1
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
2
|
Cha B, Kim J, Bello A, Lee G, Kim D, Kim BJ, Arai Y, Choi B, Park H, Lee S. Efficient Isolation and Enrichment of Mesenchymal Stem Cells from Human Embryonic Stem Cells by Utilizing the Interaction between Integrin α5 β1 and Fibronectin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001365. [PMID: 32995130 PMCID: PMC7507081 DOI: 10.1002/advs.202001365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a potent source of clinically relevant mesenchymal stem cells (MSCs) that confer functional and structural benefits in cell therapy and tissue regeneration. Obtaining sufficient numbers of MSCs in a short period of time and enhancing the differentiation potential of MSCs can be offered the potential to improve the regenerative activity of MSCs therapy. In addition, the underlying processes in the isolation and derivation of MSCs from hPSCs are still poorly understood and controlled. To overcome these clinical needs, an efficient and simplified technique on the isolation of MSCs from spontaneously differentiated human embryonic stem cells (hESCs) via integrin α5β1 (fibronectin (FN) receptor)-to-FN interactions (hESC-FN-MSCs) is successfully developed. It is demonstrated that hESC-FN-MSCs exhibit a typical MSC surface phenotype, cellular morphology, with the whole transcriptome similar to conventional adult MSCs; but show higher proliferative capacity, more efficient trilineage differentiation, enhanced cytokine secretion, and attenuated cellular senescence. In addition, the therapeutic potential and regenerative capacity of the isolated hESC-FN-MSCs are confirmed by in vitro and in vivo multilineage differentiation. This novel method will be useful in the generation of abundant amounts of clinically relevant MSCs for stem cell therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Byung‐Hyun Cha
- Division of Cardio‐Thoracic SurgeryDepartment of SurgeryCollege of MedicineUniversity of ArizonaTucsonAZ85724USA
| | - Jin‐Su Kim
- CellenGene R&D CenterOpen Innovation BuildingSeoul02455Republic of Korea
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Alvin Bello
- Department of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Geun‐Hui Lee
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Do‐Hyun Kim
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Byoung Ju Kim
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Yoshie Arai
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Bogyu Choi
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Hansoo Park
- Department of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Soo‐Hong Lee
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| |
Collapse
|
3
|
Daou R, Beißbarth T, Wingender E, Gültas M, Haubrock M. Constructing temporal regulatory cascades in the context of development and cell differentiation. PLoS One 2020; 15:e0231326. [PMID: 32275727 PMCID: PMC7147753 DOI: 10.1371/journal.pone.0231326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/20/2020] [Indexed: 12/02/2022] Open
Abstract
Cell differentiation is a complex process orchestrated by sets of regulators precisely appearing at certain time points, resulting in regulatory cascades that affect the expression of broader sets of genes, ending up in the formation of different tissues and organ parts. The identification of stage-specific master regulators and the mechanism by which they activate each other is a key to understanding and controlling differentiation, particularly in the fields of tissue regeneration and organoid engineering. Here we present a workflow that combines a comprehensive general regulatory network based on binding site predictions with user-provided temporal gene expression data, to generate a a temporally connected series of stage-specific regulatory networks, which we call a temporal regulatory cascade (TRC). A TRC identifies those regulators that are unique for each time point, resulting in a cascade that shows the emergence of these regulators and regulatory interactions across time. The model was implemented in the form of a user-friendly, visual web-tool, that requires no expert knowledge in programming or statistics, making it directly usable for life scientists. In addition to generating TRCs the tool links multiple interactive visual workflows, in which a user can track and investigate further different regulators, target genes, and interactions, directing the tool along the way into biologically sensible results based on the given dataset. We applied the TRC model on two different expression datasets, one based on experiments conducted on human induced pluripotent stem cells (hiPSCs) undergoing differentiation into mature cardiomyocytes and the other based on the differentiation of H1-derived human neuronal precursor cells. The model was successful in identifying previously known and new potential key regulators, in addition to the particular time points with which these regulators are associated, in cardiac and neural development.
