1
|
Zettl UK, Rommer PS, Aktas O, Wagner T, Richter J, Oschmann P, Cepek L, Elias-Hamp B, Gehring K, Chan A, Hecker M. Interferon beta-1a sc at 25 years: a mainstay in the treatment of multiple sclerosis over the period of one generation. Expert Rev Clin Immunol 2023; 19:1343-1359. [PMID: 37694381 DOI: 10.1080/1744666x.2023.2248391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Interferon beta (IFN beta) preparations are an established group of drugs used for immunomodulation in patients with multiple sclerosis (MS). Subcutaneously (sc) applied interferon beta-1a (IFN beta-1a sc) has been in continuous clinical use for 25 years as a disease-modifying treatment. AREAS COVERED Based on data published since 2018, we discuss recent insights from analyses of the pivotal trial PRISMS and its long-term extension as well as from newer randomized studies with IFN beta-1a sc as the reference treatment, the use of IFN beta-1a sc across the patient life span and as a bridging therapy, recent data regarding the mechanisms of action, and potential benefits of IFN beta-1a sc regarding vaccine responses. EXPERT OPINION IFN beta-1a sc paved the way to effective immunomodulatory treatment of MS, enabled meaningful insights into the disease process, and remains a valid therapeutic option in selected vulnerable MS patient groups.
Collapse
Affiliation(s)
- Uwe Klaus Zettl
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Paulus Stefan Rommer
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | - Andrew Chan
- Department of Neurology, Inselspital Bern, University Hospital Bern, Bern, Switzerland
| | - Michael Hecker
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Hecker M. Blood transcriptome profiling captures dysregulated pathways and response to treatment in neuroimmunological disease. EBioMedicine 2019; 49:2-3. [PMID: 31668881 PMCID: PMC6945196 DOI: 10.1016/j.ebiom.2019.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Affiliation(s)
- Michael Hecker
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| |
Collapse
|
3
|
Feng X, Bao R, Li L, Deisenhammer F, Arnason BGW, Reder AT. Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine 2019; 49:269-283. [PMID: 31648992 PMCID: PMC6945282 DOI: 10.1016/j.ebiom.2019.09.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background In multiple sclerosis (MS), immune up-regulation is coupled to subnormal immune response to interferon-β (IFN-β) and low serum IFN-β levels. The relationship between the defect in IFN signalling and acute and long-term effects of IFN-β on gene expression in MS is inadequately understood. Methods We profiled IFN-β-induced transcriptome shifts, using high-resolution microarrays on 227 mononuclear cell samples from IFN-β-treated MS Complete Responders (CR) stable for five years, and stable and active Partial Responders (PR), stable and active untreated MS, and healthy controls. Findings IFN-β injection induced short-term changes in 1,200 genes compared to baseline expression after 4-day IFN washout. Pre-injection after washout, and in response to IFN-β injections, PR more frequently had abnormal gene expression than CR. Surprisingly, short-term IFN-β induced little shift in Th1/Th17/Th2 gene expression, but up-regulated immune-inhibitory genes (ILT, IDO1, PD-L1). Expression of 8,800 genes was dysregulated in therapy-naïve compared to IFN-β-treated patients. These long-term changes in protein-coding and long non-coding RNAs affect immunity, synaptic transmission, and CNS cell survival, and correct the disordered therapy-naïve transcriptome to near-normal. In keeping with its impact on clinical course and brain repair in MS, long-term IFN-β treatment reversed the overexpression of proinflammatory and MMP genes, while enhancing genes involved in the oligodendroglia-protective integrated stress response, neuroprotection, and immunoregulation. In the rectified long-term signature, 277 transcripts differed between stable PR and CR patients. Interpretation IFN-β had minimal short-term effects on Th1 and Th2 pathways, but long-term it corrected gene dysregulation and induced immunoregulatory and neuroprotective genes. These data offer new biomarkers for IFN-β responsiveness. Funding Unrestricted grants from the US National MS Society, NMSS RG#4509A, and Bayer Pharmaceuticals
Collapse
Affiliation(s)
- Xuan Feng
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| | - Riyue Bao
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, United States; Department of Paediatrics, University of Chicago, Chicago, IL 60637, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, United States
| | - Lei Li
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States; Hospital of Harbin Medical University, Harbin 150086, China
| | | | - Barry G W Arnason
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| | - Anthony T Reder
- Department of Neurology and the Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
4
|
