1
|
Beauvais MJS, Thorogood AM, Szego MJ, Sénécal K, Zawati MH, Knoppers BM. Parental Access to Children's Raw Genomic Data in Canada: Legal Rights and Professional Responsibility. Front Genet 2021; 12:535340. [PMID: 33868358 PMCID: PMC8044527 DOI: 10.3389/fgene.2021.535340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Children with rare and common diseases now undergo whole genome sequencing (WGS) in clinical and research contexts. Parents sometimes request access to their child's raw genomic data, to pursue their own analyses or for onward sharing with health professionals and researchers. These requests raise legal, ethical, and practical issues for professionals and parents alike. The advent of widespread WGS in pediatrics occurs in a context where privacy and data protection law remains focused on giving individuals control-oriented rights with respect to their personal information. Acting in their child's stead and in their best interests, parents are generally the ones who will be exercising these informational rights on behalf of the child. In this paper, we map the contours of parental authority to access their child's raw genomic data. We consider three use cases: hospital-based researchers, healthcare professionals acting in a clinical-diagnostic capacity, and "pure" academic researchers at a public institution. Our research seeks to answer two principal questions: Do parents have a right of access to their child's raw WGS data? If so, what are the limits of this right? Primarily focused on the laws of Ontario, Canada's most populous province, with a secondary focus on Canada's three other most populous provinces (Quebec, British Columbia, and Alberta) and the European Union, our principal findings include (1) parents have a general right of access to information about their children, but that the access right is more capacious in the clinical context than in the research context; (2) the right of access extends to personal data in raw form; (3) a consideration of the best interests of the child may materially limit the legal rights of parents to access data about their child; (4) the ability to exercise rights of access are transferred from parents to children when they gain decision-making capacity in both the clinical and research contexts, but with more nuance in the former. With these findings in mind, we argue that professional guidelines, which are concerned with obligations to interpret and return results, may assist in furthering a child's best interests in the context of legal access rights. We conclude by crafting recommendations for healthcare professionals in the clinical and research contexts when faced with a parental request for a child's raw genomic data.
Collapse
Affiliation(s)
- Michael J S Beauvais
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Adrian M Thorogood
- ELIXIR-LU, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Michael J Szego
- Centre for Clinical Ethics, Unity Health, Toronto, ON, Canada.,Departments of Family and Community Medicine and Molecular Genetics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Ma'n H Zawati
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Bartha Maria Knoppers
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Vears DF, Sénécal K, Clarke AJ, Jackson L, Laberge AM, Lovrecic L, Piton A, Van Gassen KLI, Yntema HG, Knoppers BM, Borry P. Points to consider for laboratories reporting results from diagnostic genomic sequencing. Eur J Hum Genet 2018; 26:36-43. [PMID: 29184171 PMCID: PMC5839050 DOI: 10.1038/s41431-017-0043-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
Although NGS technologies are well-embedded in the clinical setting for identification of genetic causes of disease, guidelines issued by professional bodies are inconsistent regarding some aspects of reporting results. Most recommendations do not give detailed guidance about whether variants of uncertain significance (VUS) should be reported by laboratory personnel to clinicians, and give conflicting messages regarding whether unsolicited findings (UF) should be reported. There are also differences both in their recommendations regarding whether actively searching for secondary findings (SF) is appropriate, and in the extent to which they address the duty (or lack thereof) to reanalyse variants when new information arises. An interdisciplinary working group considered the current guidelines, their own experiences, and data from a recent qualitative study to develop a set of points to consider for laboratories reporting results from diagnostic NGS. These points to consider fall under six categories: (i) Testing approaches and technologies used, (ii) Approaches for VUS; (iii) Approaches for reporting UF, (iv) Approaches regarding SF; (v) Reanalysis of data & re-contact; and vi) Minors. While it is unclear whether uniformity in reporting across all laboratories is desirable, we hope these points to consider will be useful to diagnostic laboratories as they develop their processes for making decisions about reporting VUS and UF from NGS in the diagnostic context.
Collapse
Affiliation(s)
- D F Vears
- Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
- Leuven Institute for Human Genetics and Society, Leuven, Belgium.
| | - K Sénécal
- Centre of Genomics and Policy, McGill University, Montreal, Canada
| | - A J Clarke
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - L Jackson
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - A M Laberge
- Department of Pediatrics, Université de Montréal, Medical Genetics, CHU Sainte-Justine; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - L Lovrecic
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - A Piton
- Molecular diagnostic laboratory, Strasbourg University Hospitals, Strasbourg, France
| | - K L I Van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H G Yntema
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - B M Knoppers
- Centre of Genomics and Policy, McGill University, Montreal, Canada
| | - P Borry
- Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Leuven Institute for Human Genetics and Society, Leuven, Belgium
| |
Collapse
|
3
|
Bertier G, Sénécal K, Borry P, Vears DF. Unsolved challenges in pediatric whole-exome sequencing: A literature analysis. Crit Rev Clin Lab Sci 2017; 54:134-142. [PMID: 28132577 DOI: 10.1080/10408363.2016.1275516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole-exome sequencing (WES) has been instrumental in the discovery of novel genes and mechanisms causing Mendelian diseases. While this technology is now being successfully applied in a number of clinics, particularly to diagnose patients with rare diseases, it also raises a number of ethical, legal and social issues. In order to identify what challenges were directly foreseen by technology users, we performed a systematic review of the literature. In this paper, we focus on recent publications related to the use of WES in the pediatric context and analyze the most prominent challenges raised by technology users. This is particularly relevant considering that a) most patients currently undergoing testing using WES to identify the genetic basis for rare diseases are children and b) their lack of capacity to consent for themselves makes them a vulnerable population and generates the need for specific ethical, legal and regulatory procedures. We identified key challenges that related to four main categories: (1) intake; (2) sequence production and analysis; (3) reporting of results and counseling considerations and (4) collaborative data interpretation and data sharing. We then contextualize these challenges in light of the recent recommendations and guidelines, published by professional societies that have significant potential to impact the field.
Collapse
Affiliation(s)
- Gabrielle Bertier
- a Department of Human Genetics , Centre of Genomics and Policy, McGill University , Montreal , QC , Canada.,b UMR 1027, Inserm, Université Toulouse III - Paul Sabatier , Toulouse , France
| | - Karine Sénécal
- a Department of Human Genetics , Centre of Genomics and Policy, McGill University , Montreal , QC , Canada
| | - Pascal Borry
- c Department of Public Health and Primary Care , Leuven Institute for Human Genomics and Society , KU Leuven , Leuven , Belgium and
| | - Danya F Vears
- c Department of Public Health and Primary Care , Leuven Institute for Human Genomics and Society , KU Leuven , Leuven , Belgium and.,d Center for Biomedical Ethics and Law , KU Leuven , Leuven , Belgium
| |
Collapse
|