1
|
Mu D, Tang H, Teng G, Li X, Zhang Y, Gao G, Wang D, Bai L, Lian X, Wen M, Jiang L, Wu S, Jiang H, Zhu C. Differences of genomic alterations and heavy metals in non-small cell lung cancer with different histological subtypes. J Cancer Res Clin Oncol 2023; 149:9999-10013. [PMID: 37256381 PMCID: PMC10423170 DOI: 10.1007/s00432-023-04929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE This study aimed to explore the correlations among heavy metals concentration, histologic subtypes and molecular characteristics in patients with non-small cell lung cancer (NSCLC). METHODS In this study, an NGS panel of 82 tumor-associated genes was used to identify genomic alternations in 180 newly diagnosed patients with NSCLC. The concentrations of 18 heavy metals in the serum samples were detected by inductively coupled plasma emission spectrometry (ICP-MS). RESULTS A total of 243 somatic mutations of 25 mutant genes were identified in 115 of 148 patients with LUAD and 45 somatic mutations of 15 mutant genes were found in 24 of 32 patients with LUSC. The genomic alternations, somatic interactions, traditional serum biomarkers, and heavy metals were markedly different between patients with LUAD and LUSC. Moreover, patients with LUSC were significantly positively correlated with Ba, but not LUAD. Lastly, patients with EGFR mutations presented significant negative correlations with Cd and Sr, whereas patients with TP53 mutations showed a significant positive correlation with Pb. CONCLUSION The genomic alternations, somatic interactions, traditional serum biomarkers, and heavy metals were different between patients with LUAC and LUSC, and heavy metals (e.g., Ba, Pb, and Cd) may contribute to the tumorigenesis of NSCLC with different histological and molecular subtypes.
Collapse
Affiliation(s)
- Die Mu
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Hui Tang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Gen Teng
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xinyang Li
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Yarui Zhang
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Ge Gao
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Dongjuan Wang
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Lu Bai
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xiangyao Lian
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Ming Wen
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
| | - Lisha Jiang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
| | - Shouxin Wu
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
| | - Huihui Jiang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China.
| | - Cuimin Zhu
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
2
|
Lim J, Lee HL, Nguyen J, Shin J, Getze S, Quach C, Squire E, Jung KM, Mahler SV, Mackie K, Piomelli D, Luderer U. Adolescent exposure to low-dose Δ9-tetrahydrocannabinol depletes the ovarian reserve in female mice. Toxicol Sci 2023; 193:31-47. [PMID: 36912754 PMCID: PMC10176244 DOI: 10.1093/toxsci/kfad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Cannabis use by adolescents is widespread, but its effects on the ovaries remain largely unknown. Δ9-tetrahydrocannabinol (THC) exerts its pharmacological effects by activating, and in some conditions hijacking, cannabinoid receptors (CBRs). We hypothesized that adolescent exposure to THC affects ovarian function in adulthood. Peripubertal female C57BL/6N mice were given THC (5 mg/kg) or its vehicle, once daily by intraperitoneal injection. Some mice received THC from postnatal day (PND) 30-33 and their ovaries were harvested PND34; other mice received THC from PND30-43, and their ovaries were harvested PND70. Adolescent treatment with THC depleted ovarian primordial follicle numbers by 50% at PND70, 4 weeks after the last dose. The treatment produced primordial follicle activation, which persisted until PND70. THC administration also caused DNA damage in primary follicles and increased PUMA protein expression in oocytes of primordial and primary follicles. Both CB1R and CB2R were expressed in oocytes and theca cells of ovarian follicles. Enzymes involved in the formation (N-acylphosphatidylethanolamine phospholipase D) or deactivation (fatty acid amide hydrolase) of the endocannabinoid anandamide were expressed in granulosa cells of ovarian follicles and interstitial cells. Levels of mRNA for CBR1 were significantly increased in ovaries after adolescent THC exposure, and upregulation persisted for at least 4 weeks. Our results support that adolescent exposure to THC may cause aberrant activation of the ovarian endocannabinoid system in female mice, resulting in substantial loss of ovarian reserve in adulthood. Relevance of these findings to women who frequently used cannabis during adolescence warrants investigation.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, California 92697, USA
