1
|
Yin Z, Li P. Association of UGT1A6 gene polymorphisms with sodium valproate-induced tremor in patients with epilepsy. Seizure 2024; 120:56-60. [PMID: 38908142 DOI: 10.1016/j.seizure.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Individual susceptibility to sodium valproate (VPA)-induced tremors may be due to genetic polymorphisms in the gene encoding the uridine diphosphate glucuronosyltransferase (UGT) enzyme, which affec the drug's clinical efficacy and cause toxic side effects. This study aimed to investigate the association between UGT1A6 polymorphisms and VPA-induced tremors in patients with epilepsy. METHODS In total, 128 patients with epilepsy were enrolled. Patients with epilepsy who received VPA were divided into tremor and non-tremor groups. Polymerase chain reaction-restriction fragment length polymorphism was used to investigate the genotype of UGT1A6 polymorphisms. RESULTS Carriers of the UGT1A6 A541G mutant genotype conferred a higher risk of tremor than wild-type carriers (odds ratio 2.128, P = 0.045). Logistic regression analysis showed that the A541G mutant genotype was a significant genetic risk factor for VPA-induced tremors. This suggests that individual susceptibility to VPA-induced tremors may result, at least partially, from genetic variation in UGT1A6 A541G. CONCLUSIONS Patients with epilepsy carrying the UGT1A6 A541G mutant genotype may have VPA-induced tremors, and early detection of this genotype will help guide the clinical individualizsation of VPA treatment.
Collapse
Affiliation(s)
- Zheng Yin
- Qinghai University Graduate School, Xining, China
| | - Pei Li
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China.
| |
Collapse
|
2
|
Milosavljević F, Manojlović M, Matković L, Molden E, Ingelman-Sundberg M, Leucht S, Jukić MM. Pharmacogenetic Variants and Plasma Concentrations of Antiseizure Drugs: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7:e2425593. [PMID: 39115847 PMCID: PMC11310823 DOI: 10.1001/jamanetworkopen.2024.25593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 08/11/2024] Open
Abstract
Importance Precise estimation of a patient's drug metabolism capacity is important for antiseizure dose personalization. Objective To quantify the differences in plasma concentrations for antiseizure drugs associated with variants of genes encoding drug metabolizing enzymes. Data Sources PubMed, Clinicaltrialsregister.eu, ClinicalTrials.gov, International Clinical Trials Registry Platform, and CENTRAL databases were screened for studies from January 1, 1990, to September 30, 2023, without language restrictions. Study Selection Two reviewers performed independent study screening and assessed the following inclusion criteria: appropriate genotyping was performed, genotype-based categorization into subgroups was possible, and each subgroup contained at least 3 participants. Data Extraction and Synthesis The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed for data extraction and subsequent quality, validity, and risk-of-bias assessments. The results from the included studies were pooled with random-effect meta-analysis. Main Outcomes and Measures Plasma concentrations of antiseizure drugs were quantified with the dose-normalized area under the concentration-time curve, the dose-normalized steady state concentration, or the concentrations after a single dose at standardized dose and sampling time. The ratio of the means was calculated by dividing the mean drug plasma concentrations of carriers and noncarriers of the pharmacogenetic variant. Results Data from 98 studies involving 12 543 adult participants treated with phenytoin, valproate, lamotrigine, or carbamazepine were analyzed. Studies were mainly conducted within East Asian (69 studies) or White or European (15 studies) cohorts. Significant increases of plasma concentrations compared with the reference subgroup were observed for phenytoin, by 46% (95% CI, 33%-61%) in CYP2C9 intermediate metabolizers, 20% (95% CI, 17%-30%) in CYP2C19 intermediate metabolizers, and 39% (95% CI, 24%-56%) in CYP2C19 poor metabolizers; for valproate, by 12% (95% CI, 4%-20%) in CYP2C9 intermediate metabolizers, 12% (95% CI, 2%-24%) in CYP2C19 intermediate metabolizers, and 20% (95% CI, 2%-41%) in CYP2C19 poor metabolizers; and for carbamazepine, by 12% (95% CI, 3%-22%) in CYP3A5 poor metabolizers. Conclusions and Relevance This systematic review and meta-analysis found that CYP2C9 and CYP2C19 genotypes encoding low enzymatic capacity were associated with a clinically relevant increase in phenytoin plasma concentrations, several pharmacogenetic variants were associated with statistically significant but only marginally clinically relevant changes in valproate and carbamazepine plasma concentrations, and numerous pharmacogenetic variants were not associated with statistically significant differences in plasma concentrations of antiseizure drugs.
Collapse
Affiliation(s)
- Filip Milosavljević
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Department of Psychiatry and Psychotherapy, School of Medicine, Technische Universität München, München, Germany
| | - Marina Manojlović
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Lena Matković
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Institute for Mental Health, Belgrade, Serbia
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technische Universität München, München, Germany
| | - Marin M. Jukić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Saleh Faisal M, Jamil A, Ali N, Alshahrani AM, Almarshad F. Distribution pattern of UGT1A6 and UGT2B7 gene polymorphism and its impact on the pharmacokinetics of valproic acid and carbamazepine: Prospective genetic association study conducted in Pakistani patients with epilepsy. Gene 2024; 892:147886. [PMID: 37820941 DOI: 10.1016/j.gene.2023.147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Ethnic variation is one of the important factors in clinical practice that may affect the pharmacokinetics of drugs. The present study aims to determine the distribution pattern of UGT1A6 and UGT2B7 gene polymorphism and its possible impact on the metabolism of valproic acid (VPA) and carbamazepine (CBZ) in patients with epilepsy from Khyber Pakhtunkhwa region of Pakistan. METHODS After the enrollment of targeted patients, blood was collected for genotype analysis through Sanger sequencing. Plasma concentrations of VPA and CBZ were determined by reversed-phase high-performance liquid chromatography (HPLC) at the follow-up visit of third month from the initiation of therapy. The drug plasma levels were correlated with different genotypes of UGT1A6 and UGT2B7 to determine the impact of genetic polymorphism on the drug metabolism. RESULTS Of the total 178 epileptic patients, 120 subjects were prescribed VPA monotherapy while 58 subjects were given CBZ monotherapy. The mean age of the subjects was recorded as 26.1 ± 13.5 years with a predominance of the male gender. Generalized tonic-clonic (GTC) was the most prevalent type of seizure (82%) followed by partial seizure. Genotype analysis revealed that the frequency of homozygous and heterozygous variants of the targeted UGT genes were exceptionally high in the Khyber Pakhtunkhwa population compared to the ethnic groups of other countries. In UGT1A6-A552C and UGT1A6-A541G, AC and AG were the most prevalent genotypes with respective frequencies of 43.2% and 41.1% whereas, in UGT2B7-T161C and UGT2B7-G211T, TC and GG were the most prevalent genotypes with respective frequencies of 42.7% and 99.4%. In the VPA-treated group, the homozygous and heterozygous variants of UGT1A6-A552C and UGT1A6-A541G were significantly associated with lower drug plasma concentrations (p < 0.05). However, none of the genotypes of UGT2B7-T161C revealed any significant association with VPA plasma concentration (p greater than 0.05). In the CBZ-treated group, UGT gene polymorphisms were not recognized to cause alteration in the drug plasma concentrations (p greater than 0.05). CONCLUSION The genetic polymorphisms of UGT1A6, but not UGT2B7 significantly affected the plasma levels of valproic acid. The chosen SNPs did not reveal a role in determining the plasma levels of carbamazepine.
Collapse
Affiliation(s)
- Muhammad Saleh Faisal
- Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan; Department of Pharmacology, Khyber Medical College, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Ayesha Jamil
- Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan; Department of Pharmacology, Khyber Girls Medical College, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Niaz Ali
- Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan; Department of Pharmacology, College of Medicine, Shaqra University, Shaqra, Saudi Arabia.
| | | | - Feras Almarshad
- Department of Medicine, College of Medicine, Shaqra University, Shaqra, Saudi Arabia.
