1
|
Ugrumov MV. Hypothalamic neurons fully or partially expressing the dopaminergic phenotype: development, distribution, functioning and functional significance. A review. Front Neuroendocrinol 2024; 75:101153. [PMID: 39128801 DOI: 10.1016/j.yfrne.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Ugryumov MV. Dopamine Synthesis by Non-Dopaminergic Neurons as an Effective Mechanism of Neuroplasticity. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418040086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Ugrumov MV. Brain neurons partly expressing dopaminergic phenotype: location, development, functional significance, and regulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:37-91. [PMID: 24054140 DOI: 10.1016/b978-0-12-411512-5.00004-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In addition to catecholaminergic neurons possessing all the enzymes of catecholamine synthesis and the specific membrane transporters, neurons partly expressing the catecholaminergic phenotype have been found a quarter of a century ago. Most of them express individual enzymes of dopamine (DA) synthesis, tyrosine hydroxylase (TH), or aromatic l-amino acid decarboxylase (AADC), lacking the DA membrane transporter and the vesicular monoamine transporter, type 2. These so-called monoenzymatic neurons are widely distributed throughout the brain in ontogenesis and adulthood being in some brain regions even more numerous than dopaminergic (DA-ergic) neurons. Individual enzymes of DA synthesis are expressed in these neurons continuously or transiently in norm and pathology. It has been proven that monoenzymatic TH neurons and AADC neurons are capable of producing DA in cooperation. It means that l-3,4-dihydroxyphenylalanine (l-DOPA) synthesized from l-tyrosine in monoenzymatic TH neurons is transported to monoenzymatic AADC neurons for DA synthesis. Such cooperative synthesis of DA is considered as a compensatory reaction under a failure of DA-ergic neurons, for example, in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease. Moreover, l-DOPA, produced in monoenzymatic TH neurons, is assumed to play a role of a neurotransmitter or neuromodulator affecting the target neurons via catecholamine receptors. Thus, numerous widespread neurons expressing individual complementary enzymes of DA synthesis serve to produce DA in cooperation that is a compensatory reaction at failure of DA-ergic neurons.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Institute of Developmental Biology and Centre for Brain Research, Russian Academy of Sciences, Moscow, Russia; Institute of Normal Physiology RAMS, Moscow, Russia.
| |
Collapse
|
4
|
Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J Chem Neuroanat 2009; 38:241-56. [PMID: 19698780 DOI: 10.1016/j.jchemneu.2009.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 08/06/2009] [Accepted: 08/12/2009] [Indexed: 11/23/2022]
Abstract
Besides the dopaminergic (DA-ergic) neurons possessing the whole set of enzymes of DA synthesis from l-tyrosine and the DA membrane transporter (DAT), the neurons partly expressing the DA-ergic phenotype have been first discovered two decades ago. Most of the neurons express individual enzymes of DA synthesis, tyrosine hydroxylase (TH) or aromatic l-amino acid decarboxylase (AADC) and lack the DAT. A list of the neurons partly expressing the DA-ergic phenotype is not restricted to so-called monoenzymatic neurons, e.g. it includes some neurons co-expressing both enzymes of DA synthesis but lacking the DAT. In contrast to true DA-ergic neurons, monoenzymatic neurons and bienzymatic non-dopaminergic neurons lack the vesicular monoamine transporter 2 (VMAT2) that raises a question about the mechanisms of storing and release of their final synthetic products. Monoenzymatic neurons are widely distributed all through the brain in adulthood being in some brain regions even more numerous than DA-ergic neurons. Individual enzymes of DA synthesis are expressed in these neurons continuously or transiently in norm or under certain physiological conditions. Monoenzymatic neurons, particularly those expressing TH, appear to be even more numerous and more widely distributed in the brain during ontogenesis than in adulthood. Most populations of monoenzymatic TH neurons decrease in number or even disappear by puberty. Functional significance of monoenzymatic neurons remained uncertain for a long time after their discovery. Nevertheless, it has been shown that most monoenzymatic TH neurons and AADC neurons are capable to produce l-3,4-dihydroxyphenylalanine (L-DOPA) from l-tyrosine and DA from L-DOPA, respectively. L-DOPA produced in monoenzymatic TH neurons is assumed to play a role of a neurotransmitter or neuromodulator acting on target neurons via catecholamine receptors. Moreover, according to our hypothesis L-DOPA released from monoenzymatic TH neurons is captured by monoenzymatic AADC neurons for DA synthesis. Such cooperative synthesis of DA is considered as a compensatory reaction under a failure of DA-ergic neurons, e.g. in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease.Thus, a substantial number of the brain neurons express partly the DA-ergic phenotype, mostly individual complementary enzymes of DA synthesis, serving to produce DA in cooperation that is supposed to be a compensatory reaction under the failure of DA-ergic neurons.