- Dept. of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, USA
| | - Julie Nguyen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
| | - Joyce Shin
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, California 92697, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
| | - Samantha Getze
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
| | - Caitlin Quach
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, USA
| | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, California 92697, USA
- Dept. of Medicine, University of California Irvine, Irvine, California 92697, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
3
|
Zhang W, Qu S, Chen Q, Yang X, Yu J, Zeng S, Chu Y, Zou H, Zhang Z, Wang X, Jing R, Wu Y, Liu Z, Xu R, Wu C, Huang C, Huang J. Development and characterization of reference materials for EGFR, KRAS, NRAS, BRAF, PIK3CA, ALK, and MET genetic testing. Technol Health Care 2023; 31:485-495. [PMID: 36093718 DOI: 10.3233/thc-220102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Along with the dramatic development of molecular diagnostic testing for the detection of oncogene variations, reference materials (RMs) have become increasingly important in performance evaluation of genetic testing. OBJECTIVE In this study, we built a set of RMs for genetic testing based on next-generation sequencing (NGS). METHOD Solid tumor tissues were selected as the samples of RMs for preparation. NGS was used to determine and validate the variants and the mutation frequency in DNA samples. Digital PCR was used to determine the copy numbers of RNA samples. The performance of the RMs was validated by six laboratories. RESULTS Thirty common genetic alterations were designed based on these RMs. RMs consisted of a positive reference, a limit of detection reference, and a negative reference. The validation results confirmed the performance of the RMs. CONCLUSION These RMs may be an attractive tool for the development, validation, and quality monitoring of molecular genetic testing.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shoufang Qu
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Qiong Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Medical Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xuexi Yang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shuang Zeng
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yuxing Chu
- Geneplus-Beijing Clinical Laboratory Co., Ltd., Beijing, China
| | - Hao Zou
- Novogene (Tianjin) Bioinformatics Technology Co., Ltd., Tianjin, China
| | - Zhihong Zhang
- Guangzhou Burning Rock Dx Co., Ltd., Guangzhou, Guangdong, China
| | | | | | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhipeng Liu
- Research Institute, Guangzhou Darui Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Ren Xu
- Shanghai Yuanqi Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanfeng Huang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jie Huang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
4
|
Aran V, Heringer M, da Mata PJ, Kasuki L, Miranda RL, Andreiuolo F, Chimelli L, Filho PN, Gadelha MR, Neto VM. Identification of mutant K-RAS in pituitary macroadenoma. Pituitary 2021; 24:746-753. [PMID: 33954928 DOI: 10.1007/s11102-021-01151-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE RAS genes are among the most frequently mutated genes in cancer, where their mutation frequency varies according to the distinct RAS isoforms and tumour types. Despite occurring more prevalent in malignant tumours, RAS mutations were also observed in few benign tumours. Pituitary adenomas are examples of benign tumours which vary in size and aggressiveness. The present study was performed to investigate, via liquid biopsy and tissue analysis, the presence of K-RAS mutations in a pituitary macroadenoma. METHODS Molecular analysis was performed to investigate K-RAS mutations using the droplet digital PCR (ddPCR) method by evaluating both plasma (liquid biopsy) and the solid tumour of a patient diagnosed with a giant clinically non-functioning pituitary tumour. RESULTS The patient underwent surgical resection due to visual loss, and the histopathological analysis showed a gonadotrophic pituitary macroadenoma. The molecular analysis revealed the presence of mutant K-RAS both in the plasma and in the tumour tissue which, to our knowledge, has not been previously reported in the literature. CONCLUSION Our findings highlight the exceptional capacity of the digital PCR in detecting low frequency mutations (below 1%), since we detected, for the first time, K-RAS mutations in pituitary macroadenoma. The potential impact of K-RAS mutations in these tumours should be further investigated.