| |
Collapse
|
4
|
Zhang L, Liu M, Qin W, Shi D, Mao J, Li Z. Modeling the protein binding non-linearity in population pharmacokinetic model of valproic acid in children with epilepsy: a systematic evaluation study. Front Pharmacol 2023; 14:1228641. [PMID: 37869748 PMCID: PMC10587682 DOI: 10.3389/fphar.2023.1228641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background: Several studies have investigated the population pharmacokinetics (popPK) of valproic acid (VPA) in children with epilepsy. However, the predictive performance of these models in the extrapolation to other clinical environments has not been studied. Hence, this study evaluated the predictive abilities of pediatric popPK models of VPA and identified the potential effects of protein binding modeling strategies. Methods: A dataset of 255 trough concentrations in 202 children with epilepsy was analyzed to assess the predictive performance of qualified models, following literature review. The evaluation of external predictive ability was conducted by prediction- and simulation-based diagnostics as well as Bayesian forecasting. Furthermore, five popPK models with different protein binding modeling strategies were developed to investigate the discrepancy among the one-binding site model, Langmuir equation, dose-dependent maximum effect model, linear non-saturable binding equation and the simple exponent model on model predictive ability. Results: Ten popPK models were identified in the literature. Co-medication, body weight, daily dose, and age were the four most commonly involved covariates influencing VPA clearance. The model proposed by Serrano et al. showed the best performance with a median prediction error (MDPE) of 1.40%, median absolute prediction error (MAPE) of 17.38%, and percentages of PE within 20% (F20, 55.69%) and 30% (F30, 76.47%). However, all models performed inadequately in terms of the simulation-based normalized prediction distribution error, indicating unsatisfactory normality. Bayesian forecasting enhanced predictive performance, as prior observations were available. More prior observations are needed for model predictability to reach a stable state. The linear non-saturable binding equation had a higher predictive value than other protein binding models. Conclusion: The predictive abilities of most popPK models of VPA in children with epilepsy were unsatisfactory. The linear non-saturable binding equation is more suitable for modeling non-linearity. Moreover, Bayesian forecasting with prior observations improved model fitness.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Maochang Liu
- Department of Pharmacy, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiwei Qin
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Dandan Shi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjun Mao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Zeyun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Effect of ANKK1 Polymorphisms on Serum Valproic Acid Concentration in Chinese Han Adult Patients in the Early Postoperative Period. Neurol Ther 2023; 12:197-209. [PMID: 36401149 PMCID: PMC9837366 DOI: 10.1007/s40120-022-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the relationship between gene polymorphisms and clinical factors with the concentrations of valproic acid (VPA) in adult patients who underwent neurosurgery in China. METHODS A total of 531 serum concentration samples at steady state were collected from 313 patients to develop a population pharmacokinetic (PPK) model. Data analysis was performed using nonlinear mixed effects modeling. Covariates included demographic parameters, biological characteristics, and genetic polymorphism. Bootstrap evaluation showed that the final model was stable. Sensitive analysis was performed to verify the relationship between gene polymorphisms and concentrations of VPA. Linear regression was used to analyze the relationship between VPA concentration, ANKK1, and daily dosage. RESULTS In the recruited patients, 17 of 25 single-nucleotide polymorphism distributions were consistent with the Hardy-Weinberg equilibrium. A one-compartment model with first-order absorption and elimination was developed for VPA injections. VPA clearance was significantly influenced by three variables: sex (17.41% higher in male than female patients), body weight, and the ANKK1 gene. Typical values for the elimination clearance and the volume of central compartment were 0.614 L/min and 23.5 L, respectively. The model evaluation indicated the stable and precise performance of the final model. After sensitive analysis using Kruskal-Wallis and Mann-Whitney U tests, we found that patients with AA alleles had higher VPA concentrations than those with GG and AG alleles. Linear regression models showed that gene polymorphisms of ANKK1 had little effects on VPA concentration. CONCLUSION A PPK model of VPA in Chinese Han patients was successfully established; this can be helpful for model-informed precision-dosing approaches in clinical patient care, and for exploring the mechanism of VPA-induced weight gain.
Collapse
|
6
|
Zheng XX, You YX, Zhao LL, Du Y, Xu SQ, Tang DQ. Effects of UGT1A, CYP2C9/19 and ABAT polymorphisms on plasma concentration of valproic acid in Chinese epilepsy patients. Pharmacogenomics 2023; 24:153-162. [PMID: 36718958 DOI: 10.2217/pgs-2022-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: To evaluate the association between genetic polymorphisms and plasma concentration-to-dose ratio of valproic acid (CDRV) in Chinese epileptic patients. Methods: A total of 46 epileptic patients treated with valproic acid therapy were enrolled. 18 SNPs in nine genes related to valproic acid were directly sequenced with Sanger methods. Results: Patients carrying UGT1A6 heterozygous genotypes had significantly lower CDRV than those carrying the wild-type genotypes. In contrast, patients with the homozygote genotypes of CYP2C9 and ABAT had higher CDRV than those with the wild-type genotypes and patients with the heterozygous genotypes of CYP2C19 had higher CDRV. Conclusion: Detection of genetic polymorphism in these genes might facilitate an appropriate dose of valproic acid for epileptic patients. Further studies with larger cohorts are necessary to underpin these observations.
Collapse
Affiliation(s)
- Xiao-Xiao Zheng
- Department of Clinical Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Xuzhou City, Jiangsu Province, P.R. China
| | - Yu-Xin You
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221004, China
| | - Sheng-Qiu Xu
- Department of Clinical Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Xuzhou City, Jiangsu Province, P.R. China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
7
|
Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, Nasyrova RF. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023; 13:metabo13010134. [PMID: 36677060 PMCID: PMC9862929 DOI: 10.3390/metabo13010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Aiperi K. Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Elena N. Bochanova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Evgenia A. Dontceva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 45000 Ufa, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, 119121 Moscow, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 11798 Moscow, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| |
Collapse
|
8
|
Mhaimeed N, Mhaimeed N, Shad MU. Pharmacokinetic mechanisms underlying clinical cases of valproic acid autoinduction: A review. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Adiga S, PB N, Adiga U, Shenoy V. UGT2B7 gene polymorphism and linkage disequilibrium in pediatric epileptic patients and their influence on sodium valproate monotherapy: A cohort study. Front Pharmacol 2022; 13:911827. [PMID: 36160414 PMCID: PMC9500447 DOI: 10.3389/fphar.2022.911827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Uridine 5′-diphospho glucuronosyl transferase (UGT) is the main enzyme responsible for the glucuronide conjugation, the principal metabolic pathway of sodium valproate. The objective of the study was to explore if there was an association between the UGT2B7 genetic polymorphism and clinical efficacy and safety in paediatric epileptic patients on sodium valproate monotherapy. Methods and materials: The cohort study included 100 pediatric epileptic patients aged 2–18 years who had been on sodium valproate monotherapy for at least 1 month. PCR-RFLP was carried out to assess the genetic polymorphism patterns of UGT2B7 (C161T, A268G, G211T). Based on the extent of seizure control throughout the 1-year follow-up, clinical outcome was assessed in terms of responders and non-responders. Hepatic, renal, and other lab parameters were assayed to determine safety. The SNPstat web software was used to calculate linkage disequilibrium. Results: Out of 100 patients, CC (38%), CT (43%), TT (19%) pattern was observed in UGT2B7 (C161T) gene, AA (15%), AG (39%), GG (46%) in (A268G) gene and GG (80%), GT (18%), TT (02%) in (G211T) gene. There was no statistical difference in clinical outcome with distinct UGT2B7 genetic polymorphism patterns, according to the findings. With low D′ and R2 values, linkage disequilibrium between alleles was statistically insignificant. However, the associations of C161T and G211T with treatment response were significant (p = 0.014) in determining treatment response. Conclusion: Our findings show that the genetic variation of UGT2B7 had no bearing on the clinical outcome of epilepsy. Gene interactions, on the other hand, had an impact on treatment response.
Collapse
Affiliation(s)
- Sachidananda Adiga
- Professor, Dept of Pharmacology, Biochemistry, Pediatrics K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Mangalore, India
| | - Nandit PB
- Regional Medical Advisor, Rivaara Lab, Bangalore, India
| | - Usha Adiga
- Professor, Dept of Pharmacology, Biochemistry, Pediatrics K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Mangalore, India
- *Correspondence: Usha Adiga,
| | - Vijaya Shenoy
- Professor, Dept of Pharmacology, Biochemistry, Pediatrics K. S. Hegde Medical Academy, Nitte (Deemed to Be University), Mangalore, India
| |
Collapse
|
10
|
Chen Y, Guan S, Guan Y, Tang S, Zhou Y, Wang X, Bi H, Huang M. Novel clinical biomarkers for drug-induced liver injury. Drug Metab Dispos 2021; 50:671-684. [PMID: 34903588 DOI: 10.1124/dmd.121.000732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a critical clinical issue and has been a treatment challenge nowadays as it was in the past. However, the traditional biomarkers or indicators are insufficient to predict the risks and outcome of patients with DILI due to its poor specificity and sensitivity. Recently, the development of high-throughput technologies, especially omics and multi-omics has sparked growing interests in identification of novel clinical DILI biomarkers, many of which also provide a mechanistic insight. Accordingly, in this mini-review, we summarize recent advances in novel clinical biomarkers for DILI prediction, diagnosis and prognosis and highlight the limitations or challenges involved in biomarker discovery or their clinical translation. Although huge work has been done, most reported biomarkers lack comprehensive information and more specific DILI biomarkers are still needed to complement the traditional biomarkers such as ALT or AST in clinical decision making. Significance Statement The current review outlines an overview of novel clinical biomarkers for DILI identified in clinical retrospective or prospective clinical analysis. Many of these biomarkers provides a mechanistic insight and are promising to complement the traditional DILI biomarkers. This work also highlights the limitations or challenges involved in biomarker discovery or their clinical translation.
