1
|
The Proliferation of Pre-Pubertal Porcine Spermatogonia in Stirred Suspension Bioreactors Is Partially Mediated by the Wnt/β-Catenin Pathway. Int J Mol Sci 2021; 22:ijms222413549. [PMID: 34948348 PMCID: PMC8708394 DOI: 10.3390/ijms222413549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Male survivors of childhood cancer are at risk of suffering from infertility in adulthood because of gonadotoxic chemotherapies. For adult men, sperm collection and preservation are routine procedures prior to treatment; however, this is not an option for pre-pubertal children. From young boys, a small biopsy may be taken before chemotherapy, and spermatogonia may be propagated in vitro for future transplantation to restore fertility. A robust system that allows for scalable expansion of spermatogonia within a controlled environment is therefore required. Stirred suspension culture has been applied to different types of stem cells but has so far not been explored for spermatogonia. Here, we report that pre-pubertal porcine spermatogonia proliferate more in bioreactor suspension culture, compared with static culture. Interestingly, oxygen tension provides an avenue to modulate spermatogonia status, with culture under 10% oxygen retaining a more undifferentiated state and reducing proliferation in comparison with the conventional approach of culturing under ambient oxygen levels. Spermatogonia grown in bioreactors upregulate the Wnt/ β-catenin pathway, which, along with enhanced gas and nutrient exchange observed in bioreactor culture, may synergistically account for higher spermatogonia proliferation. Therefore, stirred suspension bioreactors provide novel platforms to culture spermatogonia in a scalable manner and with minimal handling.
Collapse
|
2
|
Peticone C, Thompson DDS, Dimov N, Jevans B, Glass N, Micheletti M, Knowles JC, Kim HW, Cooper-White JJ, Wall IB. Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. J Tissue Eng 2020; 11:2041731420954712. [PMID: 33178409 PMCID: PMC7592314 DOI: 10.1177/2041731420954712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
Using microspherical scaffolds as building blocks to repair bone defects of
specific size and shape has been proposed as a tissue engineering strategy.
Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and
either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their
ability to support osteogenic and vascular responses of human mesenchymal stem
cells (hMSCs). Together with standard culture techniques, cell-material
interactions were studied using a novel perfusion microfluidic bioreactor that
enabled cell culture on microspheres, along with automated processing and
screening of culture variables. While titanium doping was found to support hMSCs
expansion and differentiation, as well as endothelial cell-derived vessel
formation, additional doping with cobalt did not improve the functionality of
the microspheres. Furthermore, the microfluidic bioreactor enabled screening of
culture parameters for cell culture on microspheres that could be potentially
translated to a scaled-up system for tissue-engineered bone manufacturing.
Collapse
Affiliation(s)
- Carlotta Peticone
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Nikolay Dimov
- Centre for Engineering Research, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Ben Jevans
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nick Glass
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Australia
| | - Martina Micheletti
- Department of Biochemical Engineering, University College London, London, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London, UK.,The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Justin J Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemical Engineering, University of Queensland, St. Lucia, Brisbane, Australia
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, UK.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Aston Medical Research Institute and School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
3
|
Ascari IJ, Martins SC, Camargo LSA, Mendez-Otero R. Development of bovine embryos in vitro in coculture with murine mesenchymal stem cells and embryonic fibroblasts. Mol Biol Rep 2018; 45:1827-1837. [PMID: 30145640 DOI: 10.1007/s11033-018-4329-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
Despite the progress on development of new culture media, in vitro-produced embryos still display lower quality when compared to the in vivo-produced counterparts. Coculture has been reconsidered as an alternative to improve embryo quality. Mesenchymal stem cells (MSC) and murine embryonic fibroblasts (MEF) have been extensively used as feeder layers due to their capacity to release growth factors. In the present study we investigated the effect of these feeder layers in oocyte maturation and/or embryo development under in vitro conditions. Oocytes were matured in control (CTRL) conditions or in coculture with MSC or MEF. In vitro fertilization and embryo culture until fourth day were performed in CTRL condition for all groups. Embryos from fourth day on were then cultured until the eighth day in CTRL or in coculture system. No significant differences for metaphase II stage and apoptosis in oocytes were found among the groups. There was also no difference among the groups when we evaluated blastocyst formation on the seventh and eighth day, with exception of a higher hatched blastocyst rate in the group maturated and cultivated in CTRL condition when compared to the group matured and cocultured with MSC. Also no difference was observed in the number of cells in the whole embryos, in the inner cell mass, in the trophoblast and at apoptotic stage on the eighth day. We conclude that coculture with MSC or MEF during maturation and/or embryo development do not enhance the in vitro production of bovine embryos.