Collapse
Affiliation(s)
- Rayan Daou
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goettingen, Niedersachsen, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goettingen, Niedersachsen, Germany
| | - Edgar Wingender
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goettingen, Niedersachsen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Science, Georg-August University, Goettingen, Niedersachsen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Goettingen, Niedersachsen, Germany
| | - Martin Haubrock
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goettingen, Niedersachsen, Germany
- * E-mail:
| |
Collapse
|
4
|
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve 2019; 61:449-459. [PMID: 31725911 DOI: 10.1002/mus.26760] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell-based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theodore A Kung
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Seciu AM, Craciunescu O, Stanciuc AM, Zarnescu O. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering. Stem Cells Dev 2019; 28:963-973. [PMID: 31020906 DOI: 10.1089/scd.2019.0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several therapeutic strategies are currently in development for severe periodontitis and other associated chronic inflammatory diseases. Guided tissue regeneration of the periodontium is based on surgical implantation of natural or synthetic polymers conditioned as membranes, injectable biomaterials (hydrogels), or three-dimensional (3D) matrices. Combinations of biomaterials with bioactive factors represent the next generation of regenerative strategy. Cell delivery strategy based on scaffold-cell constructs showed potential in periodontitis treatment. Bioengineering of periodontal tissues using cell sheets and genetically modified stem cells is currently proposed to complete existing (pre)clinical procedures for periodontal regeneration. 3D structures can be built using computer-assisted manufacturing technologies to improve the implant architecture effect on new tissue formation. The aim of this review was to summarize the advantages and drawbacks of biomimetic composite matrices used as biomaterials for periodontal tissue engineering. Their conditioning as two-dimensional or 3D scaffolds using conventional or emerging technologies was also discussed. Further biotechnologies are required for developing novel products tailored to stimulate periodontal regeneration. Additional preclinical studies will be useful to closely investigate the mechanisms and identify specific markers involved in cell-implant interactions, envisaging further clinical tests. Future therapeutic protocols will be developed based on these novel procedures and techniques.
Collapse
Affiliation(s)
- Ana-Maria Seciu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Oana Craciunescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Ana-Maria Stanciuc
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Otilia Zarnescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
6
|
Kang S, Chen X, Gong S, Yu P, Yau S, Su Z, Zhou L, Yu J, Pan G, Shi L. Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci Rep 2017; 7:12233. [PMID: 28947763 PMCID: PMC5612987 DOI: 10.1038/s41598-017-12452-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into neural progenitor cells (NPC) under proper conditions. NPC can be used as a model and is a useful tool for disease mechanism exploration and drug screening. However, the characteristics of the cells in various stages from NPC to functional neurons have not been fully described. This study investigated the characteristics of iPSC-derived NPCs during differentiation. Morphological characteristics of the NPCs, including soma area, neurite length, and the number of neurite branches, were examined on selected differentiation days. Physiological functions were assessed by recordings of sodium current, spontaneous excitatory postsynaptic current (sEPSC), and spontaneous inhibitory postsynaptic current (sIPSC). Furthermore, gene expression patterns were assessed with RNA-seq. We found that NPCs derived from iPSCs can be differentiated into glutamatergic and gabaergic neurons. Cell growth peaked during differentiation day 7–12, as the soma area decreased after day 12, growth cone and the number of branches peaked at day 9 and decreased afterwards; whereas a functional synapse formed after day 23. RNA-seq analysis found that a differential expression pattern emerged by day 7. Overall, the study provides a framework for the differentiation process of hiPSC-derived NPCs.
Collapse
Affiliation(s)
- Sai Kang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Xiaoxia Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Siyi Gong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - SukYu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Zhenghui Su
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Jiandong Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China.