Collapse
Affiliation(s)
- Youhao Chen
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | - Shaoxing Guan
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | | | - Siyuan Tang
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, China
| | - Xueding Wang
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, China
| |
Collapse
|
11
|
Effect of CYP2C19 polymorphisms on serum valproic level acid in Chinese Han patients with schizophrenia. Sci Rep 2021; 11:23150. [PMID: 34848811 PMCID: PMC8632882 DOI: 10.1038/s41598-021-02628-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Valproic acid is an anticonvulsant, which is also widely used for treating psychiatric disorders. Some clinical trials have demonstrated benefits of valproic acid augmentation therapy in schizophrenia. Interindividual variability in valproic acid dose and serum concentration may reflect functional consequences of genetic polymorphisms in genes encoding drug-metabolizing enzymes. The aim of this study was to determine the relationship between serum concentrations of valproic acid and single nucleotide polymorphisms of the cytochrome P450 (CYP) 2C19 gene in patients with schizophrenia. All patients had been receiving fixed dose of valproic acid for at least 2 weeks. The daily doses were 0.5–1.5 g. No other drugs except olanzapine were coadministered. Serum concentrations of valproic acid were measured using the ultra-high performance liquid chromatography method with mass-spectrometric detection. The CYP2C19 (CYP2C19*2 G681A rs4244285 and CYP2C19*3 G636A rs4986893) genotypes were identified by real-time PCR analyses. The mean concentration/dose ratios of valproic acid were significantly higher in patients with CYP2C19 *1/*2 genotype (P < 0.01) or CYP2C19 *2/*3 genotype (P < 0.01) than in those with CYP2C12 *1/*1 genotype. The mean concentration/dose ratios of valproic acid were significantly higher in patients with 1 (P < 0.01) or 2 (P < 0.01) mutated alleles for CYP2C19 than in those without mutated alleles. And the post hoc analysis revealed that the result has acceptable statistical (power (1 – β) = 0.8486 at type I level of 0.05) to support the observed significant associations for CYP2C19 SNPs and serum C/D ratios of valproic acid. The findings of this study suggest that the genetic polymorphisms of CYP2C19 significantly affect the steady-state serum concentrations of valproic acid in Chinese Han population. The determination of the CYP2C19 genotypes may be useful for dosing adjustment in schizophrenia patients on valproic acid therapy.
Collapse
|
12
|
Guo J, Ma J, Wang S, Li X, Ji H, Li Y, Peng F, Sun Y. Valproic Acid After Neurosurgery Induces Elevated Risk of Liver Injury: A Prospective Nested Case-Control Study. Ann Pharmacother 2021; 56:888-897. [PMID: 34749535 DOI: 10.1177/10600280211055508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) has been widely used to prevent epileptic seizures after neurosurgery in China. We have found that the incidence of liver injury (LI) in patients using VPA after neurosurgery is higher than that in other patients. OBJECTIVE The objective of this study was to investigate the risk factors of LI in patients using VPA after neurosurgery. METHODS A nested case-control study was conducted in patients using VPA after neurosurgery between September 2019 and March 2021. Cases of LI were matched to controls by age and body mass index (BMI). Conditional logistic regression was used to estimate matched odds ratios representing the odds of LI. A receiver operating characteristic curve was used to analyze the optimal cutoff condition. RESULTS A total of 248 people (62 LI and 186 control) were enrolled. Among patients with vs without LI, the matched odds ratio for trough concentration of VPA was significant (matched odds ratio [OR], 1.09; 95% confidence interval [CI]: 1.01-1.19). The course of treatment (OR: 1.17, 95% CI: 1.02-1.33), Glasgow score (OR: 0.26, 95% CI: 0.10-0.67), gene polymorphisms of CYP2C19 (OR: 2.09, 95% CI: 1.03-146.93), and UGT1A6 (OR: 34.61, 95% CI: 1.19-1003.23) were all related to the outcome. The optimal cutoff of the course of treatment was 10 days, while the trough concentration of VPA was determined to be 66.16 mg/L. CONCLUSION Length of treatment, VPA trough concentration, and Glasgow score were associated with LI in patients after neurosurgery. A gene test may be necessary for people who are prescribed VPA for a long time.
Collapse
Affiliation(s)
- Jinlin Guo
- Department of Pharmacy, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jiuhong Ma
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shan Wang
- Department of Pharmacy, NYU Langone Hospital-Long Island, Mineola, USA
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yuanping Li
- Department of Pharmacy, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Fangchen Peng
- Department of Pharmacy, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yiqi Sun
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Bennett S, Shad MU. Valproic acid autoinduction: a case-based review. Int J Bipolar Disord 2021; 9:27. [PMID: 34468892 PMCID: PMC8408294 DOI: 10.1186/s40345-021-00232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
Although valproic acid (VPA) induces the metabolism of multiple other drugs, the clinical reports of VPA autoinduction are rare. A comprehensive literature search yielded only one published case series, which provided the rationale to conduct a review of the published cases along with a new case of VPA autoinduction. Although there may be myriad of reasons for lack of published cases of VPA autoinduction, potential underreporting may be one of the core reasons. Lack of understanding into the highly complex metabolism of VPA may also make it difficult to recognize and report VPA autoinduction. However, it is important to mention that in addition to autoinduction increased elimination of VPA may be mediated by several pharmacokinetic (PK) factors, such as drug interactions, genetic polymorphisms of metabolic enzymes, and protein displacement reactions. As VPA is metabolized by multiple metabolic pathways, the risk for drug interactions is relatively high. There is also a growing evidence for high genetic inducibility of some enzymes involved in VPA metabolism. Protein displacement reactions with VPA increase the biologically active and readily metabolizable free fraction and pose a diagnostic challenge as they are usually not requested by most clinicians. Thus, monitoring of free fraction with total VPA levels may prevent clinically serious outcomes and optimize VPA treatment in clinically challenging patients. This case-based review compares the clinical data from three published cases and a new case of VPA autoinduction to enhance clinicians' awareness of this relatively rare but clinically relevant phenomenon along with a discussion of potential underlying mechanisms.
Collapse
Affiliation(s)
| | - Mujeeb U Shad
- University of Nevada Las Vegas, Las Vegas, NV, USA. .,Touro University Nevada, Las Vegas, NV, USA. .,Valley Health System, Las Vegas, NV, USA.
| |
Collapse
|
14
|
The Effect of Plasma Protein Binding on the Therapeutic Monitoring of Antiseizure Medications. Pharmaceutics 2021; 13:pharmaceutics13081208. [PMID: 34452168 PMCID: PMC8401952 DOI: 10.3390/pharmaceutics13081208] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a widely diffused neurological disorder including a heterogeneous range of syndromes with different aetiology, severity and prognosis. Pharmacological treatments are based on the use, either in mono- or in polytherapy, of antiseizure medications (ASMs), which act at different synaptic levels, generally modifying the excitatory and/or inhibitory response through different action mechanisms. To reduce the risk of adverse effects and drug interactions, ASMs levels should be closely evaluated in biological fluids performing an appropriate Therapeutic Drug Monitoring (TDM). However, many decisions in TDM are based on the determination of the total drug concentration although measurement of the free fraction, which is not bound to plasma proteins, is becoming of ever-increasing importance since it correlates better with pharmacological and toxicological effects. Aim of this work has been to review methodological aspects concerning the evaluation of the free plasmatic fraction of some ASMs, focusing on the effect and the clinical significance that drug-protein binding has in the case of widely used drugs such as valproic acid, phenytoin, perampanel and carbamazepine. Although several validated methodologies are currently available which are effective in separating and quantifying the different forms of a drug, prospective validation studies are undoubtedly needed to better correlate, in real-world clinical contexts, pharmacokinetic monitoring to clinical outcomes.
Collapse
|
15
|
UGT1A6 and UGT2B7 Gene Polymorphism and its Effect in Pediatric Epileptic Patients on Sodium Valproate Monotherapy. Indian J Pediatr 2021; 88:764-770. [PMID: 33400134 DOI: 10.1007/s12098-020-03565-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate the pattern of UGT1A6 and UGT2B7 gene polymorphism in pediatric epileptic patients and to compare the sodium valproate concentration in different patterns of UGT gene polymorphism. METHODS In this cross-sectional study, 99 pediatric epileptic patients aged 2-18 y receiving Sodium valproate monotherapy for the past one month were included from JusticeK S Hegde Charitable hospital, Mangalore after obtaining informed consent. Genetic polymorphism patterns were evaluated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Trough level serum valproate concentration was estimated by high-performance liquid chromatography (HPLC). Sodium valproate concentration in different UGT genotypes was compared by Analysis of Variance (ANOVA). P value <0.05 was considered significant. RESULTS In the present study population, the predominant mutant allele pattern was observed in UGT1A6 (T19G, A541G, A552C) gene. In UGT2B7 (A268G, C161T) showed predominant mutant allele pattern while (G211T) showed predominant wild type. Mean steady-state sodium valproate concentration was 105.40 ± 49.9 μg/ml and adjusted sodium valproate concentration was 5.5 ± 3.2 mg/kg/L. It was found that there was no statistical difference in sodium valproate concentration in different UGT1A6 and UGT2B7 gene polymorphism. CONCLUSION The present study concluded that though there was a difference in pattern of gene polymorphism with concerning UGT1A6 and UGT2B7, however, it has not contributed to variation in serum concentration of sodium valproate in the present study population.