Hočevar K, Ristić S, Peterlin B. Pharmacogenomics of Multiple Sclerosis: A Systematic Review. Front Neurol 2019; 10:134. [PMID: 30863357 PMCID: PMC6399303 DOI: 10.3389/fneur.2019.00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Over the past two decades, various novel disease-modifying drugs for multiple sclerosis (MS) have been approved. However, there is high variability in the patient response to the available medications, which is hypothesized to be partly attributed to genetics. Objectives: To conduct a systematic review of the current literature on the pharmacogenomics of MS therapy. Methods: A systematic literature search was conducted using PubMed/MEDLINE database searching for articles investigating a role of genetic variation in response to disease-modifying MS treatments, published in the English language up to October 9th, 2018. PRISMA guidelines for systematic reviews were applied. Studies were included if they investigated response or nonresponse to MS treatment defined as relapse rate, by expanded disability status scale score or based on magnetic resonance imaging. The following data were extracted: first author's last name, year of publication, PMID number, sample size, ethnicity of patients, method, genes, and polymorphisms tested, outcome, significant associations with corresponding P-values and confidence intervals, response criteria, and duration of the follow-up period. Results: Overall, 48 articles published up to October 2018, evaluating response to interferon-beta, glatiramer acetate, mitoxantrone, and natalizumab, met our inclusion criteria and were included in this review. Among those, we identified 42 (87.5%) candidate gene studies and 6 (12.5%) genome-wide association studies. Existing pharmacogenomic evidence is mainly based on the results of individual studies, or on results of multiple studies, which often lack consistency. In recent years, hypothesis-free approaches identified novel candidate genes that remain to be validated. Various study designs, including the definition of clinical response, duration of the follow-up period, and methodology as well as moderate sample sizes, likely contributed to discordances between studies. However, some of the significant associations were identified in the same genes, or in the genes involved in the same biological pathways. Conclusions: At the moment, there is no available clinically actionable pharmacogenomic biomarker that would enable more personalized treatment of MS. More large-scale studies with uniform design are needed to identify novel and validate existing pharmacogenomics findings. Furthermore, studies investigating associations between rare variants and treatment response in MS patients, using next-generation sequencing technologies are warranted.
Collapse
Affiliation(s)
- Keli Hočevar
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Smiljana Ristić
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Zettl UK, Hecker M, Aktas O, Wagner T, Rommer PS. Interferon β-1a and β-1b for patients with multiple sclerosis: updates to current knowledge. Expert Rev Clin Immunol 2018; 14:137-153. [DOI: 10.1080/1744666x.2018.1426462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Uwe Klaus Zettl
- Department of Neurology, Neuroimmunology Section, University of Rostock, Rostock, Germany
| | - Michael Hecker
- Department of Neurology, Neuroimmunology Section, University of Rostock, Rostock, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Torsten Wagner
- Department of Medical Affairs, Merck KGaA, Darmstadt, Germany
| | - Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Karam RA, Rezk NA, Amer MM, Fathy HA. Immune response genes receptors expression and polymorphisms in relation to multiple sclerosis susceptibility and response to INF-βtherapy. IUBMB Life 2016; 68:727-34. [DOI: 10.1002/iub.1530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Rehab A. Karam
- Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Noha A. Rezk
- Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Mona M. Amer
- Neurology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Hala A. Fathy
- Neurology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
7
|
Corvol JC, Devos D, Hulot JS, Lacomblez L. Clinical implications of neuropharmacogenetics. Rev Neurol (Paris) 2015; 171:482-97. [PMID: 26008819 DOI: 10.1016/j.neurol.2015.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/24/2015] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Pharmacogenetics aims to identify the underlying genetic factors participating in the variability of drug response. Indeed, genetic variability at the DNA or RNA levels can directly or indirectly modify the pharmacokinetic or the pharmacodynamic parameters of a drug. The ultimate aim of pharmacogenetics is to move towards a personalised medicine by predicting responders and non-responders, adjusting the dose of the treatment, and identifying individuals at risk of adverse drug effects. METHODS A literature research was performed in which we reviewed all pharmacogenetic studies in neurological disorders including neurodegenerative diseases, multiple sclerosis, stroke and epilepsy. RESULTS Several pharmacogenetic studies have been performed in neurology, bringing insights into the inter-individual drug response variability and in the pathophysiology of neurological diseases. The principal implications of these studies for the management of patients in clinical practice are discussed. CONCLUSION/DISCUSSION Although several genetic factors have been identified in the modification of drug response in neurological disorders, most of them have a marginal predictive effect at the single gene level, suggesting mutagenic interactions as well as other factors related to drug interaction and disease subtypes. Most pharmacogenetic studies deserve further replication in independent populations and, ideally, in pharmacogenetic clinical trials to demonstrate their relevance in clinical practice.