| | - Guangjin Pan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Lingling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
7
|
Engel M, Do-Ha D, Muñoz SS, Ooi L. Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci 2016; 73:3693-709. [PMID: 27154043 PMCID: PMC5002043 DOI: 10.1007/s00018-016-2265-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells and embryonic stem cells have revolutionized cellular neuroscience, providing the opportunity to model neurological diseases and test potential therapeutics in a pre-clinical setting. The power of these models has been widely discussed, but the potential pitfalls of stem cell differentiation in this research are less well described. We have analyzed the literature that describes differentiation of human pluripotent stem cells into three neural cell types that are commonly used to study diseases, including forebrain cholinergic neurons for Alzheimer's disease, midbrain dopaminergic neurons for Parkinson's disease and cortical astrocytes for neurodegenerative and psychiatric disorders. Published protocols for differentiation vary widely in the reported efficiency of target cell generation. Additionally, characterization of the cells by expression profile and functionality differs between studies and is often insufficient, leading to highly variable protocol outcomes. We have synthesized this information into a simple methodology that can be followed when performing or assessing differentiation techniques. Finally we propose three considerations for future research, including the use of physiological O2 conditions, three-dimensional co-culture systems and microfluidics to control feeding cycles and growth factor gradients. Following these guidelines will help researchers to ensure that robust and meaningful data is generated, enabling the full potential of stem cell differentiation for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Dzung Do-Ha
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
8
|
Stem cell-based approaches to improve nerve regeneration: potential implications for reconstructive transplantation? Arch Immunol Ther Exp (Warsz) 2014; 63:15-30. [PMID: 25428664 DOI: 10.1007/s00005-014-0323-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
Reconstructive transplantation has become a viable option to restore form and function after devastating tissue loss. Functional recovery is a key determinant of overall success and critically depends on the quality and pace of nerve regeneration. Several molecular and cell-based therapies have been postulated and tested in pre-clinical animal models to enhance nerve regeneration. Schwann cells remain the mainstay of research focus providing neurotrophic support and signaling cues for regenerating axons. Alternative cell sources such as mesenchymal stem cells and adipose-derived stromal cells have also been tested in pre-clinical animal models and in clinical trials due to their relative ease of harvest, rapid expansion in vitro, minimal immunogenicity, and capacity to integrate and survive within host tissues, thereby overcoming many of the challenges faced by culturing of human Schwann cells and nerve allografting. Induced pluripotent stem cell-derived Schwann cells are of particular interest since they can provide abundant, patient-specific autologous Schwann cells. The majority of experimental evidence on cell-based therapies, however, has been generated using stem cell-seeded nerve guides that were developed to enhance nerve regeneration across "gaps" in neural repair. Although primary end-to-end repair is the preferred method of neurorrhaphy in reconstructive transplantation, mechanistic studies elucidating the principles of cell-based therapies from nerve guidance conduits will form the foundation of further research employing stem cells in end-to-end repair of donor and recipient nerves. This review presents key components of nerve regeneration in reconstructive transplantation and highlights the pre-clinical studies that utilize stem cells to enhance nerve regeneration.
Collapse
|
9
|
Liu Y, Fu S, Rahaman MN, Mao JJ, Bal BS. Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration. J Biomed Mater Res A 2014; 103:1053-9. [PMID: 24889905 DOI: 10.1002/jbm.a.35243] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022]
Abstract
Native porcine nucleus pulposus (NP) tissue harbors a number of notochordal cells (NCs). Whether the native NP matrix supports the homeostasis of notochordal cells is poorly understood. We hypothesized the NP matrix alone may contain sufficient regulatory factors and can serve as stimuli to generate notochordal cells (NCs) from human pluripotent stem cells. NCs are a promising cell sources for cell-based therapy to treat some types of intervertebral disc (IVD) degeneration. One major limitation of this emerging technique is the lack of available NCs as a potential therapeutic cell source. Human pluripotent stem cells derived from reprogramming or somatic cell nuclear transfer technique may yield stable and unlimited source for therapeutic use. We devised a new method to use porcine NP matrix to direct notochordal differentiation of human induced pluripotent stem cells (hiPSCs). The results showed that hiPSCs successfully differentiated into NC-like cells under the influence of devitalized porcine NP matrix. The NC-like cells expressed typical notochordal marker genes including brachyury (T), cytokeratin-8 (CK-8) and cytokeratin-18 (CK-18), and they displayed the ability to generate NP-like tissue in vitro, which was rich in aggrecan and collagen type II. These findings demonstrated the proof of concept for using native NP matrix to direct notochordal differentiation of hiPSCs. It provides a foundation for further understanding the biology of NCs, and eventually towards regenerative therapies for disc degeneration.