Collapse
|
16
|
Banawalikar N, Adiga S, Adiga U, Shenoy V, Kumari S, Shetty P, Shetty S, Sharmila KP. Association of UGT1A6 gene polymorphism with clinical outcome in pediatric epileptic patients on sodium valproate monotherapy. ACTA ACUST UNITED AC 2021; 54:e11097. [PMID: 34133540 PMCID: PMC8208771 DOI: 10.1590/1414-431x2021e11097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022]
Abstract
Pediatric epilepsy comprises chronic neurological disorders characterized by recurrent seizures. Sodium valproate is one of the common antiseizure medications used for treatment. Glucuronide conjugation is the major metabolic pathway of sodium valproate, carried out by the enzyme uridine 5'-diphosphate (UDP) glucuronosyl transferase (UGT) whose gene polymorphisms may alter the clinical outcome. The objective of this study was to assess the association between UGT1A6 genetic polymorphism and clinical outcome in terms of efficacy and tolerability in pediatric epileptic patients on sodium valproate monotherapy. Pediatric epileptic patients (n=65) aged 2-18 years receiving sodium valproate monotherapy for the past one month were included. Genetic polymorphism patterns of UGT1A6 (T19G, A541G, A552C) were evaluated by PCR-RFLP. Clinical outcome was seizure control during the 6 months observation period. Tolerability was measured by estimating the hepatic, renal, and other lab parameters. Out of 65 patients, TT (40%), TG (57%), and GG (3%) patterns were observed in UGT1A6 (T19G) gene, AA (51%), AG (40%), and GG (9%) in (A541G) gene, and AA (43%), AC (43%), and CC (14%) in (A552C) gene. No statistical difference in clinical outcome was found for different UGT1A6 genetic polymorphism patterns. We concluded that different patterns of UGT1A6 genetic polymorphism were not associated with the clinical outcome of sodium valproate in terms of efficacy and tolerability. Sodium valproate was well-tolerated among pediatric patients with epilepsy and can be used as an effective antiseizure medication.
Collapse
Affiliation(s)
- N Banawalikar
- Central Research Laboratory, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - S Adiga
- Department of Pharmacology, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - U Adiga
- Department of Biochemistry, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - V Shenoy
- Department of Pediatrics, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - S Kumari
- Department of Biochemistry, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - P Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - S Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - K P Sharmila
- Central Research Laboratory, KS Hegde Medical Academy, Mangalore, Karnataka, India
| |
Collapse
|
17
|
Du Z, Xu H, Zhao P, Wang J, Xu Q, Liu M. Influence of UGT2B7 and UGT1A6 polymorphisms on plasma concentration to dose ratio of valproic acid in Chinese epileptic children. Xenobiotica 2021; 51:859-864. [PMID: 34000957 DOI: 10.1080/00498254.2021.1931554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We explored the potential effects of genetic variations on the concentration to dose ratio (CDR) of valproic acid (VPA) in paediatric epilepsy patients.Two hundred and twenty-nine epileptic children on VPA monotherapy were included, and the VPA trough concentrations at steady-state of all subjects were determined.Nineteen single nucleotide polymorphisms (SNPs) of seven selected genes related to the metabolising enzymes and transporters of VPA were identified, and their influences on CDRVPA (a logarithmic transformation was performed if abnormally distributed) were evaluated.UGT2B7 rs7668258 (C>T) TT genotype was associated with a decrease in lnCDRVPA among epileptic children receiving VPA monotherapy (β=-0.191, p = 0.036). Significantly lower lnCDRVPA was also observed in paediatric patients with UGT1A6 rs2070959 (A>G) GG genotype compared to those AA genotype (β=-0.270, p = 0.021).This research indicated that UGT2B7 rs7668258 (C>T) and UGT1A6 rs2070959 (A>G) polymorphisms may be correlated to the normalised plasma concentrations of VPA in Chinese epileptic children. The associations could be abolished after Bonferroni's correction and our findings need to be validated in further and larger investigations.
Collapse
Affiliation(s)
- Zhaosong Du
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hua Xu
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Peiwei Zhao
- Central Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Wang
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qiong Xu
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Maochang Liu
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
18
|
Impact of Age and Genotype on Serum Concentrations of Valproic Acid and Its Hepatotoxic Metabolites in Chinese Pediatric Patients With Epilepsy. Ther Drug Monit 2020; 42:760-765. [DOI: 10.1097/ftd.0000000000000751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
20
|
Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1738217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramon Cacabelos
- International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
21
|
Guo HL, Jing X, Sun JY, Hu YH, Xu ZJ, Ni MM, Chen F, Lu XP, Qiu JC, Wang T. Valproic Acid and the Liver Injury in Patients with Epilepsy: An Update. Curr Pharm Des 2020; 25:343-351. [PMID: 30931853 DOI: 10.2174/1381612825666190329145428] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Valproic acid (VPA) as a widely used primary medication in the treatment of epilepsy is associated with reversible or irreversible hepatotoxicity. Long-term VPA therapy is also related to increased risk for the development of non-alcoholic fatty liver disease (NAFLD). In this review, metabolic elimination pathways of VPA in the liver and underlying mechanisms of VPA-induced hepatotoxicity are discussed. METHODS We searched in PubMed for manuscripts published in English, combining terms such as "Valproic acid", "hepatotoxicity", "liver injury", and "mechanisms". The data of screened papers were analyzed and summarized. RESULTS The formation of VPA reactive metabolites, inhibition of fatty acid β-oxidation, excessive oxidative stress and genetic variants of some enzymes, such as CPS1, POLG, GSTs, SOD2, UGTs and CYPs genes, have been reported to be associated with VPA hepatotoxicity. Furthermore, carnitine supplementation and antioxidants administration proved to be positive treatment strategies for VPA-induced hepatotoxicity. CONCLUSION Therapeutic drug monitoring (TDM) and routine liver biochemistry monitoring during VPA-therapy, as well as genotype screening for certain patients before VPA administration, could improve the safety profile of this antiepileptic drug.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Jun Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
22
|
Xu ZY, Guo HL, Li L, Zhang M, Jing X, Xu ZJ, Qiu JC, Lu XP, Ding XS, Chen F, Xu J. Genetic and Non-genetic Factors Contributing to the Significant Variation in the Plasma Trough Concentration-to-Dose Ratio of Valproic Acid in Children With Epilepsy. Front Pediatr 2020; 8:599044. [PMID: 33553069 PMCID: PMC7855978 DOI: 10.3389/fped.2020.599044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: This study was conducted to evaluate the potential genetic and non-genetic factors contributing to plasma trough concentration-to-dose (C 0/D) ratio of valproic acid (VPA) in pediatric patients with epilepsy. Study Design: A single-center, retrospective cohort study was performed by collecting data from 194 children aged 1-14 years between May 2018 and November 2018. The oral solution (n = 135) group and the sustained-release (SR) tablet group (n = 59) were defined, and the plasma VPA C 0 was measured. Twenty-six single-nucleotide polymorphisms (SNPs) were chosen for genotyping with the MassARRAY system. A multiple logistic regression model was used for data analysis. Results: Body weight (BW) and age were positively correlated with the C 0/D ratio in 194 patients, but the positive correlation disappeared after the patients were divided into oral solution and SR tablet subgroups. The average C 0/D ratio was significantly increased by 2.11-fold (P = 0.000) in children who took VPA SR tablets compared with children who were administered VPA oral solutions. No significant association between genetic variants and the C 0/D ratio was found, even for the five well-studied SNPs, namely UGT2B7 G211T, C802T, C161T, T125C, and CYP2C9 * 3 A1075C. However, a significant association between the C 0/D ratio and UGT1A6/9 Del>A (rs144486213) was observed in the VPA oral solution group, but not in the VPA SR tablet group. Conclusions: The dosage forms of sodium valproate, rather than BW, age, or genetic polymorphisms, significantly affected the VPA C 0/D ratios in pediatric patients with epilepsy. Based on our findings, switching the dosage form between solution and SR tablet should be performed cautiously. Total daily dose adjustment should be considered, and the plasma concentration, seizure-control effect, and adverse drug reaction should also be monitored very closely.
Collapse
Affiliation(s)
- Ze-Yue Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Min Zhang
- Department of Pharmacy, Boston Medical Center, Boston, MA, United States
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Jun Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Fortinguerra S, Sorrenti V, Giusti P, Zusso M, Buriani A. Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics 2019; 12:E13. [PMID: 31877761 PMCID: PMC7022469 DOI: 10.3390/pharmaceutics12010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition. Thanks to the use of the patient's genomic profile, it is possible to recognize such risk and at the same time characterize specific genetic assets specifically associated with bipolar spectrum disorder, as well as with the individual response to the various therapeutic options. This provides the basis for molecular diagnosis and the definition of pharmacogenomic profiles, thus guiding therapeutic choices and allowing a safer and more effective use of psychotropic drugs. Here, we report the pharmacogenomics state of the art in bipolar disorders and suggest an algorithm for therapeutic regimen choice.