Collapse
Affiliation(s)
- J-C Corvol
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; CIC_1422, département des maladies du système nerveux, hôpital Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, UMR_S1127, ICM, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; CNRS, UMR_7225, ICM, 4, place Jussieu, 75005 Paris, France.
| | - D Devos
- Inserm U1171, department of movement disorders and neurology, department of medical pharmacology, university of Lille, CHU Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - J-S Hulot
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; Inserm, UMR_S1166, ICAN, 4, place Jussieu, 75005 Paris, France
| | - L Lacomblez
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; CIC_1422, département des maladies du système nerveux, hôpital Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, UMR_S1146, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
8
|
Kulakova OG, Tsareva EY, Lvovs D, Favorov AV, Boyko AN, Favorova OO. Comparative pharmacogenetics of multiple sclerosis: IFN-β versus glatiramer acetate. Pharmacogenomics 2014; 15:679-85. [PMID: 24798724 DOI: 10.2217/pgs.14.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Various diseases require the selection of preferable treatment out of available alternatives. Multiple sclerosis (MS), an autoimmune inflammatory/neurodegenerative disease of the CNS, requires long-term medication with either specific disease-modifying therapy (DMT) - IFN-β or glatiramer acetate (GA) - which remain the only first-line DMTs in all countries. A significant share of MS patients are resistant to treatment with one or the other DMT; therefore, the earliest choice of preferable DMT is of particular importance. A number of conventional pharmacogenetic studies performed up to the present day have identified the treatment-sensitive genetic biomarkers that might be specific for the particular drug; however, the suitable biomarkers for selection of one or another first-line DMT are remained to be found. Comparative pharmacogenetic analysis may allow the identification of the discriminative genetic biomarkers, which may be more informative for an a priori DMT choice than those found in conventional pharmacogenetic studies. The search for discriminative markers of preferable first-line DMT, which differ in carriage between IFN-β responders and GA responders as well as between IFN-β nonresponders and GA nonresponders, has been performed in 253 IFN-β-treated MS patients and 285 GA-treated MS patients. A bioinformatics algorithm for identification of composite biomarkers (allelic sets) was applied on a unified set of immune-response genes, which are relevant for IFN-β and/or GA modes of action, and identical clinical criteria of treatment response. We found the range of discriminative markers, which include polymorphic variants of CCR5, IFNAR1, TGFB1, DRB1 or CTLA4 genes, in different combinations. Every allelic set includes the CCR5 genetic variant, which probably suggests its crucial role in the modulation of the DMT response. Special attention should be given to the (CCR5*d+ IFNAR1*G) discriminative combination, which clearly points towards IFN-β treatment choice for carriers of this combination. As a whole the comparative approach provides an option for the identification of prognostic composite biomarkers for a preferable medication among available alternatives.
Collapse
Affiliation(s)
- Olga G Kulakova
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, 117997, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
9
|
Fu L, Zhang S. RASSF1A promotes apoptosis and suppresses the proliferation of ovarian cancer cells. Int J Mol Med 2014; 33:1153-60. [PMID: 24573512 DOI: 10.3892/ijmm.2014.1671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/27/2014] [Indexed: 11/05/2022] Open
Abstract
As the most lethal gynecological malignancy, ovarian cancer has attracted much attention over the past few decades; however, the early detection of this malignancy has been largely unsuccessful. The aim of this study was to determine the effects of Ras-association domain family 1, isoform A (RASSF1A) on ovarian cancer and to elucidate the molecular mechanisms responsible for these effects. The expression of RASSF1A in different ovarian cancer cells was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The morphology, structure, apoptosis and proliferation of differently treated SKOV-3 cells were then analyzed using a fluorescence microscope, transmission electron microscope, flow cytometer and by western blot analysis, respectively. Moreover, the GSE14407 affymetrix microarray data were downloaded from the Gene Expression Omnibus database and the expression of RASSF1A was quantified by Spotfire DecisionSite software. A RASSF1A related protein-protein interaction (PPI) network was then constructed using STRING and Cytoscape software. Finally, DAVID was utilized to perform KEGG pathway enrichment analysis of the network. RASSF1A was expressed in the HO8910, HO8910PM cells and the SKOV-3 cells transfected with RASSF1A, whereas it was absent in the other SKOV-3 cells and OVCAR-3 cells. Additionally, compared with the other SKOV-3 cells, the nucleus of SKOV-3 cells transfected with RASSF1A was vacuolated, apoptosis was increased, and the expression of cyclin D1 and survivin was decreased (P<0.05), and that of p27 and caspase-3 was increased (P<0.01). Additionally, 10 genes, including serine/threonine kinase (STK)3, STK4, Harvey rat sarcoma viral oncogene homolog (HRAS) and cell division cycle 20 (CDC20), were found to have close interactions with RASSF1A in the PPI network. Finally, a total of 8 enriched pathways, such as bladder cancer, non-small cell lung cancer and pathways in cancer were identified. To our knowledge, this is the first study to explore the biological functions and the underlying mechanisms of action of RASSF1A in the development of ovarian cancer. Our findings may provide a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Lingjie Fu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shulan Zhang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