Collapse
Affiliation(s)
- Veronica Aran
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro, 20231-092, Brazil.
| | - Manoela Heringer
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro, 20231-092, Brazil
| | - Paulo Jose da Mata
- Neurosurgery Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrine Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Endocrine Unit and Neuroendocrinology Research Center, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan Lyra Miranda
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Felipe Andreiuolo
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Paulo Niemeyer Filho
- Neurosurgery Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Monica Roberto Gadelha
- Neuroendocrine Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Endocrine Unit and Neuroendocrinology Research Center, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro, 20231-092, Brazil
| |
Collapse
|
5
|
McKim KL, Myers MB, Harris KL, Gong B, Xu J, Parsons BL. CarcSeq Measurement of Rat Mammary Cancer Driver Mutations and Relation to Spontaneous Mammary Neoplasia. Toxicol Sci 2021; 182:142-158. [PMID: 33822199 DOI: 10.1093/toxsci/kfab040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to deduce carcinogenic potential from subchronic, repeat dose rodent studies would constitute a major advance in chemical safety assessment and drug development. This study investigated an error-corrected NGS method (CarcSeq) for quantifying cancer driver mutations (CDMs) and deriving a metric of clonal expansion predictive of future neoplastic potential. CarcSeq was designed to interrogate subsets of amplicons encompassing hotspot CDMs applicable to a variety of cancers. Previously, normal human breast DNA was analyzed by CarcSeq and metrics based on mammary-specific CDMs were correlated with tissue donor age, a surrogate of breast cancer risk. Here we report development of parallel methodologies for rat. The utility of the rat CarcSeq method for predicting neoplastic potential was investigated by analyzing mammary tissue of 16-week-old untreated rats with known differences in spontaneous mammary neoplasia (Fischer 344, Wistar Han, and Sprague Dawley). Hundreds of mutants with mutant fractions ≥ 10-4 were quantified in each strain, most were recurrent mutations, and 42.5% of the nonsynonymous mutations have human homologs. Mutants in the mammary-specific target of the most tumor-sensitive strain (Sprague Dawley) showed the greatest nonsynonymous/synonymous mutation ratio, indicative of positive selection consistent with clonal expansion. For the mammary-specific target (Hras, Pik3ca, and Tp53 amplicons), median absolute deviation correlated with percentages of rats that develop spontaneous mammary neoplasia at 104 weeks (Pearson r = 1.0000, 1-tailed p = .0010). Therefore, this study produced evidence CarcSeq analysis of spontaneously occurring CDMs can be used to derive an early metric of clonal expansion relatable to long-term neoplastic outcome.
Collapse
Affiliation(s)
| | | | | | - Binsheng Gong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | |
Collapse
|
6
|
Harris KL, McKim KL, Myers MB, Gong B, Xu J, Parsons BL. Assessment of clonal expansion using CarcSeq measurement of lung cancer driver mutations and correlation with mouse strain- and sex-related incidence of spontaneous lung neoplasia. Toxicol Sci 2021; 184:1-14. [PMID: 34373914 DOI: 10.1093/toxsci/kfab098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quantification of variation in levels of spontaneously occurring cancer driver mutations (CDMs) was developed to assess clonal expansion and predict future risk of neoplasm development. Specifically, an error-corrected next generation sequencing method, CarcSeq, and a mouse CarcSeq panel (analogous to human and rat panels) were developed and used to quantify low-frequency mutations in a panel of amplicons enriched in hotspot CDMs. Mutations in a subset of panel amplicons, Braf, Egfr, Kras, Stk11 and Tp53, were related to incidence of lung neoplasms at two years. This was achieved by correlating median absolute deviation (MAD) from the overall median mutant fraction (MF) measured in the lung DNA of 16-week-old male and female, B6C3F1 and CD-1 mice (10 mice/sex/strain) with percentages of spontaneous alveolar/bronchioloalveolar adenomas and carcinomas reported in bioassay control groups. 1,586 mouse lung mutants with MFs >1 x 10-4 were recovered. The ratio of non-synonymous to synonymous mutations was used to assess the proportion of recovered mutations conferring a positive selective advantage. The greatest ratio was observed in what is considered the most lung tumor-sensitive model examined, male B6C3F1 mice. Of the recurrent, non-synonymous mouse mutations recovered, 55.5% have been reported in human tumors, with many located in or around the mouse equivalent of human cancer hotspot codons. MAD for the same subset of amplicons measured in normal human lung DNA samples showed a correlation of moderate strength and borderline significance) with age (a cancer risk factor), as well as age-related cumulative lung cancer risk, suggesting MAD may inform species extrapolation.