Collapse
Affiliation(s)
- Yongxing Liu
- Center for Bone and Tissue Repair and Regeneration, and Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, 65409; Innovative Elements LLC, New York, New York, 10032
| | | | | | | | | |
Collapse
|
10
|
On-chip in vitro cell-network pre-clinical cardiac toxicity using spatiotemporal human cardiomyocyte measurement on a chip. Sci Rep 2014; 4:4670. [PMID: 24751527 PMCID: PMC5381194 DOI: 10.1038/srep04670] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 03/24/2014] [Indexed: 11/09/2022] Open
Abstract
To overcome the limitations and misjudgments of conventional prediction of arrhythmic cardiotoxicity, we have developed an on-chip in vitro predictive cardiotoxicity assay using cardiomyocytes derived from human stem cells employing a constructive spatiotemporal two step measurement of fluctuation (short-term variability; STV) of cell's repolarization and cell-to-cell conduction time, representing two origins of lethal arrhythmia. Temporal STV of field potential duration (FPD) showed a potential to predict the risks of lethal arrhythmia originated from repolarization dispersion for false negative compounds, which was not correctly predicted by conventional measurements using animal cells, even for non-QT prolonging clinical positive compounds. Spatial STV of conduction time delay also unveiled the proarrhythmic risk of asynchronous propagation in cell networks, whose risk cannot be correctly predicted by single-cell-based measurements, indicating the importance of the spatiotemporal fluctuation viewpoint of in vitro cell networks for precise prediction of lethal arrhythmia reaching clinical assessment such as thorough QT assay.
Collapse
|
11
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
12
|
Zanatta DB, Tsujita M, Borelli P, Aguiar RB, Ferrari DG, Strauss BE. Genetic barcode sequencing for screening altered population dynamics of hematopoietic stem cells transduced with lentivirus. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14052. [PMID: 26052520 PMCID: PMC4448734 DOI: 10.1038/mtm.2014.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 01/31/2023]
Abstract
Insertional mutagenesis has been associated with malignant cell transformation in gene therapy protocols, leading to discussions about vector security. Therefore, clonal analysis is important for the assessment of vector safety and its impact on patient health. Here, we report a unique approach to assess dynamic changes in clonality of lentivirus transduced cells upon Sanger sequence analysis of a specially designed genetic barcode. In our approach, changes in the electropherogram peaks are measured and compared between successive time points, revealing alteration in the cell population. After in vitro validation, barcoded lentiviral libraries carrying IL2RG or LMO2 transgenes, or empty vector were used to transduce mouse hematopoietic (ckit+) stem cells, which were subsequently transplanted in recipient mice. We found that neither the empty nor IL2RG encoding vector had an effect on cell dynamics. In sharp contrast, the LMO2 oncogene was associated with altered cell dynamics even though hematologic counts remained unchanged, suggesting that the barcode could reveal changes in cell populations not observed by the frontline clinical assay. We describe a simple and sensitive method for the analysis of clonality, which could be easily used by any laboratory for the assessment of cellular behavior upon lentiviral transduction.
Collapse
Affiliation(s)
- Daniela B Zanatta
- Center for Translational Investigation in Oncology/LIM 24, Cancer Institute of Sao Paulo, School of Medicine, University of Sao Paulo , Sao Paulo, Brazil
| | - Maristela Tsujita
- Department of Clinical and Toxicologic Analyses, School of Pharmaceutical Sciences, University of Sao Paulo , Sao Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicologic Analyses, School of Pharmaceutical Sciences, University of Sao Paulo , Sao Paulo, Brazil
| | - Rodrigo B Aguiar
- Center for Translational Investigation in Oncology/LIM 24, Cancer Institute of Sao Paulo, School of Medicine, University of Sao Paulo , Sao Paulo, Brazil
| | - Daniel G Ferrari
- Natural Computing Laboratory, School of Computing and Informatics, Mackenzie University , Sao Paulo, Brazil
| | - Bryan E Strauss
- Center for Translational Investigation in Oncology/LIM 24, Cancer Institute of Sao Paulo, School of Medicine, University of Sao Paulo , Sao Paulo, Brazil
| |
Collapse
|
13
|
Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 2013; 98:159-61. [DOI: 10.1136/bjophthalmol-2013-304446] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B. Nanotechnology to drive stem cell commitment. Nanomedicine (Lond) 2013; 8:469-86. [PMID: 23477337 DOI: 10.2217/nnm.13.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stem cells (SCs) are undifferentiated cells responsible for the growth, homeostasis and repair of many tissues. The maintenance and survival of SCs is strongly influenced by several stimuli from the local microenvironment. The majority of signaling molecules interact with SCs at the nanoscale level. Therefore, scaffolds with surface nanostructures have potential applications for SCs and in the field of regenerative medicine. Although some strategies have already reached the field of cell biology, strategies based on modification at nanoscale level are new players in the fields of SCs and tissue regeneration. The introduction of the possibility to perform such modifications to these fields is probably due to increasing improvements in nanomaterials for biomedical applications, as well as new insights into SC biology. The aim of the present review is to exhibit the most recent applications of nanostructured materials that drive the commitment of adult SCs for potential clinical applications.
