1
|
Chen L, Phillips MI, Miao HL, Zeng R, Qin G, Kim IM, Weintraub NL, Tang Y. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts. PLoS One 2014; 9:e107841. [PMID: 25357000 PMCID: PMC4214633 DOI: 10.1371/journal.pone.0107841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/10/2014] [Indexed: 01/10/2023] Open
Abstract
Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy’s success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry), have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs) by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF) using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - M. Ian Phillips
- Keck Graduate Institute, Claremont, California, United States of America
| | - Hui-Lai Miao
- Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Rong Zeng
- Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Il-man Kim
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Neal L. Weintraub
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yaoliang Tang
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
2
|
Wang Y, Zhou M, Wang X, Qin G, Weintraub NL, Tang Y. Assessing in vitro stem-cell function and tracking engraftment of stem cells in ischaemic hearts by using novel iRFP gene labelling. J Cell Mol Med 2014; 18:1889-94. [PMID: 24912616 PMCID: PMC4162818 DOI: 10.1111/jcmm.12321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022] Open
Abstract
Near-infrared fluorescence (NIRF) imaging by using infrared fluorescent protein (iRFP) gene labelling is a novel technology with potential value for in vivo applications. In this study, we expressed iRFP in mouse cardiac progenitor cells (CPC) by lentiviral vector and demonstrated that the iRFP-labelled CPC (CPC(iRFP)) can be detected by flow cytometry and fluorescent microscopy. We observed a linear correlation in vitro between cell numbers and infrared signal intensity by using the multiSpectral imaging system. CPC(iRFP) injected into the non-ischaemic mouse hindlimb were also readily detected by whole-animal NIRF imaging. We then compared iRFP against green fluorescent protein (GFP) for tracking survival of engrafted CPC in mouse ischaemic heart tissue. GFP-labelled CPC (CPC(GFP)) or CPC labelled with both iRFP and GFP (CPC(iRFP) (GFP)) were injected intramyocardially into mouse hearts after infarction. Three days after cell transplantation, a strong NIRF signal was detected in hearts into which CPC(iRFP) (GFP), but not CPC(GFP), were transplanted. Furthermore, iRFP fluorescence from engrafted CPC(iRFP) (GFP) was detected in tissue sections by confocal microscopy. In conclusion, the iRFP-labelling system provides a valuable molecular imaging tool to track the fate of transplanted progenitor cells in vivo.
Collapse
Affiliation(s)
- Yingjie Wang
- Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese MedicineShanghai, China
- Department of Medicine, University of CincinnatiCincinnati, OH, USA
| | - Mi Zhou
- Department of Medicine, University of CincinnatiCincinnati, OH, USA
- Department of Cardiac Surgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaolong Wang
- Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Neal L Weintraub
- Department of Medicine, University of CincinnatiCincinnati, OH, USA
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Georgia Regents UniversityAugusta, GA, USA
| | - Yaoliang Tang
- Department of Medicine, University of CincinnatiCincinnati, OH, USA
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Georgia Regents UniversityAugusta, GA, USA
| |
Collapse
|
3
|
Assmann A, Heke M, Kröpil P, Ptok L, Hafner D, Ohmann C, Martens A, Karluß A, Emmert MY, Kutschka I, Sievers HH, Klein HM. Laser-supported CD133+ cell therapy in patients with ischemic cardiomyopathy: initial results from a prospective phase I multicenter trial. PLoS One 2014; 9:e101449. [PMID: 25000346 PMCID: PMC4084817 DOI: 10.1371/journal.pone.0101449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives This study evaluates the safety, principal feasibility and restoration potential of laser-supported CD133+ intramyocardial cell transplantation in patients with ischemic cardiomyopathy. Methods Forty-two patients with severe ischemic cardiomyopathy (left ventricular ejection fraction (LVEF) >15% and <35%) were included in this prospective multicenter phase I trial. They underwent coronary artery bypass grafting (CABG) with subsequent transepicardial low-energy laser treatment and autologous CD133+ cell transplantation, and were followed up for 12 months. To evaluate segmental myocardial contractility as well as perfusion and to identify the areas of scar tissue, cardiac MRI was performed at 6 months and compared to the preoperative baseline. In addition, clinical assessment comprising of CCS scoring, blood and physical