Collapse
Affiliation(s)
- Kelly L Harris
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd, Jefferson, AR, 72079
| | - Karen L McKim
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd, Jefferson, AR, 72079
| | - Meagan B Myers
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd, Jefferson, AR, 72079
| | - Binsheng Gong
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Bioinformatics and Biostatistics, 3900 NCTR Rd, Jefferson, AR, 72079
| | - Joshua Xu
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Bioinformatics and Biostatistics, 3900 NCTR Rd, Jefferson, AR, 72079
| | - Barbara L Parsons
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd, Jefferson, AR, 72079
| |
Collapse
|
7
|
Harris KL, Walia V, Gong B, McKim KL, Myers MB, Xu J, Parsons BL. Quantification of cancer driver mutations in human breast and lung DNA using targeted, error-corrected CarcSeq. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:872-889. [PMID: 32940377 PMCID: PMC7756507 DOI: 10.1002/em.22409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 05/14/2023]
Abstract
There is a need for scientifically-sound, practical approaches to improve carcinogenicity testing. Advances in DNA sequencing technology and knowledge of events underlying cancer development have created an opportunity for progress in this area. The long-term goal of this work is to develop variation in cancer driver mutation (CDM) levels as a metric of clonal expansion of cells carrying CDMs because these important early events could inform carcinogenicity testing. The first step toward this goal was to develop and validate an error-corrected next-generation sequencing method to analyze panels of hotspot cancer driver mutations (hCDMs). The "CarcSeq" method that was developed uses unique molecular identifier sequences to construct single-strand consensus sequences for error correction. CarcSeq was used for mutational analysis of 13 amplicons encompassing >20 hotspot CDMs in normal breast, normal lung, ductal carcinomas, and lung adenocarcinomas. The approach was validated by detecting expected differences related to tissue type (normal vs. tumor and breast vs. lung) and mutation spectra. CarcSeq mutant fractions (MFs) correlated strongly with previously obtained ACB-PCR mutant fraction (MF) measurements from the same samples. A reconstruction experiment, in conjunction with other analyses, showed CarcSeq accurately quantifies MFs ≥10-4 . CarcSeq MF measurements were correlated with tissue donor age and breast cancer risk. CarcSeq MF measurements were correlated with deviation from median MFs analyzed to assess clonal expansion. Thus, CarcSeq is a promising approach to advance cancer risk assessment and carcinogenicity testing practices. Paradigms that should be investigated to advance this strategy for carcinogenicity testing are proposed.
Collapse
Affiliation(s)
- Kelly L. Harris
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Vijay Walia
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
- Present address:
USA
| | - Binsheng Gong
- US Food and Drug AdministrationNational Center for Toxicological Research, Division of Bioinformatics and BiostatisticsJeffersonArkansasUSA
| | - Karen L. McKim
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Meagan B. Myers
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Joshua Xu
- US Food and Drug AdministrationNational Center for Toxicological Research, Division of Bioinformatics and BiostatisticsJeffersonArkansasUSA
| | - Barbara L. Parsons
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| |
Collapse
|
8
|
Abstract
Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer having a non-extendable 3'-end and a 3'-penultimate mismatch relative to the wild-type DNA sequence, but a double 3'-terminal mismatch relative to the mutant DNA sequence is included in ACB-PCR to selectively repress amplification from abundant wild-type molecules. Consequently, ACB-PCR can quantify the level of a single base pair substitution mutation in a DNA population when present at a mutant:wild-type ratio of 1 × 10-5 or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications in evaluating the carcinogenic potential of chemical exposures in rodent models. Further, the measurement of cancer-driver mutant subpopulations is important for precision cancer treatment (selecting the most appropriate targeted therapy and predicting the development of therapeutic resistance). This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human PIK3CA codon 1047, CAT→CGT (H1047R) mutation.