Collapse
Affiliation(s)
- Eriberto Bressan
- Department of Neurosciences, University of Padova, Via Venezia 90, 35100 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu W, Wang Y, Liu E, Sun Y, Luo Z, Xu Z, Liu W, Zhong L, Lv Y, Wang A, Tang Z, Li S, Yang L. Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A 2013; 19:2439-51. [PMID: 23815150 DOI: 10.1089/ten.tea.2012.0453] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great potential for cell therapy and tissue engineering. Neural crest stem cells (NCSCs) are multipotent that are capable of differentiating into mesenchymal lineages. In this study, we investigated whether iPSC-derived NCSCs (iPSC-NCSCs) have potential for tendon repair. Human iPSC-NCSCs were suspended in fibrin gel and transplanted into a rat patellar tendon window defect. At 4 weeks post-transplantation, macroscopical observation showed that the repair of iPSC-NCSC-treated tendons was superior to that of non-iPSC-NCSC-treated tendons. Histological and mechanical examinations revealed that iPSC-NCSCs treatment significantly enhanced tendon healing as indicated by the improvement in matrix synthesis and mechanical properties. Furthermore, transplanted iPSC-NCSCs produced fetal tendon-related matrix proteins, stem cell recruitment factors, and tenogenic differentiation factors, and accelerated the host endogenous repair process. This study demonstrates a potential strategy of employing iPSC-derived NCSCs for tendon tissue engineering.
Collapse
Affiliation(s)
- Wei Xu
- 1 Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University , Chongqing, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stover AE, Brick DJ, Nethercott HE, Banuelos MG, Sun L, O'Dowd DK, Schwartz PH. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res 2013; 91:1247-62. [PMID: 23893392 DOI: 10.1002/jnr.23245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Robust strategies for developing patient-specific, human, induced pluripotent stem cell (iPSC)-based therapies of the brain require an ability to derive large numbers of highly defined neural cells. Recent progress in iPSC culture techniques includes partial-to-complete elimination of feeder layers, use of defined media, and single-cell passaging. However, these techniques still require embryoid body formation or coculture for differentiation into neural stem cells (NSCs). In addition, none of the published methodologies has employed all of the advances in a single culture system. Here we describe a reliable method for long-term, single-cell passaging of PSCs using a feeder-free, defined culture system that produces confluent, adherent PSCs that can be differentiated into NSCs. To provide a basis for robust quality control, we have devised a system of cellular nomenclature that describes an accurate genotype and phenotype of the cells at specific stages in the process. We demonstrate that this protocol allows for the efficient, large-scale, cGMP-compliant production of transplantable NSCs from all lines tested. We also show that NSCs generated from iPSCs produced with the process described are capable of forming both glia defined by their expression of S100β and neurons that fire repetitive action potentials.
Collapse
Affiliation(s)
- Alexander E Stover
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, Children's Hospital of Orange County Research Institute, Orange, California
| | | | | | | | | | | | | |
Collapse
|
17
|
Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013; 65:1091-133. [PMID: 23818131 DOI: 10.1124/pr.112.007393] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.
Collapse
Affiliation(s)
- George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | | | | | | |
Collapse
|
18
|
KHATIWALA CHIRAG, LAW RICHARD, SHEPHERD BENJAMIN, DORFMAN SCOTT, CSETE MARIE. 3D CELL BIOPRINTING FOR REGENERATIVE MEDICINE RESEARCH AND THERAPIES. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1568558611000301] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
McLaren D, Gorba T, Marguerie de Rotrou A, Pillai G, Chappell C, Stacey A, Lingard S, Falk A, Smith A, Koch P, Brüstle O, Vickers R, Tinsley J, Flanders D, Bello P, Craig S. Automated large-scale culture and medium-throughput chemical screen for modulators of proliferation and viability of human induced pluripotent stem cell-derived neuroepithelial-like stem cells. ACTA ACUST UNITED AC 2012; 18:258-68. [PMID: 23042076 DOI: 10.1177/1087057112461446] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to demonstrate proof-of-concept feasibility for the use of human neural stem cells (NSCs) for high-throughput screening (HTS) applications. For this study, an adherent human induced pluripotent stem (iPS) cell-derived long-term, self-renewing, neuroepithelial-like stem (lt-NES) cell line was selected as a representative NSC. Here, we describe the automated large-scale serum-free culture ("scale-up") of human lt-NES cells on the CompacT SelecT cell culture robotic platform, followed by their subsequent automated "scale-out" into a microwell plate format. We also report a medium-throughput screen of 1000 compounds to identify modulators of neural stem cell proliferation and/or survival. The screen was performed on two independent occasions using a cell viability assay with end-point reading resulting in the identification of 24 potential hit compounds, 5 of which were found to increase the proliferation and/or survival of human lt-NES on both occasions. Follow-up studies confirmed a dose-dependent effect of one of the hit compounds, which was a Cdk-2 modulator. This approach could be further developed as part of a strategy to screen compounds to either improve the procedures for the in vitro expansion of neural stem cells or to potentially modulate endogenous neural stem cell behavior in the diseased nervous system.