Collapse
Affiliation(s)
- Stefano Fortinguerra
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Vincenzo Sorrenti
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy
| | - Pietro Giusti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Morena Zusso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| |
Collapse
|
24
|
Magwebu ZE, Mazinu M, Abdul-Rasool S, Chauke CG. The effect of hyperglycinemic treatment in captive-bred Vervet monkeys (Chlorocebus aethiops). Metab Brain Dis 2019; 34:1467-1472. [PMID: 31230217 DOI: 10.1007/s11011-019-00449-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/10/2019] [Indexed: 12/24/2022]
Abstract
Nonketotic hyperglycinemia (NKH) is a neuro-metabolic disorder caused by a deficiency in the glycine cleavage system (GCS) and glycine transporter 1 (GlyT1). A case of atypical late onset of NKH has been reported in a colony of captive-bred Vervet monkeys. The purpose of this study was to evaluate the effect of sodium benzoate and dextromethorphan in reducing glycine levels in hyperglycinemic monkeys. Twelve captive-bred Vervet monkeys were assigned into three groups consisting of four animals (control, valproate induced and cataract with spontaneous hyperglycinemia). Valproate was used to elevate glycine levels and the induced group was then treated with sodium benzoate and dextromethorphan together with group three to normalise glycine levels in cerebrospinal fluid (CSF) and plasma. Valproate induction elicited changes in phosphate, alkaline phosphatase and platelet count, however, no significant changes in the glycine levels were observed, and this might be due to the individual variability within the group. The treatment intervention was only obtained in the spontaneous group whereby the glycine levels were normalised in CSF and plasma. Therefore, it can be concluded that sodium benzoate and dextromethorphan treatment was effective and beneficial to the hyperglycinemic group.
Collapse
Affiliation(s)
- Zandisiwe E Magwebu
- Primate Unit and Delft Animal Centre, South African Medical Research Council, P.O Box 19070, Tygerberg, Cape Town, 7505, South Africa.
| | - Mikateko Mazinu
- Primate Unit and Delft Animal Centre, South African Medical Research Council, P.O Box 19070, Tygerberg, Cape Town, 7505, South Africa
| | - Sahar Abdul-Rasool
- Medical Bioscience Department, University of the Western Cape, Belville, South Africa
| | - Chesa G Chauke
- Primate Unit and Delft Animal Centre, South African Medical Research Council, P.O Box 19070, Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
25
|
Wang Y, Li Z. Association of UGT2B7 and CaMK4 with response of valproic acid in Chinese children with epilepsy. Therapie 2019; 75:261-270. [PMID: 31474408 DOI: 10.1016/j.therap.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
AIM OF THE STUDY Valproic acid (VPA) is a widely used antiepileptic drug for epilepsy. However, approximately 30% of patients with epilepsy do not respond to this therapy even when it was appropriately used. In order to explore the potential genetic factors related to the VPA response, this pharmacogenetics study was conducted. METHODS A total of one hundred and fifty-seven Chinese children with epilepsy who were administered with by VPA for at least one year were enrolled. Thirteen single-nucleotide polymorphisms (SNPs) located in eight genes involving targets and metabolic enzymes of VPA were genotyped. The frequencies of these polymorphisms and the effect of genotypes on the efficacy of VPA were analyzed. RESULTS The frequencies of two SNPs, rs7668258 (uridine diphosphate glucuronosyltransferase-2B7, UGT2B7) and rs306104 (calmodulin-kinase 4, CaMK4) were associated with VPA responses. However, no association was found for the other SNPs. Furthermore, the polymorphism of UGT2B7 influenced the adjusted concentration (AC) in the responders rather than in the non-responders. CONCLUSION Two SNPs (UGT2B7 and CaMK4) were associated with VPA response, which may explain the pharmacological mechanism of VPA resistance to some extent.
Collapse
Affiliation(s)
- Yan Wang
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China; College of pharmacy, Hainan medical university, Haikou 571199, China
| | - Zhiping Li
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China.
| |
Collapse
|
26
|
Naimo GD, Guarnaccia M, Sprovieri T, Ungaro C, Conforti FL, Andò S, Cavallaro S. A Systems Biology Approach for Personalized Medicine in Refractory Epilepsy. Int J Mol Sci 2019; 20:E3717. [PMID: 31366017 PMCID: PMC6695675 DOI: 10.3390/ijms20153717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023] Open
Abstract
Epilepsy refers to a common chronic neurological disorder that affects all age groups. Unfortunately, antiepileptic drugs are ineffective in about one-third of patients. The complex interindividual variability influences the response to drug treatment rendering the therapeutic failure one of the most relevant problems in clinical practice also for increased hospitalizations and healthcare costs. Recent advances in the genetics and neurobiology of epilepsies are laying the groundwork for a new personalized medicine, focused on the reversal or avoidance of the pathophysiological effects of specific gene mutations. This could lead to a significant improvement in the efficacy and safety of treatments for epilepsy, targeting the biological mechanisms responsible for epilepsy in each individual. In this review article, we focus on the mechanism of the epilepsy pharmacoresistance and highlight the use of a systems biology approach for personalized medicine in refractory epilepsy.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Teresa Sprovieri
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Carmine Ungaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
27
|
Wang Y, Li Z. RNA-seq analysis of blood of valproic acid-responsive and non-responsive pediatric patients with epilepsy. Exp Ther Med 2019; 18:373-383. [PMID: 31258675 PMCID: PMC6566089 DOI: 10.3892/etm.2019.7538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is the most common chronic neurological disorder, affecting ~70 million individuals worldwide. However, approximately one-third of the patients are refractory to epilepsy medication. Of note, 100% of patients with genetic epilepsy who are resistant to the traditional drug, valproic acid (VPA), are also refractory to the other anti-epileptic drugs. The aim of the present study was to compare the transcriptomes in VPA responders and non-responders, to explore the mechanism of action of VPA and identify possible biomarkers to predict VPA resistance. Thus, RNA-seq was employed for transcriptomic analysis, differentially expressed genes (DEGs) were analyzed using Cuffdiff software and the DAVID database was used to infer the functions of the DEGs. A protein-protein interaction network was obtained using STRING and visualized with Cytoscape. A total of 389 DEGs between VPA-responsive and non-responsive pediatric patients were identified. Of these genes, 227 were upregulated and 162 were downregulated. The upregulated DEGs were largely associated with cytokines, chemokines and chemokine receptor-binding factors, whereas the downregulated DEGs were associated with cation channels, iron ion binding proteins, and immunoglobulin E receptors. In the pathway analysis, the toll-like receptor signaling pathway, pathways in cancer, and cytokine-cytokine receptor interaction were mostly enriched by the DEGs. Furthermore, three modules were identified by protein-protein interaction analysis, and the potential hub genes, chemokine (C-C motif) ligand 3 and 4, chemokine (C-X-C motif) ligand 9, tumor necrosis factor-α and interleukin-1β, which are known to be closely associated with epilepsy, were identified. These specific chemokines may participate in processes associated with VPA resistance and may be potential biomarkers for monitoring the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Hainan Provincial Key Lab of R&D of Tropical Herbs, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
28
|
Lack of association between valproic acid response and polymorphisms of its metabolism, transport, and receptor genes in children with focal seizures. Neurol Sci 2018; 40:523-528. [DOI: 10.1007/s10072-018-3681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
|
29
|
Xu S, Chen Y, Zhao M, Guo Y, Wang Z, Zhao L. Population pharmacokinetics of valproic acid in epileptic children: Effects of clinical and genetic factors. Eur J Pharm Sci 2018; 122:170-178. [PMID: 29981400 DOI: 10.1016/j.ejps.2018.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 01/25/2023]
Abstract
Valproic acid (VPA) is a first-line anti-epileptic drug that is used in the treatment of generalized and partial seizures. Gene variants had been proved to influence the pharmacokinetics (PK) of VPA and contribute to its inter-individual variability (IIV). The aim of this study was to systematically investigate the effects of candidate gene variants (CYPs, UGTs, ABC transporters, and nuclear receptors) on VPA PK in Chinese children with epilepsy. A total of 1065 VPA serum trough concentrations at steady state were collected from 264 epileptic pediatric patients aged 3 months to 16 years. The population pharmacokinetic (PPK) model was developed using a nonlinear mixed effects modelling (NONMEM) approach. For the final PPK model, the oral clearance (CL/F) of VPA was estimated to be 0.259 L/h with IIV of 13.3%. The estimates generated by NONMEM indicated that the VPA CL/F was significantly influenced by patient body weight (increased by an exponent of 0.662), co-administration with carbamazepine (increased CL/F by 22%), and daily dose of VPA (increased by an exponent of 0.22). CL/F in patients with the LEPR rs1137101 variant (668 AG and GG genotypes) was much lower than in patients with the AA genotype (17.8% and 22.6% lower, respectively). However, none of the CYPs or UGTs gene variants was found to influence the PK of VPA in this study. Evaluation by bootstrap and normalized prediction distribution error (NPDE) showed that the final model was stable. The predictive performance was evaluated by goodness-of-fit (GOF) plots and visual predictive checks (VPC), and the results indicated satisfactory precision. Our model suggests a correlation between VPA CL/F and LEPR rs1137101 variants, which might be beneficial in the context of individual dose optimization.