Collapse
|
9
|
Banda M, McKim KL, Myers MB, Inoue M, Parsons BL. Outgrowth of erlotinib-resistant subpopulations recapitulated in patient-derived lung tumor spheroids and organoids. PLoS One 2020; 15:e0238862. [PMID: 32898185 PMCID: PMC7478813 DOI: 10.1371/journal.pone.0238862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
A model that recapitulates development of acquired therapeutic resistance is needed to improve oncology drug development and patient outcomes. To achieve this end, we established methods for the preparation and growth of spheroids from primary human lung adenocarcinomas, including methods to culture, passage, monitor growth, and evaluate changes in mutational profile over time. Primary lung tumor spheroids were cultured in Matrigel® with varying concentrations of erlotinib, a small molecule kinase inhibitor of epidermal growth factor receptor (EGFR) that is ineffective against KRAS mutant cells. Subtle changes in spheroid size and number were observed within the first two weeks of culture. Spheroids were cultured for up to 24 weeks, during which time interactions between different cell types, movement, and assembly into heterogeneous organoid structures were documented. Allele-specific competitive blocker PCR (ACB-PCR) was used to quantify low frequency BRAF V600E, KRAS G12D, KRAS G12V, and PIK3CA H1047R mutant subpopulations in tumor tissue residue (TR) samples and cultured spheroids. Mutant subpopulations, including multiple mutant subpopulations, were quite prevalent. Twelve examples of mutant enrichment were found in eight of the 14 tumors analyzed, based on the criteria that a statistically-significant increase in mutant fraction was observed relative to both the TR and the no-erlotinib control. Of the mutants quantified in erlotinib-treated cultures, PIK3CA H1047 mutant subpopulations increased most often (5/14 tumors), which is consistent with clinical observations. Thus, this ex vivo lung tumor spheroid model replicates the cellular and mutational tumor heterogeneity of human lung adenocarcinomas and can be used to assess the outgrowth of mutant subpopulations. Spheroid cultures with characterized mutant subpopulations could be used to investigate the efficacy of lung cancer combination therapies.
Collapse
Affiliation(s)
- Malathi Banda
- Division of Genetic and Molecular Toxicology, US Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Karen L. McKim
- Division of Genetic and Molecular Toxicology, US Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Meagan B. Myers
- Division of Genetic and Molecular Toxicology, US Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Masahiro Inoue
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Barbara L. Parsons
- Division of Genetic and Molecular Toxicology, US Food & Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| |
Collapse
|
10
|
Harris KL, Myers MB, McKim KL, Elespuru RK, Parsons BL. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:152-175. [PMID: 31469467 PMCID: PMC6973253 DOI: 10.1002/em.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Kelly L. Harris
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials ScienceCDRH/OSEL, US Food and Drug AdministrationSilver SpringMaryland
| | - Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| |
Collapse
|
11
|
Zhang XC, Wang J, Shao GG, Wang Q, Qu X, Wang B, Moy C, Fan Y, Albertyn Z, Huang X, Zhang J, Qiu Y, Platero S, Lorenzi MV, Zudaire E, Yang J, Cheng Y, Xu L, Wu YL. Comprehensive genomic and immunological characterization of Chinese non-small cell lung cancer patients. Nat Commun 2019; 10:1772. [PMID: 30992440 PMCID: PMC6467893 DOI: 10.1038/s41467-019-09762-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/28/2019] [Indexed: 02/08/2023] Open
Abstract
Deep understanding of the genomic and immunological differences between Chinese and Western lung cancer patients is of great importance for target therapy selection and development for Chinese patients. Here we report an extensive molecular and immune profiling study of 245 Chinese patients with non-small cell lung cancer. Tumor-infiltrating lymphocyte estimated using immune cell signatures is found to be significantly higher in adenocarcinoma (ADC, 72.5%) compared with squamous cell carcinoma (SQCC, 54.4%). The correlation of genomic alterations with immune signatures reveals that low immune infiltration was associated with EGFR mutations in ADC samples, PI3K and/or WNT pathway activation in SQCC. While KRAS mutations are found to be significantly associated with T cell infiltration in ADC samples. The SQCC patients with high antigen presentation machinery and cytotoxic T cell signature scores are found to have a prolonged overall survival time.
