1
|
Nakatani E, Yamazaki W, Sugiura S, Kanamori T, Ohnuma K. Modeling of differentiation pattern formation in human induced pluripotent stem cells mediated by BMP4 and its inhibitor noggin secreted from cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Liang X, Yang R, Yin N, Faiola F. Evaluation of the effects of low nanomolar bisphenol A-like compounds' levels on early human embryonic development and lipid metabolism with human embryonic stem cell in vitro differentiation models. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124387. [PMID: 33172680 DOI: 10.1016/j.jhazmat.2020.124387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The widely used chemical bisphenol A (BPA) has been associated with several health effects. In recent years, many derivatives were developed to replace BPA although without thorough toxicological evaluation. Here, we employed a human embryoid body (EB)-based in vitro global differentiation and hepatic specification models, followed by RNA-seq analyses, to comprehensively study the potential developmental toxicity of six BPA replacements (BPS, BPF, BPZ, BPB, BPE, and BPAF), as compared to BPA. We found that those bisphenols may disrupt lineage commitment and lipid metabolism during early embryonic development. These effects mostly manifested via the dysregulation of HOX and APO family genes. Moreover, among the seven bisphenols analyzed, BPE seemed to have the mildest effects.
Collapse
Affiliation(s)
- Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Mirzaei-Seresht B, Bazrgar M, Sheidai M, Hassani SN, Masoudi NS, Mollammohammadi S. Chromosomal instability reducing effect of paclitaxel and lapatinib in mouse embryonic stem cells with chromosomal abnormality. Mol Biol Rep 2020; 47:8605-8614. [PMID: 33057993 DOI: 10.1007/s11033-020-05903-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Chromosomal abnormalities, as a frequent phenomenon in cultured embryonic stem cells (ESCs), is a major obstacle in the ESC application in regenerative medicine. Recent studies showed that aneuploid embryonic stem cells of humans and mice are more vulnerable to anticancer drugs, compared with normal cells. The aim of the current study was to evaluate effects of three anticancer drugs, paclitaxel, lapatinib and bortezomib, on mouse embryonic stem cells (mESCs) as a suitable and available model. To assess in vitro cell toxicity, two mESC lines were treated with the aforementioned drugs. Using G-band karyotyping and micronucleus assay, the effect of anticancer drugs in terms of reduction of chromosomal instability in the mESCs was evaluated in control and treatment groups. Also, apoptosis rate of both groups was estimated by FITC-Annexin V/Propidium Iodide (PI) double staining. In addition, the effect of these three drugs in maintaining the pluripotency was assessed through alkaline phosphatase assay and quantification of the expression of three key pluripotency genes, Nanog, Pou5f1 and Sox-2 was performed using Real Time PCR. The rate of numerical abnormalities after treatment with paclitaxel and lapatinib was lower than the control group. The expression level of pluripotency genes exhibited no significant difference between control and treatment groups. Administration of paclitaxel and lapatinib to the mESCs culture at an appropriate dose and in a timely manner could decrease chromosome stability without affecting pluripotency.
Collapse
Affiliation(s)
- Banafsheh Mirzaei-Seresht
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Highway, P.O.Box:16635-148, Tehran, Iran.,Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Highway, P.O.Box:16635-148, Tehran, Iran.