Collapse
Affiliation(s)
- Shansen Xu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yanan Chen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mingming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
30
|
Standard curve range for clinical sample analysis of oral bioavailability/bioequivalence studies: dilemma, introspection and strategies. Bioanalysis 2018; 10:717-722. [PMID: 29771145 DOI: 10.4155/bio-2018-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Effect of CYP2C19, UGT1A8, and UGT2B7 on valproic acid clearance in children with epilepsy: a population pharmacokinetic model. Eur J Clin Pharmacol 2018; 74:1029-1036. [DOI: 10.1007/s00228-018-2440-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
|
32
|
Feng W, Mei S, Zhu L, Yu Y, Yang W, Gao B, Wu X, Zhao Z, Fang F. Effects of UGT2B7, SCN1A and CYP3A4 on the therapeutic response of sodium valproate treatment in children with generalized seizures. Seizure 2018; 58:96-100. [PMID: 29679912 DOI: 10.1016/j.seizure.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/11/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aims to evaluate the associations between genetic polymorphisms and the effect of sodium valproate (VPA) therapy in children with generalized seizures. METHODS A total of 174 children with generalized seizures on VPA therapy were enrolled. Steady-state trough plasma concentrations of VPA were analyzed. Seventy-six single nucleotide polymorphisms involved in the absorption, metabolism, transport, and target receptor of VPA were identified, and their associations with the therapeutic effect (seizure reduction) were evaluated using logistic regression adjusted by various influence factors. RESULTS rs7668282 (UGT2B7, T > C, OR = 2.67, 95% CI: 1.19 to 5.91, P = 0.017) was more prevalent in drug-resistant patients than drug-responsive patients. rs2242480 (CYP3A4, C > T, OR = 0.27, 95% CI: 0.095 to 0.79, P = 0.017) and rs10188577 (SCN1A, T > C, OR = 0.40, 95% CI: 0.17 to 0.94, P = 0.035) were more prevalent in drug-responsive patients compared to drug-resistant patients. CONCLUSION In children with generalized seizures on VPA therapy, polymorphisms of UGT2B7, CYP3A4, and SCN1A genes were associated with seizure reduction. Larger studies are warranted to corroborate the results.
Collapse
Affiliation(s)
- Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China
| | - Leting Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weili Yang
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Baoqin Gao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaojuan Wu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
33
|
Wang P, Lin XQ, Cai WK, Xu GL, Zhou MD, Yang M, He GH. Effect of UGT2B7 genotypes on plasma concentration of valproic acid: a meta-analysis. Eur J Clin Pharmacol 2017; 74:433-442. [DOI: 10.1007/s00228-017-2395-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023]
|
34
|
Effects of UGT2B7 Genetic Polymorphisms on Serum Concentrations of Valproic Acid in Chinese Children With Epilepsy Comedicated With Lamotrigine. Ther Drug Monit 2017; 38:343-9. [PMID: 26717295 DOI: 10.1097/ftd.0000000000000271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Valproic acid (VPA) is widely used in the treatment of children with epilepsy. Genetic polymorphisms in genes encoding drug-metabolizing enzymes may be an important source of interindividual variability in VPA metabolism. VPA is a substrate of uridine diphosphate glucuronosyltransferase 2B7 (UGT2B7). In this study, we seek to evaluate the effects of genetic polymorphisms of the UGT2B7 gene on serum VPA concentrations in epileptic children comedicated with lamotrigine (LTG). METHODS We recruited 166 Chinese children with epilepsy who were treated with VPA in combination with LTG. Serum VPA and LTG concentrations were measured by fluorescence polarization immunoassay and high performance liquid chromatography, respectively. The UGT2B7 -161C > T in the 5'-upstream regions and 211 G > T, 372A > G, 735A > G, and 802C > T in the coding regions were genotyped using polymerase chain reaction amplification followed by direct automated DNA sequencing. RESULTS Our data show that patients carrying the variant UGT2B7 -161C > T or 802C > T genotypes had significantly higher adjusted VPA concentrations than those carrying the wild-type genotypes. The significant associations were potentiated after adjusted by age and adjusted LTG concentration. However, no associations were detected between the other studied UGT2B7 genotypes and adjusted VPA concentrations, even after adjusting by age and comedication. CONCLUSIONS These results suggest that the UGT2B7 -161C > T or 802C > T mutations affect VPA pharmacokinetics, which are potentially enhanced by age and concomitant LTG administration. These findings provide a potential mechanism underlying interindividual variation in the disposition of VPA in combination with LTG.
Collapse
|
35
|
The pharmacogenomics of valproic acid. J Hum Genet 2017; 62:1009-1014. [PMID: 28878340 DOI: 10.1038/jhg.2017.91] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022]
Abstract
Valproic acid is an anticonvulsant and mood-stabilizing drug used primarily in the treatment of epilepsy and bipolar disorder. Adverse effects of valproic acid are rare, but hepatotoxicity is severe in particular in those younger than 2 years old and polytherapy. During valproic acid treatment, it is difficult for prescribers to predict its individual response. Recent advances in the field of pharmacogenomics have indicated variants of candidate genes that affect valproic acid efficacy and safety. In this review, a large number of candidate genes that influence valproic acid pharmacokinetics and pharmacodynamics are discussed, including metabolic enzymes, drug transporters, neurotransmitters and drug targets. Furthermore, pharmacogenomics is an important tool not only in further understanding of interindividual variability but also to assess the therapeutic potential of such variability in drug individualization and therapeutic optimization.
Collapse
|
36
|
Sun Y, Yu J, Yuan Q, Wu X, Wu X, Hu J. Early post-traumatic seizures are associated with valproic acid plasma concentrations and UGT1A6/CYP2C9 genetic polymorphisms in patients with severe traumatic brain injury. Scand J Trauma Resusc Emerg Med 2017; 25:85. [PMID: 28841884 PMCID: PMC5574127 DOI: 10.1186/s13049-017-0382-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/30/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Seizure is a common complication for severe traumatic brain injury (TBI). Valproic acid (VPA) is a first-line antiepileptic drug, though its metabolism is affected by genetic polymorphisms and varies between individuals. The aim of this study was to investigate such association and to explore its influence on the occurrence of early post-traumatic seizure. METHODS A prospective case control study was conducted from 2012 to 2016 recruiting adult patients with severe TBI. Electroencephalograph (EEG) monitoring was performed approximately 4 h for each patient from day 1 to day 7 after injury. If seizures were detected, EEG monitoring was extended until 12 h after seizures being controlled. Genetic polymorphisms in UGT1A6, UGT2B7, CYP2C9, and CYP2C19 were analyzed in association with daily VPA plasma concentrations, adjusted dosages, and occurrence of seizures. RESULTS Among the 395 recruited patients, eighty-three (21%) had early post-traumatic seizure, of which 30 (36.14%) were non-convulsive. Most seizures were first detected on day 1 (34.94%) and day 2 (46.99%) after injury. Patients with seizure had longer ICU length of stay and relatively lower VPA plasma concentrations. Patients with UGT1A6_19T > G/541A > G/552A > C double heterozygosities or CYP2C9 extensive metabolizers (EMs) initially had lower adjusted VPA plasma concentrations (power >0.99) and accordingly require higher VPA dosages during later time of treatment (power >0.99). The odds ratio indicated a higher risk of early post-traumatic seizure occurrence in male patients (OR 1.96, 95% CI 1.01-3.81, p = 0.043), age over 65 (OR 2.13, 95% CI 1.01-4.48), and with UGT1A6_19T > G/541A > G/552A > C double heterozygosities (OR 2.38, 95% CI 1.11-5.10, p = 0.02), though the power of the difference was between 0.54 to 0.61. DISCUSSION Due to limited facility, the actual frequency of non-convulsive seizures is suspected to be higher than identified. There has been discrepancy regarding to genetic polymorphisms and VPA metab olism between this study and some previous reports. This could be related to confounders such as sample size, race, and patient age. Another limitation is that the case numbers of certain genotypes are limited in this study. CONCLUSIONS Continuous EEG monitoring is necessary to detect both convulsive and non-convulsive early post-traumatic seizures in severe TBI patients. UGT1A6/CYP2C9 polymorphisms have influence on VPA metabolism. UGT1A6_19T > G/541A > G/552A > C double heterozygositie is associated with occurrence of early post-traumatic seizures in addition to patients' age and gender. Further investigations with larger sample size are required to confirm the difference. TRIAL REGISTRATION Retrospectively registered with Chinese Clinical Trail Registry on 1st Jan 2016 ( ChiCTR-OPC-16007687 ).