10
|
Gavasso S, Mosleth EF, Marøy T, Jørgensen K, Nakkestad HL, Gjertsen BT, Myhr KM, Vedeler C. Deficient phosphorylation of Stat1 in leukocytes identifies neutralizing antibodies in multiple sclerosis patients treated with interferon-beta. PLoS One 2014; 9:e88632. [PMID: 24586361 PMCID: PMC3929401 DOI: 10.1371/journal.pone.0088632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/11/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Anti interferon-beta (IFN-β) neutralizing antibodies (NAb) affect efficacy of treatment of multiple sclerosis patients, but exactly when the detrimental effects of NAbs offset therapeutic efficacy is debated. Quantification of intracellular pathway-specific phosphorylation by phospho-specific flow cytometry (phosphoflow) is a promising tool for evaluation of these effects in primary immune cells from treated patients at the single-cell level. METHOD Samples for phosphoflow and gene expression changes were collected before administration of IFN-β and at four, six, and eight hours thereafter. Patients were NAb negative (n = 3) or were NAb positive with low/medium (n = 1) or high (n = 2) NAb titers. Levels of phosphorylation of six Stat transcription factors (pStat) in seven cell subtypes and expression levels of 71 pathway-specific genes in whole blood were measured. The data was subjected to principal component analysis (PCA), fifty-fifty MANOVA, ANOVA, and partial least square regression (PLSR). RESULTS PCA of pStat levels clustered patients according to NAb class independently of time. PCA of gene expression data clustered patients according to NAb class but was affected by time and treatment. In the fifty-fifty MANOVA, NAb class was significant for both pStat levels and gene expression data. The ANOVA identified pStat1 protein in several cell subtypes as significantly affected by NAb class. The best fitting model for NAb prediction based on PLSR included pStat1 in monocytes, T cells, or lymphocytes and pStat3 in monocytes (r = 0.97). Gene expression data were slightly less predictive of NAb titers. CONCLUSION Based on this proof of concept study, we hypothesize that NAb effects can be monitored by evaluation of a single biomarker, pStat1, in either monocytes or T cells by phosphoflow directly after IFN-β administration. The method will significantly reduce cost relative to labor intensive in vitro methods and offers a patient-specific approach to NAb evaluation.
Collapse
Affiliation(s)
- Sonia Gavasso
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- * E-mail:
| | | | - Tove Marøy
- The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Katarina Jørgensen
- Department of Clinical Science, Hematology Section, University of Bergen, Bergen, Norway
| | | | - Bjørn-Tore Gjertsen
- Department of Clinical Science, Hematology Section, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- The KG Jebsen Centre for MS Research, University of Bergen, Bergen, Norway
| | - Christian Vedeler
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- The KG Jebsen Centre for MS Research, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Thamilarasan M, Hecker M, Goertsches RH, Paap BK, Schröder I, Koczan D, Thiesen HJ, Zettl UK. Glatiramer acetate treatment effects on gene expression in monocytes of multiple sclerosis patients. J Neuroinflammation 2013; 10:126. [PMID: 24134771 PMCID: PMC3852967 DOI: 10.1186/1742-2094-10-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/06/2013] [Indexed: 12/20/2022] Open
Abstract
Background Glatiramer acetate (GA) is a mixture of synthetic peptides used in the treatment of patients with relapsing-remitting multiple sclerosis (RRMS). The aim of this study was to investigate the effects of GA therapy on the gene expression of monocytes. Methods Monocytes were isolated from the peripheral blood of eight RRMS patients. The blood was obtained longitudinally before the start of GA therapy as well as after one day, one week, one month and two months. Gene expression was measured at the mRNA level by microarrays. Results More than 400 genes were identified as up-regulated or down-regulated in the course of therapy, and we analyzed their biological functions and regulatory interactions. Many of those genes are known to regulate lymphocyte activation and proliferation, but only a subset of genes was repeatedly differentially expressed at different time points during treatment. Conclusions Overall, the observed gene regulatory effects of GA on monocytes were modest and not stable over time. However, our study revealed several genes that are worthy of investigation in future studies on the molecular mechanisms of GA therapy.