| | - Masoud Sheidai
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Highway, P.O.Box:16635-148, Tehran, Iran
| | - Sepideh Mollammohammadi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Bi S, Tang J, Zhang L, Huang L, Chen J, Wang Z, Chen D, Du L. Fine particulate matter reduces the pluripotency and proliferation of human embryonic stem cells through ROS induced AKT and ERK signaling pathway. Reprod Toxicol 2020; 96:231-240. [PMID: 32745510 DOI: 10.1016/j.reprotox.2020.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Epidemiological investigations have found that air fine particulate matter (PM) exposure not only causes respiratory and cardiovascular diseases in adults and children, but also affects embryonic development during pregnancy, leading to poor pregnancy outcomes. However, its exact molecular mechanism is still unclear. In this study, human embryonic stem cells (hESCs) were treated with PM at different concentrations then the morphology and proliferation capacity were measured. The mRNA and protein expression of NANOG and OCT4 were detected using quantitative PCR, immunofluorescence, western blotting, and flow cytometry. Reactive oxygen species (ROS) generation and AKT/ERK activation were also measured. Meanwhile, changes in ROS, the expression of NANOG, OCT4, and the AKT/ERK pathways were measured in the hESCs with or without pretreatment of ROS scavenger N-acetylcysteine (NAC) prior to PM exposure. After PM exposure, the proliferation capacity and expression of OCT4 and NANOG at the mRNA and protein levels were downregulated. The ROS level in the hESCs increased after PM exposure, but this increase in ROS was attenuated by pretreatment with NAC. Further analysis showed that the levels of phosphorylated AKT and ERK increased after PM exposure. After pretreatment with NAC, the phosphorylation levels of AKT and ERK, which are crucial for regulating the proliferation, pluripotency, and differentiation of hESC, were significantly attenuated compared with the non-NAC pretreated exposure group. These results suggest that PM exposure may reduce the proliferation and pluripotency of hESC through ROS-mediated AKT/ERK pathways, thereby affecting the long-term development of embryos.
Collapse
Affiliation(s)
- Shilei Bi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingman Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| | - Lili Du
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| |
Collapse
|
6
|
Chen H, Seifikar H, Larocque N, Kim Y, Khatib I, Fernandez CJ, Abello N, Robinson JF. Using a Multi-Stage hESC Model to Characterize BDE-47 Toxicity during Neurogenesis. Toxicol Sci 2019; 171:221-234. [PMID: 31173147 PMCID: PMC6736394 DOI: 10.1093/toxsci/kfz136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
While the ramifications associated with polybrominated diphenyl ethers (PBDE) exposures during human pregnancy have yet to be determined, increasing evidence in humans and animal models suggests that these compounds cause neurodevelopmental toxicity. Human embryonic stem cell models (hESCs) can be used to study the effects of environmental chemicals throughout the successive stages of neuronal development. Here, using a hESC differentiation model, we investigated the effects of common PBDE congeners (BDE-47 or -99) on the successive stages of early neuronal development. First, we determined the points of vulnerability to PBDEs across four stages of in vitro neural development by using assays to assess for cytotoxicity. Differentiated neural progenitors were identified to be more sensitive to PBDEs than their less differentiated counterparts. In follow-up investigations, we observed BDE-47 to inhibit functional processes critical for neurogenesis (e.g., proliferation, expansion) in hESC-derived neural precursor cells (NPCs) at sub-lethal concentrations. Finally, to determine the mechanism(s) underlying PBDE-toxicity, we conducted global transcriptomic and methylomic analyses of BDE-47. We identified 589 genes to be differentially expressed (DE) due to BDE-47 exposure, including molecules involved in oxidative stress mediation, cell cycle, hormone signaling, steroid metabolism, and neurodevelopmental pathways. In parallel analyses, we identified a broad significant increase in CpG methylation. In summary our results suggest, on a cellular level, PBDEs induce human neurodevelopmental toxicity in a concentration-dependent manner and sensitivity to these compounds is dependent on the developmental stage of exposure. Proposed mRNA and methylomic perturbations may underlie toxicity in early embryonic neuronal populations.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Helia Seifikar
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nicholas Larocque
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne Kim
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ibrahim Khatib
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Charles J Fernandez
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nicomedes Abello
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
7
|
Xu M, Jones OD, Wang L, Zhou X, Davis HG, Bryant JL, Ma J, Isaacs WB, Xu X. Characterization of tubular liquid crystal structure in embryonic stem cell derived embryoid bodies. Cell Biosci 2017; 7:3. [PMID: 28066542 PMCID: PMC5210172 DOI: 10.1186/s13578-016-0130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Massive liquid crystal droplets have been found during embryonic development in more than twenty different tissues and organs, including the liver, brain and kidney. Liquid crystal deposits have also been identified in multiple human pathologies, including vascular disease, liver dysfunction, age-related macular degeneration, and other chronic illnesses. Despite the involvement of liquid crystals in such a large number of human processes, this phenomenon is poorly understood and there are no in vitro systems to further examine the function of liquid crystals in biology. RESULTS We report the presence of tubular birefringent structures in embryoid bodies (EBs) differentiated in culture. These birefringent tubular structures initiate at the EB surface and penetrated the cortex at a variety of depths. Under crossed polarized light, these tubules are seen as a collection of birefringent Maltese crosses and tubules with birefringent walls and a non-birefringent lumen. The fluidity of these birefringent structures under pressure application led to elongation and widening, which was partially recoverable with pressure release. These birefringent structures also displayed heat triggered phase transition from liquid crystal to isotropic status that is partially recoverable with return to ambient temperature. These pressure and temperature triggered changes confirm the birefringent structures as liquid crystals. The first report of liquid crystal so early in development. CONCLUSION The structure of the liquid crystal tubule network we observed distributed throughout the differentiated embryoid bodies may function as a transportation network for nutrients and metabolic waste during EB growth, and act as a precursor to the vascular system. This observation not only reveals the involvement of liquid crystals earlier than previously known, but also provides a method for studying liquid crystals in vitro.