Collapse
Affiliation(s)
- Yirui Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040 People’s Republic of China
| | - Jian Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040 People’s Republic of China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040 People’s Republic of China
| | - Xing Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040 People’s Republic of China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040 People’s Republic of China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040 People’s Republic of China
| |
Collapse
|
37
|
Mei S, Feng W, Zhu L, Yu Y, Yang W, Gao B, Wu X, Zhao Z, Fang F. Genetic polymorphisms and valproic acid plasma concentration in children with epilepsy on valproic acid monotherapy. Seizure 2017; 51:22-26. [PMID: 28763744 DOI: 10.1016/j.seizure.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The aim of the study is to evaluate the association between genetic polymorphisms and valproic acid (VPA) concentration to dose ratio in children with epilepsy on VPA monotherapy. METHODS A total of 137 children, aged 3.5-18 years, (89 males and 48 females) with epilepsy on sustained-release VPA monotherapy were enrolled. Trough plasma concentrations of VPA at steady-state were measured using an AXSYM automatic immunity analyzer. The values were divided by body weight and total daily dose to calculate concentration to dose ratio of VPA (CDRV). Forty-eight single nucleotide polymorphisms involved in the pharmacokinetics of VPA were identified by MassARRAY system. The logarithmic transformed CDRV (lnCDRV) was normally distributed, and PLINK software was used to evaluate the association between genetic polymorphisms and lnCDRV using linear regression adjusted for gender and seizure type. RESULTS rs28898617 (UGT1A3/4/5/6/7/8/9/10, BETA=0.32, P=0.0089) was significantly associated with higher lnCDRV. No other associations were found. CONCLUSIONS In pediatric patients taking VPA monotherapy, rs28898617 was associated with a higher normalized VPA plasma concentration. Further studies are warranted to confirm the results.
Collapse
Affiliation(s)
- Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Leting Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weili Yang
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Baoqin Gao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaojuan Wu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
38
|
Higgins GA, Allyn-Feuer A, Georgoff P, Nikolian V, Alam HB, Athey BD. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways. Methods 2017; 123:102-118. [PMID: 28385536 DOI: 10.1016/j.ymeth.2017.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Patrick Georgoff
- Department of Surgery, University of Michigan Medical School, USA
| | - Vahagn Nikolian
- Department of Surgery, University of Michigan Medical School, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Medical School, USA
| | - Brian D Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA; Michigan Institute for Data Science (MIDAS), USA.
| |
Collapse
|
39
|
Higgins GA, Georgoff P, Nikolian V, Allyn-Feuer A, Pauls B, Higgins R, Athey BD, Alam HE. Network Reconstruction Reveals that Valproic Acid Activates Neurogenic Transcriptional Programs in Adult Brain Following Traumatic Injury. Pharm Res 2017; 34:1658-1672. [PMID: 28271248 PMCID: PMC5498621 DOI: 10.1007/s11095-017-2130-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Objectives To determine the mechanism of action of valproic acid (VPA) in the adult central nervous system (CNS) following traumatic brain injury (TBI) and hemorrhagic shock (HS). Methods Data were analyzed from different sources, including experiments in a porcine model, data from postmortem human brain, published studies, public and commercial databases. Results The transcriptional program in the CNS following TBI, HS, and VPA treatment includes activation of regulatory pathways that enhance neurogenesis and suppress gliogenesis. Genes which encode the transcription factors (TFs) that specify neuronal cell fate, including MEF2D, MYT1L, NEUROD1, PAX6 and TBR1, and their target genes, are induced by VPA. VPA represses genes responsible for oligodendrogenesis, maintenance of white matter, T-cell activation, angiogenesis, and endothelial cell proliferation, adhesion and chemotaxis. NEUROD1 has regulatory interactions with 38% of the genes regulated by VPA in a swine model of TBI and HS in adult brain. Hi-C spatial mapping of a VPA pharmacogenomic SNP in the GRIN2B gene shows it is part of a transcriptional hub that contacts 12 genes that mediate chromatin-mediated neurogenesis and neuroplasticity. Conclusions Following TBI and HS, this study shows that VPA administration acts in the adult brain through differential activation of TFs responsible for neurogenesis, genes responsible for neuroplasticity, and repression of TFs that specify oligodendrocyte cell fate, endothelial cell chemotaxis and angiogenesis. Short title: Mechanism of action of valproic acid in traumatic brain injury Electronic supplementary material The online version of this article (doi:10.1007/s11095-017-2130-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Patrick Georgoff
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Vahagn Nikolian
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Brian Pauls
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan USA
| | - Richard Higgins
- Department of Computer Science, University of Maryland, College Park, Maryland USA
| | - Brian D. Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan USA
- Michigan Institute for Data Science (MIDAS), Ann Arbor, Michigan USA
| | - Hasan E. Alam
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan USA
| |
Collapse
|
40
|
Li X, Zhang J, Wu X, Yan H, Zhang Y, He RH, Tang YJ, He YJ, Tan D, Mao XY, Yin JY, Liu ZQ, Zhou HH, Liu J. Polymorphisms of ABAT, SCN2A and ALDH5A1 may affect valproic acid responses in the treatment of epilepsy in Chinese. Pharmacogenomics 2016; 17:2007-2014. [PMID: 27918244 DOI: 10.2217/pgs-2016-0093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The clinical efficacy of valproic acid (VPA) varies greatly among epileptic patients. To find the potential genetic factors related to VPA responses, the pharmacogenetics study was conducted. Methods: Two hundred and one Chinese Han epileptic patients who were treated by VPA for at least 1 year were recruited. Up to 24 SNPs in 11 candidate genes that correlate with the metabolism, transport or target of VPA were genotyped. Results: Three SNPs, rs1731017 (ABAT), rs2304016 (SCN2A) and rs1054899 (ALDH5A1) were found associated with VPA responses with the p-values of 0.003, 0.007 and 0.048, respectively. Further interaction analysis showed that the interaction between rs17183814 (ABAT) and rs1641022 (SCN2A) was also correlated with the response of VPA (p = 0.006). Conclusion: This study found three SNPs and one interaction among ABAT, SCN2A and ALDH5A1 were significantly associated with VPA response, which indicated that these genes may play important roles in the pharmacological mechanism of VPA.
Collapse
Affiliation(s)
- Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Jun Zhang
- Department of nephrology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xi Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Yin Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Ruo-Hui He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Yong-Jun Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Yi-Jing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Dan Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| |
Collapse
|
41
|
Effects of UGT1A6 and GABRA1 on Standardized Valproic Acid Plasma Concentrations and Treatment Effect in Children With Epilepsy in China. Ther Drug Monit 2016; 38:738-743. [DOI: 10.1097/ftd.0000000000000337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Du Z, Jiao Y, Shi L. Association of UGT2B7 and UGT1A4 Polymorphisms with Serum Concentration of Antiepileptic Drugs in Children. Med Sci Monit 2016; 22:4107-4113. [PMID: 27795544 PMCID: PMC5100833 DOI: 10.12659/msm.897626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background This study aimed to analyze the relationship of UGT2B7 and UGT1A4 polymorphisms with metabolism of valproic acid (VPA) and lamotrigine (LTG) in epileptic children. Material/Methods We administered VPA (102) and LTG (102) to 204 children with epilepsy. Blood samples were collected before the morning dose. Serum concentration of LTG was measured by high-performance liquid chromatography (HPLC). Serum VPA concentration was tested by fluorescence polarization immunoassay. UGT2B7 A268G, C802T, and G211T polymorphisms, as well as UGT1A4 L48V polymorphism, were assayed by direct automated DNA sequencing after PCR. Evaluation of efficacy was conducted using the Engel method. Results The adjusted serum concentration of VPA was 4.26 μg/mL per mg/kg and LTG was 1.56 μg/mL per mg/kg. Multiple linear regression analysis revealed that VPA or LTG adjusted concentration showed a good linear relation with sex and age. UGT2B7 A268G and C802T polymorphisms were demonstrated to affect the serum concentration of VPA (F=3.147, P=0.047; F=22.754, P=0.000). UGT1A4 L48V polymorphism was not related with the serum concentration of LTG (F=5.328, P=0.006). In the efficacy analysis, we found that C802T polymorphism exerted strong effects on efficacy of VPA (χ2=9.265, P=0.010). L48V polymorphism also showed effects on efficacy of LTG (χ2=17.397, P=0.001). Conclusions UGT2B7, UGT1A4 polymorphisms play crucial roles in metabolism of VPA and LTG.
Collapse
Affiliation(s)
- Zhongliang Du
- Department of Pharmacy, Weifang Yidu Central Hospital, Qingzhou, Shandong, China (mainland)
| | - Yukun Jiao
- Department of Pharmacy, Weifang Yidu Central Hospital, Qingzhou, Shandong, China (mainland)
| | - Lianting Shi
- Department of Pharmacy, Weifang Yidu Central Hospital, Qingzhou, Shandong, China (mainland)
| |
Collapse
|
43
|
Goey AK, Sissung TM, Peer CJ, Figg WD. Pharmacogenomics and histone deacetylase inhibitors. Pharmacogenomics 2016; 17:1807-1815. [PMID: 27767376 DOI: 10.2217/pgs-2016-0113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The histone deacetylase inhibitor valproic acid (VPA) has been used for many decades in neurology and psychiatry. The more recent introduction of the histone deacetylase inhibitors (HDIs) belinostat, romidepsin and vorinostat for treatment of hematological malignancies indicates the increasing popularity of these agents. Belinostat, romidepsin and vorinostat are metabolized or transported by polymorphic enzymes or drug transporters. Thus, genotype-directed dosing could improve pharmacotherapy by reducing the risk of toxicities or preventing suboptimal treatment. This review provides an overview of clinical studies on the effects of polymorphisms on the pharmacokinetics, efficacy or toxicities of HDIs including belinostat, romidepsin, vorinostat, panobinostat, VPA and a number of novel compounds currently being tested in Phase I and II trials. Although pharmacogenomic studies for HDIs are scarce, available data indicate that therapy with belinostat (UGT1A1), romidepsin (ABCB1), vorinostat (UGT2B17) or VPA (UGT1A6) could be optimized by upfront genotyping.