Collapse
Affiliation(s)
| | - Michael Hecker
- Institute of Immunology, University of Rostock, Schillingallee 68, Rostock 18057, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hecker M, Thamilarasan M, Koczan D, Schröder I, Flechtner K, Freiesleben S, Füllen G, Thiesen HJ, Zettl UK. MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients. Int J Mol Sci 2013; 14:16087-110. [PMID: 23921681 PMCID: PMC3759901 DOI: 10.3390/ijms140816087] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/12/2013] [Accepted: 07/26/2013] [Indexed: 12/01/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules acting as post-transcriptional regulators of gene expression. They are involved in many biological processes, and their dysregulation is implicated in various diseases, including multiple sclerosis (MS). Interferon-beta (IFN-beta) is widely used as a first-line immunomodulatory treatment of MS patients. Here, we present the first longitudinal study on the miRNA expression changes in response to IFN-beta therapy. Peripheral blood mononuclear cells (PBMC) were obtained before treatment initiation as well as after two days, four days, and one month, from patients with clinically isolated syndrome (CIS) and patients with relapsing-remitting MS (RRMS). We measured the expression of 651 mature miRNAs and about 19,000 mRNAs in parallel using real-time PCR arrays and Affymetrix microarrays. We observed that the up-regulation of IFN-beta-responsive genes is accompanied by a down-regulation of several miRNAs, including members of the mir-29 family. These differentially expressed miRNAs were found to be associated with apoptotic processes and IFN feedback loops. A network of miRNA-mRNA target interactions was constructed by integrating the information from different databases. Our results suggest that miRNA-mediated regulation plays an important role in the mechanisms of action of IFN-beta, not only in the treatment of MS but also in normal immune responses. miRNA expression levels in the blood may serve as a biomarker of the biological effects of IFN-beta therapy that may predict individual disease activity and progression.
Collapse
Affiliation(s)
- Michael Hecker
- Steinbeis Transfer Center for Proteome Analysis, Schillingallee 68, 18057 Rostock, Germany
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; E-Mails: (M.T.); (I.S.); (U.K.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-381-494-5891; Fax: +49-381-494-5882
| | - Madhan Thamilarasan
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; E-Mails: (M.T.); (I.S.); (U.K.Z.)
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany; E-Mails: (D.K.); (K.F.); (H.-J.T.)
| | - Ina Schröder
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; E-Mails: (M.T.); (I.S.); (U.K.Z.)
| | - Kristin Flechtner
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany; E-Mails: (D.K.); (K.F.); (H.-J.T.)
| | - Sherry Freiesleben
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany; E-Mails: (S.F.); (G.F.)
| | - Georg Füllen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany; E-Mails: (S.F.); (G.F.)
| | - Hans-Jürgen Thiesen
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany; E-Mails: (D.K.); (K.F.); (H.-J.T.)
| | - Uwe Klaus Zettl
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; E-Mails: (M.T.); (I.S.); (U.K.Z.)
| |
Collapse
|
13
|
Ottoboni L, Keenan BT, Tamayo P, Kuchroo M, Mesirov JP, Buckle GJ, Khoury SJ, Hafler DA, Weiner HL, De Jager PL. An RNA profile identifies two subsets of multiple sclerosis patients differing in disease activity. Sci Transl Med 2013; 4:153ra131. [PMID: 23019656 DOI: 10.1126/scitranslmed.3004186] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The multiple sclerosis (MS) patient population is highly heterogeneous in terms of disease course and treatment response. We used a transcriptional profile generated from peripheral blood mononuclear cells to define the structure of an MS patient population. Two subsets of MS subjects (MS(A) and MS(B)) were found among 141 untreated subjects. We replicated this structure in two additional groups of MS subjects treated with one of the two first-line disease-modifying treatments in MS: glatiramer acetate (GA) (n = 94) and interferon-β (IFN-β) (n = 128). One of the two subsets of subjects (MS(A)) was distinguished by higher expression of molecules involved in lymphocyte signaling pathways. Further, subjects in this MS(A) subset were more likely to have a new inflammatory event while on treatment with either GA or IFN-β (P = 0.0077). We thus report a transcriptional signature that differentiates subjects with MS into two classes with different levels of disease activity.