Collapse
|
20
|
Lu H, Xie C, Zhao YM, Chen FM. Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine. Cell Transplant 2012; 22:205-29. [PMID: 23031442 DOI: 10.3727/096368912x656171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cells have received a great deal of interest from the research community as potential therapeutic "tools" for a variety of chronic debilitating diseases that lack clinically effective therapies. Stem cells are also of interest for the regeneration of tooth-supporting tissues that have been lost to periodontal disease. Indeed, substantial data have demonstrated that the exogenous administration of stem cells or their derivatives in preclinical animal models of periodontal defects can restore damaged tissues to their original form and function. As we discuss here, however, considerable hurdles must be overcome before these findings can be responsibly translated to novel clinical therapies. Generally, the application of stem cells for periodontal therapy in clinics will not be realized until the best cell(s) to use, the optimal dose, and an effective mode of administration are identified. In particular, we need to better understand the mechanisms of action of stem cells after transplantation in the periodontium and to learn how to preciously control stem cell fates in the pathological environment around a tooth. From a translational perspective, we outline the challenges that may vary across preclinical models for the evaluation of stem cell therapy in situations that require periodontal reconstruction and the safety issues that are related to clinical applications of human stem cells. Although clinical trials that use autologous periodontal ligament stem cells have been approved and have already been initiated, proper consideration of the technical, safety, and regulatory concerns may facilitate, rather than inhibit, the clinical translation of new therapies.
Collapse
Affiliation(s)
- Hong Lu
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 2012; 33:6320-44. [PMID: 22695066 DOI: 10.1016/j.biomaterials.2012.05.048] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/20/2012] [Indexed: 02/07/2023]
Abstract
Periodontitis, an inflammatory disease, is the most common cause of tooth loss in adults. Attempts to regenerate the complex system of tooth-supporting apparatus (i.e., the periodontal ligament, alveolar bone and root cementum) after loss/damage due to periodontitis have made some progress recently and provide a useful experimental model for the evaluation of future regenerative therapies. Concentrated efforts have now moved from the use of guided tissue/bone regeneration technology, a variety of growth factors and various bone grafts/substitutes toward the design and practice of endogenous regenerative technology by recruitment of host cells (cell homing) or stem cell-based therapeutics by transplantation of outside cells to enhance periodontal tissue regeneration and its biomechanical integration. This shift is driven by the general inability of conventional therapies to deliver satisfactory outcomes, particularly in cases where the disease has caused large tissue defects in the periodontium. Cell homing and cell transplantation are both scientifically meritorious approaches that show promise to completely and reliably reconstitute all tissue and connections damaged through periodontal disease, and hence research into both directions should continue. In view of periodontal regeneration by paradigms that unlock the body's innate regenerative potential has been reviewed elsewhere, this paper specifically explores and analyses the stem cell types and cell delivery strategies that have been or have the potential to be used as therapeutics in periodontal regenerative medicine, with particular emphasis placed on the efficacy and safety concerns of current stem cell-based periodontal therapies that may eventually enter into the clinic.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | | | | | | |
Collapse
|
22
|
Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT. One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 2012; 7:e33225. [PMID: 22457746 PMCID: PMC3310052 DOI: 10.1371/journal.pone.0033225] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/13/2012] [Indexed: 12/21/2022] Open
Abstract
Controlled differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into cells that resemble adult mesenchymal stem cells (MSCs) is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM) supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.