Collapse
Affiliation(s)
- Andrew Kl Goey
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tristan M Sissung
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Chatzistefanidis D, Lazaros L, Giaka K, Nakou I, Tzoufi M, Georgiou I, Kyritsis A, Markoula S. UGT1A6- and UGT2B7-related valproic acid pharmacogenomics according to age groups and total drug concentration levels. Pharmacogenomics 2016; 17:827-35. [PMID: 27232006 DOI: 10.2217/pgs-2016-0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The role of UGT1A6 and UGT2B7 polymorphisms and the impact of total drug plasma concentration in valproic acid (VPA) pharmacogenomics. PATIENTS & METHODS A total of 134 Greek patients were recruited (76 adults). Patients were genotyped for UGT1A6 19T>G, 541A>G and 552A>C and UGT2B7 802T>C polymorphisms. Patients' demographic and clinical data were registered. Natural logarithm of concentration-to-dose ratio (CDR) was also calculated as the final outcome. RESULTS No significant genotype-related differences in VPA metabolism were noted among various subgroups. An increased lnCDR ratio was noted in children patients compared with adults suggesting increased metabolic capability in younger ages. CONCLUSION UGT1A6 and UGT2B7 genotypes were not related to significant changes in VPA metabolism, even after controlling for total drug concentration levels. Younger ages were associated with increased VPA clearance rate.
Collapse
Affiliation(s)
| | - Leandros Lazaros
- Medical Genetics & Assisted Reproduction, University of Ioannina, Ioannina, Greece
| | - Katerina Giaka
- Medical Genetics & Assisted Reproduction, University of Ioannina, Ioannina, Greece
| | - Iliada Nakou
- Department of Pediatrics, University of Ioannina, Stavros Niarchos Avenue, 45500 Ioannina, Greece
| | - Meropi Tzoufi
- Department of Pediatrics, University of Ioannina, Stavros Niarchos Avenue, 45500 Ioannina, Greece
| | - Ioannis Georgiou
- Medical Genetics & Assisted Reproduction, University of Ioannina, Ioannina, Greece
| | | | - Sofia Markoula
- Department of Neurology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
45
|
Abstract
Genetic factors contribute to the high interindividual variability in response to antiepileptic drugs. However, most genetic markers identified to date have limited sensitivity and specificity, and the value of genetic testing in guiding antiepileptic drug (AED) therapy is limited. The best defined indication for testing relates to HLA-B*15:02 genotyping to identify those individuals of South Asian ethnicity who are at high risk for developing serious adverse cutaneous reactions to carbamazepine. The indication for HLA-A*31:01 testing to identify individuals at risk for skin reactions from carbamazepine, or for CYP2C9 genotyping to identify individuals at risk for serious skin reactions from phenytoin is less compelling. The use of genetic testing to guide epilepsy treatment is likely to increase in the future, as better understanding of the function of epilepsy genes will permit the application of precision medicine targeting the biological mechanisms responsible for epilepsy in the specific individual.
Collapse
Affiliation(s)
| | - Emilio Perucca
- a 1 C. Mondino National Neurological Institute, Pavia, Italy.,b 2 Department of Internal Medicine and Therapeutics, Division of Clinical and Experimental Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
46
|
Vandenbossche J, Richards H, Francke S, Van Den Bergh A, Lu CC, Franc MA. The effect ofUGT2B7*2polymorphism on the pharmacokinetics of OROS® hydromorphone in Taiwanese subjects. J Clin Pharmacol 2014; 54:1170-9. [DOI: 10.1002/jcph.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Henry Richards
- Janssen Research and Development; L.L.C.; Titusville NJ USA
| | | | - An Van Den Bergh
- Johnson & Johnson Pharmaceutical Research and Development; Beerse Belgium
| | - Chih Cherng Lu
- Department of Anesthesiology; Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | | |
Collapse
|
47
|
Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2013; 141:92-116. [PMID: 24076267 DOI: 10.1016/j.pharmthera.2013.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
UDP-glucuronosyltransferases (UGT) catalyze the biotransformation of many endobiotics and xenobiotics, and are coded by polymorphic genes. However, knowledge about the effects of these polymorphisms is rarely used for the individualization of drug therapy. Here, we present a quantitative systematic review of clinical studies on the impact of UGT variants on drug metabolism to clarify the potential for genotype-adjusted therapy recommendations. Data on UGT polymorphisms and dose-related pharmacokinetic parameters in man were retrieved by a systematic search in public databases. Mean estimates of pharmacokinetic parameters were extracted for each group of carriers of UGT variants to assess their effect size. Pooled estimates and relative confidence bounds were computed with a random-effects meta-analytic approach whenever multiple studies on the same variant, ethnic group, and substrate were available. Information was retrieved on 30 polymorphic metabolic pathways involving 10 UGT enzymes. For irinotecan and mycophenolic acid a wealth of data was available for assessing the impact of genetic polymorphisms on pharmacokinetics under different dosages, between ethnicities, under comedication, and under toxicity. Evidence for effects of potential clinical relevance exists for 19 drugs, but the data are not sufficient to assess effect size with the precision required to issue dose recommendations. In conclusion, compared to other drug metabolizing enzymes much less systematic research has been conducted on the polymorphisms of UGT enzymes. However, there is evidence of the existence of large monogenetic functional polymorphisms affecting pharmacokinetics and suggesting a potential use of UGT polymorphisms for the individualization of drug therapy.
Collapse
Affiliation(s)
- J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany; Translational Pharmacology, University of Bonn Medical Faculty, Germany.
| | - H Bartels
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Germany
| | - M L Lehmann
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - J Brockmöller
- Institute of Clinical Pharmacology, University of Göttingen, Germany
| |
Collapse
|
48
|
|
49
|
Pharmacogenetics of chronic pain and its treatment. Mediators Inflamm 2013; 2013:864319. [PMID: 23766564 PMCID: PMC3671679 DOI: 10.1155/2013/864319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022] Open
Abstract
This paper reviews the impact of genetic variability of drug metabolizing enzymes, transporters, receptors, and pathways involved in chronic pain perception on the efficacy and safety of analgesics and other drugs used for chronic pain treatment. Several candidate genes have been identified in the literature, while there is usually only limited clinical evidence substantiating for the penetration of the testing for these candidate biomarkers into the clinical practice. Further, the pain-perception regulation and modulation are still not fully understood, and thus more complex knowledge of genetic and epigenetic background for analgesia will be needed prior to the clinical use of the candidate genetic biomarkers.
Collapse
|
50
|
Cabaleiro T, López-Rodríguez R, Ochoa D, Román M, Novalbos J, Abad-Santos F. Polymorphisms influencing olanzapine metabolism and adverse effects in healthy subjects. Hum Psychopharmacol 2013; 28:205-14. [PMID: 23559402 DOI: 10.1002/hup.2308] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/25/2013] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The pharmacokinetics of olanzapine and response to treatment could be affected by polymorphisms in genes coding for drug-metabolizing enzymes, transporters, or receptors. The aim of this study was to identify genetic markers predictive of pharmacokinetics, pharmacodynamics, and adverse effects of olanzapine. METHODS Sixty-three healthy volunteers receiving a single 5-mg oral dose of olanzapine were genotyped for 39 genetic variants that could be related to the response to olanzapine. All genetic variants were analyzed by PharmaChip, but DRD2 Taq1A polymorphism was determined by real-time polymerase chain reaction. Olanzapine was measured using high-performance liquid chromatography combined with tandem mass spectrometry. The relationship of gender and polymorphisms with olanzapine pharmacokinetics, the change in prolactin levels, and the incidence of adverse effects were evaluated by multiple regression analysis. RESULTS The pharmacokinetics of olanzapine was influenced by polymorphisms in CYP3A5, GSTM3, and GRIN2B. Prolactin levels were affected by gender and polymorphisms in DRD2 and 5-HTR2A. Polymorphisms in CYP2C9, TPMT, UGT1A1, MDR1, and 5-HTR2A were related to some adverse effects of olanzapine. CONCLUSIONS Several polymorphisms can explain differences in the pharmacokinetics, pharmacodynamics, and safety of olanzapine in healthy subjects. Whether these genetic factors influence the risk of therapeutic failure or tolerability in patients remains to be established.
Collapse
Affiliation(s)
- Teresa Cabaleiro
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|