Collapse
Affiliation(s)
- Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 510080, Guangzhou, China
| | - Jun Wang
- Peking University People's Hospital, Beijing, 100044, China
| | - Guo-Guang Shao
- Thoracic Surgery, 1st Hospital of Jilin University, 130021, Changchun, China
| | - Qun Wang
- Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xiaotao Qu
- Janssen R&D China, 355 Hong Qiao Road, 200030, Shanghai, China
| | - Bo Wang
- Janssen R&D China, 355 Hong Qiao Road, 200030, Shanghai, China
| | - Christopher Moy
- Janssen R&D, 1400 McKean Road, Spring House, Pennsylvania, 19002, USA
| | - Yue Fan
- Janssen R&D China, 355 Hong Qiao Road, 200030, Shanghai, China
| | - Zayed Albertyn
- Novocraft Technologies, 46300, Petaling Jaya, Selangor, Malaysia
| | - Xiayu Huang
- Janssen R&D China, 355 Hong Qiao Road, 200030, Shanghai, China
| | - Jingyu Zhang
- Janssen R&D China, 355 Hong Qiao Road, 200030, Shanghai, China
| | - Yang Qiu
- Janssen R&D China, 355 Hong Qiao Road, 200030, Shanghai, China
| | - Suso Platero
- Janssen R&D, 1400 McKean Road, Spring House, Pennsylvania, 19002, USA
| | - Matthew V Lorenzi
- Janssen R&D, 1400 McKean Road, Spring House, Pennsylvania, 19002, USA
| | - Enrique Zudaire
- Janssen R&D, 1400 McKean Road, Spring House, Pennsylvania, 19002, USA
| | - Jennifer Yang
- Janssen R&D China, 355 Hong Qiao Road, 200030, Shanghai, China
| | - Ying Cheng
- Department of Medical Oncology, Jilin Provincial Cancer Hospital, 130012, Changchun, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, 210009, Nanjing, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 510080, Guangzhou, China.
| |
Collapse
|
12
|
Myers MB, McKim KL, Banda M, George NI, Parsons BL. Low-Frequency Mutational Heterogeneity of Invasive Ductal Carcinoma Subtypes: Information to Direct Precision Oncology. Int J Mol Sci 2019; 20:E1011. [PMID: 30813596 PMCID: PMC6429455 DOI: 10.3390/ijms20051011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Information regarding the role of low-frequency hotspot cancer-driver mutations (CDMs) in breast carcinogenesis and therapeutic response is limited. Using the sensitive and quantitative Allele-specific Competitor Blocker PCR (ACB-PCR) approach, mutant fractions (MFs) of six CDMs (PIK3CA H1047R and E545K, KRAS G12D and G12V, HRAS G12D, and BRAF V600E) were quantified in invasive ductal carcinomas (IDCs; including ~20 samples per subtype). Measurable levels (i.e., ≥ 1 × 10-5, the lowest ACB-PCR standard employed) of the PIK3CA H1047R, PIK3CA E545K, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E mutations were observed in 34/81 (42%), 29/81 (36%), 51/81 (63%), 9/81 (11%), 70/81 (86%), and 48/81 (59%) of IDCs, respectively. Correlation analysis using available clinicopathological information revealed that PIK3CA H1047R and BRAF V600E MFs correlate positively with maximum tumor dimension. Analysis of IDC subtypes revealed minor mutant subpopulations of critical genes in the MAP kinase pathway (KRAS, HRAS, and BRAF) were prevalent across IDC subtypes. Few triple-negative breast cancers (TNBCs) had appreciable levels of PIK3CA mutation, suggesting that individuals with TNBC may be less responsive to inhibitors of the PI3K/AKT/mTOR pathway. These results suggest that low-frequency hotspot CDMs contribute significantly to the intertumoral and intratumoral genetic heterogeneity of IDCs, which has the potential to impact precision oncology approaches.