Collapse
Affiliation(s)
- Ivan J Ascari
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Sávio C Martins
- Departamento de Medicina Veterinária, Universidade José do Rosário Vellano, Alfenas, Minas Gerais, Brazil
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio De Janeiro, Brazil
| |
Collapse
|
4
|
Shams Najafabadi H, Soheili ZS, Samiei S, Ahmadieh H, Ranaei Pirmardan E, Masoumi M. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties. J Cell Physiol 2016; 232:2626-2640. [PMID: 27943290 DOI: 10.1002/jcp.25729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/08/2016] [Indexed: 11/10/2022]
Abstract
The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamid Ahmadieh
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Masoumi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
5
|
Favier FB, Britto FA, Freyssenet DG, Bigard XA, Benoit H. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology. Cell Mol Life Sci 2015; 72:4681-96. [PMID: 26298291 PMCID: PMC11113128 DOI: 10.1007/s00018-015-2025-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1α. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1α accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1α destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O2 rarefaction via metabolic optimization.
Collapse
Affiliation(s)
- F B Favier
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060, Montpellier, France.
- Université de Montpellier, 34090, Montpellier, France.
| | - F A Britto
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - D G Freyssenet
- Laboratoire de Physiologie de l'Exercice EA 4338, Université de Lyon, Université Jean Monnet, 42000, Saint Etienne, France
| | - X A Bigard
- Agence Française de Lutte contre le Dopage, 75007, Paris, France
| | - H Benoit
- INSERM, U1042 Hypoxie Physio-Pathologie, 38000, Grenoble, France
- Université Joseph Fourier, 38000, Grenoble, France
| |
Collapse
|
6
|
Hawkins KE, Sharp TV, McKay TR. The role of hypoxia in stem cell potency and differentiation. Regen Med 2014; 8:771-82. [PMID: 24147532 DOI: 10.2217/rme.13.71] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine relies on harnessing the capacity of stem cells to grow, divide and differentiate safely and predictably. This may be in the context of expanding stem cells in vitro or encouraging their expansion, mobilization and capacity to regenerate tissues either locally or remotely in vivo. In either case, understanding the stem cell niche is fundamental to recapitulating or manipulating conditions to enable therapy. It has become obvious that hypoxia plays a fundamental role in the maintenance of the stem cell niche. Low O2 benefits the self-renewal of human embryonic, hematopoietic, mesenchymal and neural stem cells, as well as improving the efficiency of genetic reprogramming to induced pluripotency. There is emerging evidence that harnessing or manipulating the hypoxic response can result in safer, more efficacious methodologies for regenerative medicine.
Collapse
Affiliation(s)
- Kate E Hawkins
- Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | | | |
Collapse
|
7
|
Fynes K, Tostoes R, Ruban L, Weil B, Mason C, Veraitch FS. The differential effects of 2% oxygen preconditioning on the subsequent differentiation of mouse and human pluripotent stem cells. Stem Cells Dev 2014; 23:1910-22. [PMID: 24734982 DOI: 10.1089/scd.2013.0504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A major challenge facing the development of effective cell therapies is the efficient differentiation of pluripotent stem cells (PSCs) into pure populations. Lowering oxygen tension to physiological levels can affect both the expansion and differentiation stages. However, to date, there are no studies investigating the knock-on effect of culturing PSCs under low oxygen conditions on subsequent lineage commitment at ambient oxygen levels. PSCs were passaged three times at 2% O2 before allowing cells to spontaneously differentiate as embryoid bodies (EBs) in high oxygen (20% O2) conditions. Maintenance of mouse PSCs in low oxygen was associated with a significant increase in the expression of early differentiation markers FGF5 and Eomes, while conversely we observed decreased expression of these genes in human PSCs. Low oxygen preconditioning primed mouse PSCs for their subsequent differentiation into mesodermal and endodermal lineages, as confirmed by increased gene expression of Eomes, Goosecoid, Brachyury, AFP, Sox17, FoxA2, and protein expression of Brachyury, Eomes, Sox17, FoxA2, relative to high oxygen cultures. The effects extended to the subsequent formation of more mature mesodermal lineages. We observed significant upregulation of cardiomyocyte marker Nkx2.5, and critically a decrease in the number of contaminant pluripotent cells after 12 days using a directed cardiomyocyte protocol. However, the impact of low oxygen preconditioning was to prime human cells for ectodermal lineage commitment during subsequent EB differentiation, with significant upregulation of Nestin and β3-tubulin. Our research demonstrates the importance of oxygen tension control during cell maintenance on the subsequent differentiation of both mouse and human PSCs, and highlights the differential effects.
Collapse
Affiliation(s)
- Kate Fynes
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Perez-Basterrechea M, Obaya AJ, Meana A, Otero J, Esteban MM. Cooperation by fibroblasts and bone marrow-mesenchymal stem cells to improve pancreatic rat-to-mouse islet xenotransplantation. PLoS One 2013; 8:e73526. [PMID: 24009755 PMCID: PMC3756982 DOI: 10.1371/journal.pone.0073526] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/21/2013] [Indexed: 12/15/2022] Open
Abstract
Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet xenotransplantation, whereas only BM-MSCs exerted an immunomodulatory effect, which was improved by the presence of fibroblasts. These results suggest that cooperation of different cell types with islets will be required to achieve a long-term functional graft.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Transplants, Cell therapy and Regenerative Medicine Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | | | | | | | | |
Collapse
|