Collapse
Affiliation(s)
- Yongxing Liu
- Center for Biomaterials, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - A. Jon Goldberg
- Center for Biomaterials, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - James E. Dennis
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Gloria A. Gronowicz
- Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Liisa T. Kuhn
- Center for Biomaterials, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
23
|
Alcon A, Cagavi Bozkulak E, Qyang Y. Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci 2012; 69:2635-56. [PMID: 22388688 DOI: 10.1007/s00018-012-0942-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/21/2012] [Accepted: 02/13/2012] [Indexed: 12/20/2022]
Abstract
Heart disease is one of the leading causes of death worldwide and the number of patients with the disease is likely to grow with the continual decline in health for most of the developed world. Heart transplantation is one of the only treatment options for heart failure due to an acute myocardial infarction, but limited donor supply and organ rejection limit its widespread use. Cellular cardiomyoplasty, or cellular implantation, combined with various tissue-engineering methods aims to regenerate functional heart tissue. This review highlights the numerous cell sources that have been used to regenerate the heart as well as cover the wide range of tissue-engineering strategies that have been devised to optimize the delivery of these cells. It will probably be a long time before an effective regenerative therapy can make a serious impact at the bedside.
Collapse
Affiliation(s)
- Andre Alcon
- Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
24
|
Cong F, Cheung AK, Huang SMA. Chemical Genetics–Based Target Identification in Drug Discovery. Annu Rev Pharmacol Toxicol 2012; 52:57-78. [DOI: 10.1146/annurev-pharmtox-010611-134639] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Feng Cong
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139;
| | - Atwood K. Cheung
- Global Discovery Chemistry – Chemogenetics and Proteomics, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Shih-Min A. Huang
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139;
- Current address: Sanofi-Aventis Oncology, Cambridge, Massachusetts 02139
| |
Collapse
|
25
|
Advances in Retinal Tissue Engineering. MATERIALS 2012; 5:108-120. [PMID: 28817034 PMCID: PMC5448948 DOI: 10.3390/ma5010108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 01/13/2023]
Abstract
Retinal degenerations cause permanent visual loss and affect millions world-wide. Current treatment strategies, such as gene therapy and anti-angiogenic drugs, merely delay disease progression. Research is underway which aims to regenerate the diseased retina by transplanting a variety of cell types, including embryonic stem cells, fetal cells, progenitor cells and induced pluripotent stem cells. Initial retinal transplantation studies injected stem and progenitor cells into the vitreous or subretinal space with the hope that these donor cells would migrate to the site of retinal degeneration, integrate within the host retina and restore functional vision. Despite promising outcomes, these studies showed that the bolus injection technique gave rise to poorly localized tissue grafts. Subsequently, retinal tissue engineers have drawn upon the success of bone, cartilage and vasculature tissue engineering by employing a polymeric tissue engineering approach. This review will describe the evolution of retinal tissue engineering to date, with particular emphasis on the types of polymers that have routinely been used in recent investigations. Further, this review will show that the field of retinal tissue engineering will require new types of materials and fabrication techniques that optimize the survival, differentiation and delivery of retinal transplant cells.
Collapse
|
26
|
Chen FM, Zhao YM, Jin Y, Shi S. Prospects for translational regenerative medicine. Biotechnol Adv 2011; 30:658-72. [PMID: 22138411 DOI: 10.1016/j.biotechadv.2011.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Translational medicine is an evolutional concept that encompasses the rapid translation of basic research for use in clinical disease diagnosis, prevention and treatment. It follows the idea "from bench to bedside and back", and hence relies on cooperation between laboratory research and clinical care. In the past decade, translational medicine has received unprecedented attention from scientists and clinicians and its fundamental principles have penetrated throughout biomedicine, offering a sign post that guides modern medical research toward a patient-centered focus. Translational regenerative medicine is still in its infancy, and significant basic research investment has not yet achieved satisfactory clinical outcomes for patients. In particular, there are many challenges associated with the use of cell- and tissue-based products for clinical therapies. This review summarizes the transformation and global progress in translational medicine over the past decade. The current obstacles and opportunities in translational regenerative medicine are outlined in the context of stem cell therapy and tissue engineering for the safe and effective regeneration of functional tissue. This review highlights the requirement for multi-disciplinary and inter-disciplinary cooperation to ensure the development of the best possible regenerative therapies within the shortest timeframe possible for the greatest patient benefit.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology & Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | | | | | | |
Collapse
|
27
|
Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ. Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 2011; 6:367-406. [PMID: 21548741 DOI: 10.2217/rme.11.22] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is potential for a variety of stem cell populations to mediate repair in the diseased or injured CNS; in some cases, this theoretical possibility has already transitioned to clinical safety testing. However, careful consideration of preclinical animal models is essential to provide an appropriate assessment of stem cell safety and efficacy, as well as the basic biological mechanisms of stem cell action. This article examines the lessons learned from early tissue, organ and hematopoietic grafting, the early assumptions of the stem cell and CNS fields with regard to immunoprivilege, and the history of success in stem cell transplantation into the CNS. Finally, we discuss strategies in the selection of animal models to maximize the predictive validity of preclinical safety and efficacy studies.