Collapse
Affiliation(s)
- MengMeng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708 USA
| | - Odell D. Jones
- University of Pennsylvania ULAR, Philadelphia, PA 19144 USA
| | - Liyang Wang
- The Laboratory of Cell Genetics and Developmental Biology (CGDB), Shaanxi Normal University College of Life Sciences, Xi’an, 710062 Shaanxi People’s Republic of China
| | - Xin Zhou
- The Laboratory of Cell Genetics and Developmental Biology (CGDB), Shaanxi Normal University College of Life Sciences, Xi’an, 710062 Shaanxi People’s Republic of China
| | - Harry G. Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH 43210 USA
| | | | - Xuehong Xu
- The Laboratory of Cell Genetics and Developmental Biology (CGDB), Shaanxi Normal University College of Life Sciences, Xi’an, 710062 Shaanxi People’s Republic of China
| |
Collapse
|
8
|
Kang HY, Kang S, AnJin Y, Jeung EB. Assessment of neural toxicity for pharmacological compounds in hESCs. Reprod Toxicol 2016. [DOI: 10.1016/j.reprotox.2016.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T, Leist M, Kobolák J, Dinnyés A. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 2016; 91:1-33. [PMID: 27492622 DOI: 10.1007/s00204-016-1805-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
Abstract
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Collapse
Affiliation(s)
- Béla Z Schmidt
- BioTalentum Ltd., Gödöllő, Hungary.,Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Martin Lehmann
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Erastus Nembo
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Forsby
- Swedish Toxicology Research Center (Swetox), Södertälje, Sweden.,Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary. .,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100, Hungary.
| |
Collapse
|
10
|
Handral HK, Tong HJ, Islam I, Sriram G, Rosa V, Cao T. Pluripotent stem cells: An in vitro model for nanotoxicity assessments. J Appl Toxicol 2016; 36:1250-8. [PMID: 27241574 DOI: 10.1002/jat.3347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/18/2022]
Abstract
The advent of technology has led to an established range of engineered nanoparticles that are used in diverse applications, such as cell-cell interactions, cell-material interactions, medical therapies and the target modulation of cellular processes. The exponential increase in the utilization of nanomaterials and the growing number of associated criticisms has highlighted the potential risks of nanomaterials to human health and the ecosystem. The existing in vivo and in vitro platforms show limitations, with fluctuations being observed in the results of toxicity assessments. Pluripotent stem cells (PSCs) are viable source of cells that are capable of developing into specialized cells of the human body. PSCs can be efficiently used to screen new biomaterials/drugs and are potential candidates for studying impairments of biophysical morphology at both the cellular and tissue levels during interactions with nanomaterials and for diagnosing toxicity. Three-dimensional in vitro models obtained using PSC-derived cells would provide a realistic, patient-specific platform for toxicity assessments and in drug screening applications. The current review focuses on PSCs as an alternative in vitro platform for assessing the hazardous effects of nanomaterials on health systems and highlights the importance of PSC-derived in vitro platforms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Harish K Handral
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Huei Jinn Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Intekhab Islam
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Experimental Dermatology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vinicus Rosa
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Tong Cao
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore.,National University of Singapore, Graduate School for Integrative Sciences and Engineering, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
11
|
High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling. PLoS One 2016; 11:e0148819. [PMID: 26859149 PMCID: PMC4747557 DOI: 10.1371/journal.pone.0148819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/22/2016] [Indexed: 02/02/2023] Open
Abstract
Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However, insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs), which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore, we investigated the effects of sodium fluoride (NaF) on the proliferation, differentiation and viability of H9 hESCs. For the first time, we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology, mitochondrial membrane potential (MMP), caspase activities, cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway, coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a p-JNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.