Collapse
Affiliation(s)
- Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Karen L McKim
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Malathi Banda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Nysia I George
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
13
|
Modern conception of carcinogenesis creates opportunities to advance cancer risk assessment. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacol Ther 2018; 194:59-72. [PMID: 30240635 DOI: 10.1016/j.pharmthera.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Istvan Boldogh
- Departments of Microbiology and Immunology and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
15
|
Ahmadzada T, Kao S, Reid G, Boyer M, Mahar A, Cooper WA. An Update on Predictive Biomarkers for Treatment Selection in Non-Small Cell Lung Cancer. J Clin Med 2018; 7:E153. [PMID: 29914100 PMCID: PMC6025105 DOI: 10.3390/jcm7060153] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
It is now widely established that management of lung cancer is much more complex and cannot be centered on the binary classification of small-cell versus non-small cell lung cancer (NSCLC). Lung cancer is now recognized as a highly heterogeneous disease that develops from genetic mutations and gene expression patterns, which initiate uncontrolled cellular growth, proliferation and progression, as well as immune evasion. Accurate biomarker assessment to determine the mutational status of driver mutations such as EGFR, ALK and ROS1, which can be targeted by specific tyrosine kinase inhibitors, is now essential for treatment decision making in advanced stage NSCLC and has shifted the treatment paradigm of NSCLC to more individualized therapy. Rapid advancements in immunotherapeutic approaches to NSCLC treatment have been paralleled by development of a range of potential predictive biomarkers that can enrich for patient response, including PD-L1 expression and tumor mutational burden. Here, we review the key biomarkers that help predict response to treatment options in NSCLC patients.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
| | - Steven Kao
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Chris O'Brien Lifehouse, Sydney 2050, Australia.
- Asbestos Diseases Research Institute (ADRI), Sydney 2139, Australia.
| | - Glen Reid
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Asbestos Diseases Research Institute (ADRI), Sydney 2139, Australia.
| | - Michael Boyer
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Chris O'Brien Lifehouse, Sydney 2050, Australia.
| | - Annabelle Mahar
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney 2050, Australia.
- School of Medicine, Western Sydney University, Sydney 2560, Australia.
| | - Wendy A Cooper
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney 2050, Australia.
- School of Medicine, Western Sydney University, Sydney 2560, Australia.
| |
Collapse
|
16
|
Parsons BL, McKim KL, Myers MB. Variation in organ-specific PIK3CA and KRAS mutant levels in normal human tissues correlates with mutation prevalence in corresponding carcinomas. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:466-476. [PMID: 28755461 PMCID: PMC5601221 DOI: 10.1002/em.22110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 05/27/2023]
Abstract
Large-scale sequencing efforts have described the mutational complexity of individual cancers and identified mutations prevalent in different cancers. As a complementary approach, allele-specific competitive blocker PCR (ACB-PCR) is being used to quantify levels of hotspot cancer driver mutations (CDMs) with high sensitivity, to elucidate the tissue-specific properties of CDMs, their occurrence as tumor cell subpopulations, and their occurrence in normal tissues. Here we report measurements of PIK3CA H1047R mutant fraction (MF) in normal colonic mucosa, normal lung, colonic adenomas, colonic adenocarcinomas, and lung adenocarcinomas. We report PIK3CA E545K MF measurements in those tissues, as well as in normal breast, normal thyroid, mammary ductal carcinomas, and papillary thyroid carcinomas. We report KRAS G12D and G12V MF measurements in normal colon. These MF measurements were integrated with previously published ACB-PCR data on KRAS G12D, KRAS G12V, and PIK3CA H1047R. Analysis of these data revealed a correlation between the degree of interindividual variability in these mutations (as log10 MF standard deviation) in normal tissues and the frequencies with which the mutations are detected in carcinomas of the corresponding organs in the COSMIC database. This novel observation has important implications. It suggests that interindividual variability in mutation levels of normal tissues may be used as a metric to identify mutations with critical early roles in tissue-specific carcinogenesis. Additionally, it raises the possibility that personalized cancer therapeutics, developed to target specifically activated oncogenic products, might be repurposed as prophylactic therapies to reduce the accumulation of cells carrying CDMs and, thereby, reduce future cancer risk. Environ. Mol. Mutagen. 58:466-476, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| |
