID: PMC3655848 DOI: 10.1186/1471-2156-14-34] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
Background Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago. Results We estimate that ~43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as ~76,400 years and CYP3A5*6 as ~218,400 years. Finally we report that global CYP3A5 expression levels correlated significantly with aridity measures for 10,000 [Spearmann’s Rho= −0.465, p=0.004] and 50,000 years ago [Spearmann’s Rho= −0.379, p=0.02]. Conclusions Significant intra-African diversity at the CYP3A5 gene is likely to contribute to multiple pharmacogenetic profiles across the continent. Significant correlations between CYP3A5 expression phenotypes and aridity data are consistent with a hypothesis that the enzyme is important in salt-retention adaptation.
Collapse
Affiliation(s)
- Ripudaman K Bains
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Alessandrini M, Asfaha S, Dodgen TM, Warnich L, Pepper MS. Cytochrome P450 pharmacogenetics in African populations. Drug Metab Rev 2013; 45:253-75. [PMID: 23590174 DOI: 10.3109/03602532.2013.783062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Cytochrome P450 (CYP450) family of enzymes is involved in the oxidative metabolism of many therapeutic drugs, carcinogens and various endogenous substrates. These enzymes are highly polymorphic at an inter-individual and inter-ethnic level. Polymorphisms or genetic variations account for up to 30% of inter-individual differences seen in a variety of drug responses. The frequencies of the different metabolizer categories (slow, intermediate, extensive and ultra-rapid), the distribution of genetic variants, genotype-phenotype correlations and the clinical importance of the CYP450 enzymes have been extensively documented in Caucasian and Oriental populations. Limited data exists for African populations, despite the fact that this knowledge is critically important for these populations who experience a heavy burden of communicable and non-communicable diseases. In addition, the costs incurred through adverse drug reactions and non-responsiveness to therapy could be reduced through the wide-scale application of pharmacogenetics. This review provides an overview and investigation of CYP450 genotypic and phenotypic reports published from 1980 to present in African populations. Our findings confirm the high degree of variability that is expected when comparing individuals of African origin to other ethnic groups and also highlight the distribution of clinically relevant CYP450 alleles amongst the various African populations. The notable discordance in genotypic and phenotypic data amongst African populations exemplifies the need for in-depth and well-orchestrated molecular and pharmacological investigations of these populations in the future, for which whole genome sequencing and association studies will be critical.
Collapse
Affiliation(s)
- Marco Alessandrini
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
9
|
Global pharmacogenomics: Impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians. THE PHARMACOGENOMICS JOURNAL 2010; 12:267-76. [DOI: 10.1038/tpj.2010.89] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|