Collapse
|
12
|
Du L, Sun W, Zhang H, Chen D. BDE-209 inhibits pluripotent genes expression and induces apoptosis in human embryonic stem cells. J Appl Toxicol 2015. [PMID: 26206603 DOI: 10.1002/jat.3195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Decabromodiphenyl ether (BDE-209) has been detected in human serum, semen, placenta, cord blood and milk worldwide. However, little is known regarding the potential effects on the early human embryonic development of BDE-209. In this study, human embryonic stem cell lines FY-hES-10 and FY-hES-26 were used to evaluate the potential effects and explore the toxification mechanisms using low-level BDE-209 exposure. Our data showed that BDE-209 exposure (1, 10 and 100 nM) reduced the expression of pluripotent genes such as OCT4, SOX2 and NANOG and induced human embryonic stem cells (hESCs) apoptosis. The downregulation of BIRC5/BCL2 and upregulation of BAX were related to apoptosis of hESCs induced by BDE-209 exposure. A mechanism study showed that OCT4 down-regulation accompanied by OCT4 promoter hypermethylation and increasing miR-145/miR-335 levels, OCT4 inhibitors. Moreover, BDE-209 could increase the generation of intracellular reactive oxygen species (ROS) and decrease SOD2 expression. The ROS increase and OCT4 downregulation after BDE-209 exposure could be reversed partly by antioxidant N-acetylcysteine supplement. These findings showed that BDE-209 exposure could decrease pluripotent genes expression via epigenetic regulation and induce apoptosis through ROS generation in human embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Lili Du
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of, China
| | - Wen Sun
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of, China
| | - Huili Zhang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of, China
| |
Collapse
|
13
|
Manganelli G, Masullo U, Filosa S. HTS/HCS to screen molecules able to maintain embryonic stem cell self-renewal or to induce differentiation: overview of protocols. Stem Cell Rev Rep 2015; 10:802-19. [PMID: 25007774 DOI: 10.1007/s12015-014-9528-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem (ES) cells, combining self-renewal ability with wide range tissue-specific cell differentiation, represent one of the most powerful model systems in basic research, drug discovery and biomedical applications. In the field of drug development, ES cells are instrumental in high-throughput/content screening (HTS/HCS) for the evaluation of large compound libraries to test biological activity and toxic properties. Since it is a high priority to test new compounds in vitro, before starting animal and human treatments, there is an increasing demand for new in vitro models that can be used in HTS/HCS to facilitate drug development. In order to achieve this objective, several methods for ES cell self-renewal or differentiation have been evaluated to assess their compatibility with HTS/HCS. This review describes protocols used to screen molecules able to maintain self-renewal or to induce differentiation in ectodermal, mesodermal, endodermal, and their derivative cell lines.
Collapse
Affiliation(s)
- Genesia Manganelli
- Istituto di Bioscienze e BioRisorse , UOS Napoli -CNR, Via Pietro Castellino 111, 80131, Naples, Italy,
| | | | | |
Collapse
|
14
|
Hong EJ, Jeung EB. Assessment of Developmental Toxicants using Human Embryonic Stem Cells. Toxicol Res 2014; 29:221-7. [PMID: 24578791 PMCID: PMC3936173 DOI: 10.5487/tr.2013.29.4.221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 01/16/2023] Open
Abstract
Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.