Collapse
|
17
|
Luderer U, Myers MB, Banda M, McKim KL, Ortiz L, Parsons BL. Ovarian effects of prenatal exposure to benzo[a]pyrene: Roles of embryonic and maternal glutathione status. Reprod Toxicol 2017; 69:187-195. [PMID: 28279692 PMCID: PMC5422106 DOI: 10.1016/j.reprotox.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/27/2023]
Abstract
Females deficient in the glutamate cysteine ligase modifier subunit (Gclm) of the rate-limiting enzyme in glutathione synthesis are more sensitive to ovarian follicle depletion and tumorigenesisby prenatal benzo[a]pyrene (BaP) exposure than Gclm+/+ mice. We investigated effects of prenatal exposure to BaP on reproductive development and ovarian mutations in Kras, a commonly mutated gene in epithelial ovarian tumors. Pregnantmice were dosed from gestational day 6.5 through 15.5 with 2mg/kg/day BaP or vehicle. Puberty onset occurred 5 days earlier in F1 daughters of all Gclm genotypes exposed to BaP compared to controls. Gclm+/- F1 daughters of Gclm+/- mothers and wildtype F1 daughters of wildtype mothers had similar depletion of ovarian follicles following prenatal exposure to BaP, suggesting that maternal Gclm genotype does not modify ovarian effects of prenatal BaP. We observed no BaP treatment or Gclm genotype related differences in ovarian Kras codon 12 mutations in F1 offspring.
Collapse
Affiliation(s)
- Ulrike Luderer
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California Irvine, Irvine, CA 92617, United States; Department of Developmental and Cell Biology, UC Irvine, Irvine, CA 92617, United States; Program in Public Health, UC Irvine, Irvine, CA 92617, United States.
| | - Meagan B Myers
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Malathi Banda
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States.
| | - Karen L McKim
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Laura Ortiz
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California Irvine, Irvine, CA 92617, United States
| | - Barbara L Parsons
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
18
|
Myers MB, Banda M, McKim KL, Wang Y, Powell MJ, Parsons BL. Breast Cancer Heterogeneity Examined by High-Sensitivity Quantification of PIK3CA, KRAS, HRAS, and BRAF Mutations in Normal Breast and Ductal Carcinomas. Neoplasia 2016; 18:253-63. [PMID: 27108388 PMCID: PMC4840288 DOI: 10.1016/j.neo.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Mutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs), examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E). As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue. Overall, the mutations were prevalent in normal breast and DCs, with 9/9 DCs having measureable levels of at least three of the five mutations. HRAS G12D was significantly increased in DCs as compared to normal breast. The most frequent point mutation reported in DC by DNA sequencing, PIK3CA H1047R, was detected in all normal breast tissue and DC samples and was present at remarkably high levels (mutant fractions of 1.1 × 10(-3) to 4.6 × 10(-2)) in 4/10 normal breast samples. In normal breast tissue samples, PIK3CA mutation levels were positively correlated with age. However, the PIK3CA H1047R mutant fraction distributions for normal breast tissues and DCs were similar. The results suggest PIK3CA H1047R mutant cells have a selective advantage in breast, contribute to breast cancer susceptibility, and drive tumor progression during breast carcinogenesis, even when present as only a subpopulation of tumor cells.
Collapse
Affiliation(s)
- Meagan B Myers
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Malathi Banda
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Karen L McKim
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Yiying Wang
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079
| | - Michael J Powell
- DiaCarta, Inc., JOINN Innovation Park, 2600 Hilltop Drive, Richmond, CA 94806
| | - Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079.
| |
Collapse
|