Collapse
Affiliation(s)
- Linda Ottoboni
- Program in Translational Neuropsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nickles D, Chen HP, Li MM, Khankhanian P, Madireddy L, Caillier SJ, Santaniello A, Cree BAC, Pelletier D, Hauser SL, Oksenberg JR, Baranzini SE. Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Hum Mol Genet 2013; 22:4194-205. [PMID: 23748426 DOI: 10.1093/hmg/ddt267] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). It is characterized by the infiltration of autoreactive immune cells into the CNS, which target the myelin sheath, leading to the loss of neuronal function. Although it is accepted that MS is a multifactorial disorder with both genetic and environmental factors influencing its development and course, the molecular pathogenesis of MS has not yet been fully elucidated. Here, we studied the longitudinal gene expression profiles of whole-blood RNA from a cohort of 195 MS patients and 66 healthy controls. We analyzed these transcriptomes at both the individual transcript and the biological pathway level. We found 62 transcripts to be significantly up-regulated in MS patients; the expression of 11 of these genes was counter-regulated by interferon treatment, suggesting partial restoration of a 'healthy' gene expression profile. Global pathway analyses linked the proteasome and Wnt signaling to MS disease processes. Since genotypes from a subset of individuals were available, we were able to identify expression quantitative trait loci (eQTL), a number of which involved two genes of the MS gene signature. However, all these eQTL were also present in healthy controls. This study highlights the challenge posed by analyzing transcripts from whole blood and how these can be mitigated by using large, well-characterized cohorts of patients with longitudinal follow-up and multi-modality measurements.
Collapse
|
15
|
Interferon-beta therapy in multiple sclerosis: the short-term and long-term effects on the patients' individual gene expression in peripheral blood. Mol Neurobiol 2013; 48:737-56. [PMID: 23636981 DOI: 10.1007/s12035-013-8463-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
Therapy with interferon-beta (IFN-beta) is a mainstay in the management of relapsing-remitting multiple sclerosis (MS), with proven long-term effectiveness and safety. Much has been learned about the molecular mechanisms of action of IFN-beta in the past years. Previous studies described more than a hundred genes to be modulated in expression in blood cells in response to the therapy. However, for many of these genes, the precise temporal expression pattern and the therapeutic relevance are unclear. We used Affymetrix microarrays to investigate in more detail the gene expression changes in peripheral blood mononuclear cells from MS patients receiving subcutaneous IFN-beta-1a. The blood samples were obtained longitudinally at five different time points up to 2 years after the start of therapy, and the patients were clinically followed up for 5 years. We examined the functions of the genes that were upregulated or downregulated at the transcript level after short-term or long-term treatment. Moreover, we analyzed their mutual interactions and their regulation by transcription factors. Compared to pretreatment levels, 96 genes were identified as highly differentially expressed, many of them already after the first IFN-beta injection. The interactions between these genes form a large network with multiple feedback loops, indicating the complex crosstalk between innate and adaptive immune responses during therapy. We discuss the genes and biological processes that might be important to reduce disease activity by attenuating the proliferation of autoreactive immune cells and their migration into the central nervous system. In summary, we present novel insights that extend the current knowledge on the early and late pharmacodynamic effects of IFN-beta therapy and describe gene expression differences between the individual patients that reflect clinical heterogeneity.