Collapse
Affiliation(s)
- Eui-Ju Hong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
15
|
Jung EM, Choi YU, Kang HS, Yang H, Hong EJ, An BS, Yang JY, Choi KH, Jeung EB. Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol 2014; 35:205-18. [PMID: 24737281 DOI: 10.1002/jat.3010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/23/2022]
Abstract
An embryonic stem cell test (EST) has been developed to evaluate the embryotoxic potential of chemicals with an in vitro system. In the present study, novel methods to screen toxic chemicals during the developmental process were evaluated using undifferentiated human embryonic stem (hES) cells. By using surface marker antigens (SSEA-4, TRA-1-60 and TRA-1-81), we confirmed undifferentiated conditions of the used hES cells by immunocytochemistry. We assessed the developmental toxicity of embryotoxic chemicals, 5-fluorouracil, indomethacin and non-embryotoxic penicillin G in different concentrations for up to 7 days. While expressions of the surface markers were not significantly affected, the embryotoxic chemicals influenced their response to pluripotent ES cell markers, such as OCT-4, NANOG, endothelin receptor type B (EDNRB), secreted frizzled related protein 2 (SFRP2), teratocarcinoma-derived growth factor 1 (TDGF1), and phosphatase and tensin homolog (PTEN). Most of the pluripotent ES cell markers were down-regulated in a dose-dependent manner after treatment with embryotoxic chemicals. After treatment with 5-fluorouracil, indomethacin and penicillin G, we observed a remarkable convergence in the degree of up-regulation of development, cell cycle and apoptosis-related genes by gene expression profiles using an Affymetrix GeneChips. Taken together, these results suggest that embryotoxic chemicals have cytotoxic effects, and modulate the expression of ES cell markers as well as development-, cell cycle- and apoptosis-related genes that have pivotal roles in undifferentiated hES cells. Therefore, we suggest that hES cells may be useful for testing the toxic effects of chemicals that could impact the embryonic developmental stage.
Collapse
Affiliation(s)
- Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Effect of low dose bisphenol A on the early differentiation of human embryonic stem cells into mammary epithelial cells. Toxicol Lett 2013; 218:187-93. [PMID: 23391485 DOI: 10.1016/j.toxlet.2013.01.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 02/08/2023]
Abstract
It has been previously reported that bisphenol A (BPA) can disturb the development of mammary structure and increase the risk of breast cancer in experimental animals. In this study, an in vitro model of human embryonic stem cell (hESC) differentiation into mammary epithelial cells was applied to investigate the effect of low dose BPA on the early stages of mammogenesis. A newly established hESC line was directionally differentiated into mammary epithelial cells by a well-established three-dimensional (3D) culture system. The differentiated mammary epithelial cells were characterized by immunofluorescence and western blotting assay, and were called induced differentiated mammary epithelial cells (iDMECs) based on these data. The hESCs were treated with low doses of BPA range 10(-9)-10(-6)M during the differentiation process, with DMSO as the solvent control and 17-β-estrodiol (E2) as the estrogen-positive control. Our results showed that low dose BPA and E2 could influence the mammosphere area of iDMECs and upregulate the expression level of Oct4 and Nanog proteins, while only BPA could downregulate the expression of E-cadherin protein. Taken together, this study provides some insights into the effects of low dose BPA on the early differentiation stage of mammary epithelial cells and suggests an easier canceration status of iDMECs under the effect of low dose BPA during its early differentiation stage.