examination was performed at 3, 6 and 12 months, respectively. Results Intraoperative cell isolation resulted in a mean cell count of 9.7±1.2×106. Laser treatment and subsequent CD133+ cell therapy were successfully and safely carried out in all patients and no procedure-related complications occurred. At 6 months, the LVEF was significantly increased (29.7±1.9% versus 24.6±1.5% with p = 0.004). In addition, freedom from angina was achieved, and quality of life significantly improved after therapy (p<0.0001). Interestingly, an extended area of transmural delayed enhancement (>3 myocardial segments) determined in the preoperative MRI was inversely correlated with a LVEF increase after laser-supported cell therapy (p = 0.024). Conclusions This multicenter trial demonstrates that laser-supported CD133+ cell transplantation is safe and feasible in patients with ischemic cardiomyopathy undergoing CABG, and in most cases, it appears to significantly improve the myocardial function. Importantly, our data show that the beneficial effect was significantly related to the extent of transmural delayed enhancement, suggesting that MRI-guided selection of patients is mandatory to ensure the effectiveness of the therapy. Trial Registration: EudraCT 2005-004051-35) Controlled-Trials.com ISRCTN49998633
Collapse
Affiliation(s)
- Alexander Assmann
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- Research Group for Experimental Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael Heke
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- Research Group for Experimental Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Patric Kröpil
- Department of Diagnostic and Interventional Radiology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Lena Ptok
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Dieter Hafner
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Christian Ohmann
- Coordination Centre for Clinical Trials, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Andreas Martens
- Clinic for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Karluß
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Maximilian Y. Emmert
- Clinic for Cardiac and Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ingo Kutschka
- Clinic for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Hans-Hinrich Sievers
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Hans-Michael Klein
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
4
|
Song L, Yang YJ, Dong QT, Qian HY, Gao RL, Qiao SB, Shen R, He ZX, Lu MJ, Zhao SH, Geng YJ, Gersh BJ. Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase. PLoS One 2013; 8:e65702. [PMID: 23741509 PMCID: PMC3669282 DOI: 10.1371/journal.pone.0065702] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/26/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In a swine model of acute myocardial infarction (AMI), Statins can enhance the therapeutic efficacy of mesenchymal stem cell (MSCs) transplantation. However, the mechanisms remain unclear. This study aims at assessing whether atorvastatin (Ator) facilitates the effects of MSCs through activation of nitric oxide synthase (NOS), especially endothelial nitric oxide synthase (eNOS), which is known to protect against ischemic injury. METHODS AND RESULTS 42 miniswines were randomized into six groups (n = 7/group): Sham operation; AMI control; Ator only; MSC only, Ator+MSCs and Ator+MSCs+NG-nitrol-L-arginine (L-NNA), an inhibitor of NOS. In an open-heart surgery, swine coronary artery ligation and reperfusion model were established, and autologous bone-marrow MSCs were injected intramyocardium. Four weeks after transplantation, compared with the control group, Ator+MSCs animals exhibited decreased defect areas of both "perfusion" defined by Single-Photon Emission Computed Tomography (-6.2±1.8% vs. 2.0±5.1%, P = 0.0001) and "metabolism" defined by Positron Emission Tomography (-3.00±1.41% vs. 4.20±4.09%, P = 0.0004); Ejection fraction by Magnetic Resonance Imaging increased substantially (14.22±12.8% vs. 1.64±2.64%, P = 0.019). In addition, indices of inflammation, fibrosis, and apoptosis were reduced and survivals of MSCs or MSC-derived cells were increased in Ator+MSCs animals. In Ator or MSCs alone group, perfusion, metabolism, inflammation, fibrosis or apoptosis were reduced but there were no benefits in terms of heart function and cell survival. Furthermore, the above benefits of Ator+MSCs treatment could be partially blocked by L-NNA. CONCLUSIONS Atorvastatin facilitates survival of implanted MSCs, improves function and morphology of infarcted hearts, mediated by activation of eNOS and alleviated by NOS inhibitor. The data reveal the cellular and molecular mechanism for anti-AMI therapy with a combination of statin and stem cells.