Collapse
|
16
|
Kulakova OG, Tsareva EY, Boyko AN, Shchur SG, Gusev EI, Lvovs D, Favorov AV, Vandenbroeck K, Favorova OO. Allelic combinations of immune-response genes as possible composite markers of IFN-β efficacy in multiple sclerosis patients. Pharmacogenomics 2012; 13:1689-700. [DOI: 10.2217/pgs.12.161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: IFN-β is widely used as the first-line disease-modifying treatment for multiple sclerosis. However, 30–50% of multiple sclerosis patients do not respond to this therapy. Identification of genetic variants and their combinations that predict responsiveness to IFN-β could be useful for treatment prognosis. Materials & methods: The combinations of alleles of nine polymorphic loci in immune-response genes were analyzed in 253 Russian multiple sclerosis patients as possible determinants of clinically optimal IFN-β treatment response using APSampler software. Results: Carriage of TGFB1*-509C and CCR5*d was associated with favorable IFN-β response by itself. CCR5*d, IFNAR1*16725G, IFNG*874T and IFNB1*153T/T were the components of the combinations, associated with clinically optimal response to IFN-β. Carriage of composite markers (CCR5*d + IFNAR1*G + IFNB1*T/T) or (CCR5*d + IFNAR1*G + IFNG*T) is beneficial for IFN-β treatment efficacy. Discussion: The data obtained provides evidence of the cumulative effect of immune-response genes on IFN-β treatment efficacy. This joint contribution may reflect the additive effect of independent allelic variants and epistatic interactions between some of them. Original submitted 2 July 2012; Revision submitted 21 September 2012
Collapse
Affiliation(s)
- Olga G Kulakova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Yu Tsareva
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Russian Cardiology Research & Production Complex, Moscow, Russia
| | - Alexey N Boyko
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Moscow City Multiple Sclerosis Center, Moscow, Russia
| | | | - Evgeny I Gusev
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitrijs Lvovs
- Research Institute for Genetics & Selection of Industrial Microorganisms, Moscow, Russia
| | - Alexander V Favorov
- Research Institute for Genetics & Selection of Industrial Microorganisms, Moscow, Russia
- VIGG RAS, Moscow, Russia
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koen Vandenbroeck
- University of the Basque Country (UPV/EHU), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Olga O Favorova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Russian Cardiology Research & Production Complex, Moscow, Russia
| |
Collapse
|
17
|
Hundeshagen A, Hecker M, Paap BK, Angerstein C, Kandulski O, Fatum C, Hartmann C, Koczan D, Thiesen HJ, Zettl UK. Elevated type I interferon-like activity in a subset of multiple sclerosis patients: molecular basis and clinical relevance. J Neuroinflammation 2012; 9:140. [PMID: 22727118 PMCID: PMC3464734 DOI: 10.1186/1742-2094-9-140] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/22/2012] [Indexed: 12/26/2022] Open
Abstract
Background A subset of patients with multiple sclerosis (MS) shows an increased endogenous IFN-like activity before initiation of IFN-beta treatment. The molecular basis of this phenomenon and its relevance to predict individual therapy outcomes are not yet fully understood. We studied the expression patterns of these patients, the prognostic value of an elevated IFN-like activity, and the gene regulatory effects of exogenously administered IFN-beta. Methods Microarray gene expression profiling was performed for 61 MS patients using peripheral blood mononuclear cells obtained before and after 1 month of IFN-beta therapy. Expression levels of genes involved in pathways either inducing or being activated by IFN-beta were compared between patients with high (MX1high cohort) and low (MX1low cohort) endogenous IFN-like activity. Patients were followed for 5 years and relapses as well as progression on the expanded disability status scale (EDSS) were documented. Results Before the start of therapy, 11 patients presented elevated mRNA levels of IFN-stimulated genes indicative of a relatively high endogenous IFN-like activity (MX1high). In these patients, pathogen receptors (for example, TLR7, RIG-I and IFIH1) and transcription factors were also expressed more strongly, which could be attributed to an overactivity of IFN-stimulated gene factor 3 (ISGF3, a complex formed by STAT1, STAT2 and IFN regulatory factor 9). After 1 month of IFN-beta therapy, the expression of many pathway genes was significantly induced in MX1low patients, but remained unaltered in MX1high patients. During follow-up, relapse rate and changes in EDSS were comparable between both patient groups, with differences seen between different types of IFN-beta drug application. Conclusions Therapeutic IFN-beta induces the transcription of several genes involved in IFN-related pathways. In a subgroup of MS patients, the expression of these genes is already increased before therapy initiation, possibly driven by an overexpression of ISGF3. Patients with high and low endogenous IFN-like activity showed similar clinical long-term courses of disease. Different results were obtained for different IFN-beta drug preparations, and this merits further investigation.