Collapse
|
17
|
Schrattenholz A, Šoškić V, Schöpf R, Poznanović S, Klemm-Manns M, Groebe K. Protein biomarkers for in vitro testing of toxicology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 746:113-23. [DOI: 10.1016/j.mrgentox.2012.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/14/2022]
|
18
|
Behar RZ, Bahl V, Wang Y, Lin S, Xu N, Davis B, Talbot P. A method for rapid dose-response screening of environmental chemicals using human embryonic stem cells. J Pharmacol Toxicol Methods 2012; 66:238-45. [PMID: 22820057 DOI: 10.1016/j.vascn.2012.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/05/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Human embryonic stem cells (hESC) provide an invaluable model for assessing the effects of environmental chemicals and drugs on human prenatal development. However, hESC are difficult to adapt to 96-well plate screening assays, because they survive best when plated as colonies, which are difficult to count and plate accurately. The purpose of this study is to present an experimental method and analysis procedure to accomplish reliable screening of toxicants using hESC. METHODS We present a method developed to rapidly and easily determine the number of cells in small colonies of hESC spectrophotometerically and then accurately dispense equivalent numbers of cells in 96-well plates. The MTT assay was used to evaluate plating accuracy, and the method was tested using known toxicants. RESULTS The quality of the plate set-up and analysis procedure was evaluated with NIH plate validation and assessment software. All statistical parameters measured by the software were acceptable, and no drift or edge effects were observed. The 96-well plate MTT assay with hESC was tested by performing a dose-response screen of commercial products, which contain a variety of chemicals. The screen was done using single wells/dose, and the reliability of this method was demonstrated in a subsequent screen of the same products repeated three times. The single and triple screens were in good agreement, and NOAELs and IC(50)s could be determined from the single screen. The effects of vapor from volatile chemicals were studied, and methods to monitor and avoid vapor effects were incorporated into the assay. DISCUSSION Our method overcomes the difficulty of using hESC for reliable quantitative 96-well plate assays. It enables rapid dose-response screening using equipment that is commonly available in laboratories that culture hESC. This method could have a broad application in studies of environmental chemicals and drugs using hESC as models of prenatal development.
Collapse
Affiliation(s)
- R Z Behar
- Stem Cell Center and Core, Department of Cell Biology & Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Wu Z, Li H, Rao L, He L, Bao L, Liao J, Cui C, Zuo Z, Li Q, Dai H, Qian L, Tian Q, Xiao L, Tan X. Derivation and characterization of human embryonic stem cell lines from the Chinese population. J Genet Genomics 2011; 38:13-20. [PMID: 21338948 DOI: 10.1016/j.jcg.2010.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 12/31/2022]
Abstract
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population, but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes. The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.
Collapse
Affiliation(s)
- Zhao Wu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Cell Bank, Stem Cell Bank, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Inselman AL, Hansen DK, Lee HY, Nakamura N, Ning B, Monteiro JP, Varma V, Kaput J. Assessment of research models for testing gene-environment interactions. Eur J Pharmacol 2011; 668 Suppl 1:S108-16. [PMID: 21816149 DOI: 10.1016/j.ejphar.2011.05.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 12/16/2022]
Abstract
Throughout the last century, possible effects of exposure to toxicants, nutrients or drugs were examined primarily by studies of groups or populations. Individual variation in responses was acknowledged but could not be analyzed due to lack of information or tools to analyze individual genetic make-ups and lifestyle factors such as diet and activity. The Human Genome, Haplotype Map, 1000Genomes, and Human Variome Projects are identifying and cataloging the variation found within humans. Advances in DNA sequencing technologies will soon permit the characterization of individual genomes in clinical and basic research studies, thus allowing associations to be made between an individual genotype and the response to a particular exposure. Such knowledge and tools have generated a significant challenge for scientists: to design and conduct research studies that account for individual genetic variation. However, before these studies are done in humans, they will be performed in various in vivo and in vitro models. The advantages and disadvantages of some of the model test systems that are being used or developed in relation to individual genetic make-up and responses to xenobiotics are discussed.
Collapse
Affiliation(s)
- Amy L Inselman
- Division of Personalized Nutrition and Medicine, NCTR/FDA, 3900 NCTR Rd., Jefferson, AR 72079, United States.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pachkowski BF, Guyton KZ, Sonawane B. DNA repair during in utero development: A review of the current state of knowledge, research needs, and potential application in risk assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 728:35-46. [DOI: 10.1016/j.mrrev.2011.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/29/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
22
|
Pal R, Mamidi MK, Kumar Das A, Bhonde R. Human embryonic stem cell proliferation and differentiation as parameters to evaluate developmental toxicity. J Cell Physiol 2011; 226:1583-95. [DOI: 10.1002/jcp.22484] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|