Collapse
Affiliation(s)
- Lei Song
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital and Cardiovascular Institute, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
La Francesca S. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications. Methodist Debakey Cardiovasc J 2012; 8:28-35. [PMID: 22891108 DOI: 10.14797/mdcj-8-1-28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Saverio La Francesca
- Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
6
|
Wood MFG, Ghosh N, Wallenburg MA, Li SH, Weisel RD, Wilson BC, Li RK, Vitkin IA. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:047009. [PMID: 20799840 DOI: 10.1117/1.3469844] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Myocardial infarction leads to structural remodeling of the myocardium, in particular to the loss of cardiomyocytes due to necrosis and an increase in collagen with scar formation. Stem cell regenerative treatments have been shown to alter this remodeling process, resulting in improved cardiac function. As healthy myocardial tissue is highly fibrous and anisotropic, it exhibits optical linear birefringence due to the different refractive indices parallel and perpendicular to the fibers. Accordingly, changes in myocardial structure associated with infarction and treatment-induced remodeling will alter the anisotropy exhibited by the tissue. Polarization-based linear birefringence is measured on the myocardium of adult rat hearts after myocardial infarction and compared with hearts that had received mesenchymal stem cell treatment. Both point measurement and imaging data show a decrease in birefringence in the region of infarction, with a partial rebound back toward the healthy values following regenerative treatment with stem cells. These results demonstrate the ability of optical polarimetry to characterize the micro-organizational state of the myocardium via its measured anisotropy, and the potential of this approach for monitoring regenerative treatments of myocardial infarction.
Collapse
Affiliation(s)
- Michael F G Wood
- Ontario Cancer Institute, Division of Biophysics and Bioimaging, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li SC, Tachiki LML, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev Rep 2010; 6:317-33. [PMID: 20237964 PMCID: PMC2887536 DOI: 10.1007/s12015-010-9130-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology--survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County Research Institute, University of California Irvine, 455 South Main Street, Orange, CA 92868, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Bursac N, Kirkton RD, McSpadden LC, Liau B. Characterizing functional stem cell-cardiomyocyte interactions. Regen Med 2010; 5:87-105. [PMID: 20017697 DOI: 10.2217/rme.09.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite the progress in traditional pharmacological and organ transplantation therapies, heart failure still afflicts 5.3 million Americans. Since June 2000, stem cell-based approaches for the prevention and treatment of heart failure have been pursued in clinics with great excitement; however, the exact mechanisms of how transplanted cells improve heart function remain elusive. One of the main difficulties in answering these questions is the limited ability to directly access and study interactions between implanted cells and host cardiomyocytes in situ. With the growing number of candidate cell types for potential clinical use, it is becoming increasingly more important to establish standardized, well-controlled in vitro and in situ assays to compare the efficacy and safety of different stem cells in cardiac repair. This article describes recent innovative methodologies to characterize direct functional interactions between stem cells and cardiomyocytes, aimed to facilitate the rational design of future cell-based therapies for heart disease.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
9
|
Wilson BC, Vitkin IA, Matthews DL. The potential of biophotonic techniques in stem cell tracking and monitoring of tissue regeneration applied to cardiac stem cell therapy. JOURNAL OF BIOPHOTONICS 2009; 2:669-681. [PMID: 19787683 DOI: 10.1002/jbio.200910079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The use of injected stem cells, leading to regeneration of ischemic heart tissue, for example, following coronary artery occlusion, has emerged as a major new option for managing 'heart attack' patients. While some clinical trials have been encouraging, there have also been failures and there is little understanding of the multiplicity of factors that lead to the outcome. In this overview paper, the opportunities and challenges in applying biophotonic techniques to regenerative medicine, exemplified by the challenge of stem cell therapy of ischemic heart disease, are considered. The focus is on optical imaging to track stem cell distribution and fate, and optical spectroscopies and/or imaging to monitor the structural remodeling of the tissue and the resulting functional changes. The scientific, technological, and logistics issues involved in moving some of these techniques from pre-clinical research mode ultimately into the clinic are also highlighted.
Collapse
Affiliation(s)
- Brian C Wilson
- Division of Biophysics and Bioimaging, University Health Network, 610 University Ave., Toronto, ON M5G 2M9, Canada.
| | | | | |
Collapse
|