Collapse
Affiliation(s)
- Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Isasi R, Knoppers BM. From banking to international governance: fostering innovation in stem cell research. Stem Cells Int 2011; 2011:498132. [PMID: 21904557 PMCID: PMC3167189 DOI: 10.4061/2011/498132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022] Open
Abstract
Stem cell banks are increasingly recognized as an essential resource of biological materials for both basic and translational stem cell research. By providing transnational access to quality controlled and ethically sourced stem cell lines, stem cell banks seek to foster international collaboration and innovation. However, given that national stem cell banks operate under different policy, regulatory and commercial frameworks, the transnational sharing of stem cell materials and data can be complicating. This paper will provide an overview of the most pressing challenges regarding the governance of stem cell banks, and the difficulties in designing regulatory and commercial frameworks that foster stem cell research. Moreover, the paper will shed light on the numerous international initiatives that have arisen to help harmonize and standardize stem cell banking and research processes to overcome such challenges.
Collapse
Affiliation(s)
- Rosario Isasi
- Centre of Genomics and Policy, McGill University, Montreal, QC, Canada H3A 1A1
| | | |
Collapse
|
29
|
Guo L, Abrams RMC, Babiarz JE, Cohen JD, Kameoka S, Sanders MJ, Chiao E, Kolaja KL. Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2011; 123:281-9. [PMID: 21693436 DOI: 10.1093/toxsci/kfr158] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Improved in vitro systems for predicting drug-induced toxicity are needed in the pharmaceutical and biotechnology industries to decrease late-stage drug attrition. One unmet need is an early screen for cardiotoxicity, which accounts for about one third of safety-based withdrawn pharmaceuticals. Herein, the first published report of a high-throughput functional assay employing a monolayer of beating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is described, detailing a model that accurately detects drug-induced cardiac abnormalities. Using 96-well plates with interdigitated electrode arrays that assess impedance, the rhythmic, synchronous contractions of the iPSC-CMs were detected. Treatment of the iPSC-CMs with 28 different compounds with known cardiac effects resulted in compound-specific changes in the beat rate and/or the amplitude of the impedance measurement. Changes in impedance for the compounds tested were comparable with the results from a related technology, electric field potential assessment obtained from microelectrode arrays. Using the results from the set of compounds, an index of drug-induced arrhythmias was calculated, enabling the determination of a drug's proarrhythmic potential. This system of interrogating human cardiac function in vitro opens new opportunities for predicting cardiac toxicity and studying cardiac biology.
Collapse
Affiliation(s)
- Liang Guo
- Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Induced pluripotent stem (iPS) cells reprogrammed from somatic cells have the potential to differentiate, under appropriate conditions, to any cell type. Recent studies, including two papers in this issue (Bilousova et al., 2011; Tolar et al., 2011), have demonstrated that iPS cells can differentiate into keratinocytes. Thus, iPS cells may provide a novel approach to applying regenerative medicine to cutaneous diseases such as epidermolysis bullosa.
Collapse
|
31
|
Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol 2011; 33:573-91. [PMID: 21461989 PMCID: PMC3204002 DOI: 10.1007/s00281-011-0266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned.
Collapse
|
32
|
|
33
|
Lensch MW, Rao M. Induced pluripotent stem cells: opportunities and challenges. Regen Med 2010; 5:483-4. [DOI: 10.2217/rme.10.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- M William Lensch
- Howard Hughes Medical Institute at Children’s Hospital Boston, MA, USA and Harvard Medical School, Boston, MA, USA and Harvard Stem Cell Institute, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Mahendra Rao
- Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, CA 92008 USA
| |
Collapse
|