Collapse
Affiliation(s)
- Alexander Hundeshagen
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Integration of MicroRNA databases to study MicroRNAs associated with multiple sclerosis. Mol Neurobiol 2012; 45:520-35. [PMID: 22549745 DOI: 10.1007/s12035-012-8270-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/13/2012] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which regulate many genes post-transcriptionally. In various contexts of medical science, miRNAs gained increasing attention over the last few years. Analyzing the functions, interactions and cellular effects of miRNAs is a very complex and challenging task. Many miRNA databases with diverse data contents have been developed. Here, we demonstrate how to integrate their information in a reasonable way on a set of miRNAs that were found to be dysregulated in the blood of patients with multiple sclerosis (MS). Using the miR2Disease database, we retrieved 16 miRNAs associated with MS according to four different studies. We studied the predicted and experimentally validated target genes of these miRNAs, their expression profiles in different blood cell types and brain tissues, the pathways and biological processes affected by these miRNAs as well as their regulation by transcription factors. Only miRNA-mRNA interactions that were predicted by at least seven different prediction algorithms were considered. This resulted in a network of 1,498 target genes. In this network, the MS-associated miRNAs hsa-miR-20a-5p and hsa-miR-20b-5p occurred as central hubs regulating about 500 genes each. Strikingly, many of the putative target genes play a role in T cell activation and signaling, and many have transcription factor activity. The latter suggests that miRNAs often act as regulators of regulators with many secondary effects on gene expression. Our present work provides a guideline on how information of different databases can be integrated in the analysis of miRNAs. Future investigations of miRNAs shall help to better understand the mechanisms underlying different diseases and their treatments.
Collapse
|
19
|
Hecker M, Paap BK, Goertsches RH, Kandulski O, Fatum C, Koczan D, Hartung HP, Thiesen HJ, Zettl UK. Reassessment of blood gene expression markers for the prognosis of relapsing-remitting multiple sclerosis. PLoS One 2011; 6:e29648. [PMID: 22216338 PMCID: PMC3246503 DOI: 10.1371/journal.pone.0029648] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/02/2011] [Indexed: 01/04/2023] Open
Abstract
Despite considerable advances in the treatment of multiple sclerosis, current drugs are only partially effective. Most patients show reduced disease activity with therapy, but still experience relapses, increasing disability, and new brain lesions. Since there are no reliable clinical or biological markers of disease progression, long-term prognosis is difficult to predict for individual patients. We identified 18 studies that suggested genes expressed in blood as predictive biomarkers. We validated the prognostic value of those genes with three different microarray data sets comprising 148 patients in total. Using these data, we tested whether the genes were significantly differentially expressed between patients with good and poor courses of the disease. Poor progression was defined by relapses and/or increase of disability during a two-year follow-up, independent of the administered therapy. Of 110 genes that have been proposed as predictive biomarkers, most could not be confirmed in our analysis. However, the G protein-coupled membrane receptor GPR3 was expressed at significantly lower levels in patients with poor disease progression in all data sets. GPR3 has therefore a high potential to be a biomarker for predicting future disease activity. In addition, we examined the IL17 cytokines and receptors in more detail and propose IL17RC as a new, promising, transcript-based biomarker candidate. Further studies are needed to better understand the roles of these receptors in multiple sclerosis and its treatment and to clarify the utility of GPR3 and IL17RC expression levels in the blood as markers of long-term prognosis.
Collapse
Affiliation(s)
- Michael Hecker
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tsareva EY, Kulakova OG, Boyko AN, Shchur SG, Lvovs D, Favorov AV, Gusev EI, Vandenbroeck K, Favorova OO. Allelic combinations of immune-response genes associated with glatiramer acetate treatment response in Russian multiple sclerosis patients. Pharmacogenomics 2011; 13:43-53. [PMID: 22111603 DOI: 10.2217/pgs.11.136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Glatiramer acetate (GA) is widely used as a first-line disease-modifying treatment for multiple sclerosis (MS). However, a significant proportion of MS patient appears to experience modest benefit from GA-treatment. Genetic variants affecting the clinical response to GA are believed to be relevant as biomarkers of GA-treatment efficiency. PATIENTS & METHODS Nine polymorphisms in candidate genes were analyzed as possible determinants of GA response in 285 Russian MS patients. Special attention was given to identification of response-associated allelic combinations by means of the APSampler algorithm. RESULTS No significant associations were found for individual polymorphisms. Alleles DRB1*15, TGFB1*T, CCR5*d and IFNAR1*G were the components of the combinations, of which carriage was significantly higher in nonresponders than in responders. Carriers of the most significant combinations: DRB1*15 + TGFB1*T + CCR5*d + IFNAR1*G and DRB1*15 + TGFB1*T + CCR5*d (permutation p-values: 0.0056 and 0.013, respectively) had a 14 to 15-times increased risk of ineffective response to GA therapy. DISCUSSION The results suggest that the influence of immune-response genes on GA-induced response has a polygenic nature. The data are interpreted as evidence of additive and epistatic influences of the genes on GA efficiency for MS treatment.
Collapse
|