Collapse
|
5
|
Karasawa N, Hayashi M, Yamada K, Nagatsu I, Iwasa M, Takeuchi T, Uematsu M, Watanabe K, Onozuka M. Tyrosine hydroxylase (TH)- and aromatic-L-amino acid decarboxylase (AADC)-immunoreactive neurons of the common marmoset (Callithrix jacchus) brain: an immunohistochemical analysis. Acta Histochem Cytochem 2007; 40:83-92. [PMID: 17653300 PMCID: PMC1931487 DOI: 10.1267/ahc.06019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 04/16/2007] [Indexed: 12/02/2022] Open
Abstract
From the perspective of comparative morphology, the distribution of non-monoaminergic neurons in the common marmoset (Callithrix jacchus) was investigated using an immunohistochemical method with specific antibodies to tyrosine hydroxylase (TH) and aromatic-L-amino acid decarboxylase (AADC).TH-immunoreactive (IR) neurons (but not AADC-IR) neurons were observed in the olfactory tubercle, preoptic suprachiasmatic nucleus, periventricular hypothalamic nucleus, arcuate nucleus, paraventricular nucleus, periaqueductal gray matter, medial longitudinal fasciculus, substantia nigra, and nucleus solitaris. In contrast, AADC-IR (but not TH-IR), small, oval and spindle-shaped neurons were sparsely distributed in the following areas: the hypothalamus from the anterior nucleus to the lateral nucleus, the dorsomedial nucleus, the dorsomedial area of the medial mammillary nucleus and the arcuate nucleus; the midbrain, including the stria medullaris and substantia nigra; and the medulla oblongata, including the dorsal area of the nucleus solitaris and the medullary reticular nucleus. The distribution of AADC-IR neurons was not as extensive in the marmoset as it is in rats. However, these neurons were located in the marmoset, but not the rat substantia nigra. Furthermore, AADC-IR neurons that are present in the human striatum were absent in that of the marmoset. The present results indicate that the distribution of non-monoaminergic neurons in the brain of the common marmoset is unique and different from that in humans and rodents.
Collapse
Affiliation(s)
- Nobuyuki Karasawa
- Faculty of Care and Rehabilitation, Seijoh University, Tokai, Aichi 476–8588, Japan
| | - Motoharu Hayashi
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484–8506, Japan
| | - Keiki Yamada
- Department of Anatomy, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470–1192, Japan
| | - Ikuko Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, Aichi 470–1192, Japan
| | - Mineo Iwasa
- Faculty of Care and Rehabilitation, Seijoh University, Tokai, Aichi 476–8588, Japan
| | - Terumi Takeuchi
- Faculty of Care and Rehabilitation, Seijoh University, Tokai, Aichi 476–8588, Japan
| | - Mitsutoshi Uematsu
- Faculty of Care and Rehabilitation, Seijoh University, Tokai, Aichi 476–8588, Japan
| | - Kazuko Watanabe
- Department of Physiology, Gifu University, School of Medicine, Gifu 501–1194, Japan
| | - Minoru Onozuka
- Department of Physiology and Neuroscience, Kanagawa Dental College, Yokosuka, Kanagawa 238–8580, Japan
| |
Collapse
|
6
|
Melnikova VI, Sapronova AY, Lavrentyeva AV, Proshlyakova EV, Voronova SN, Ogurtsov SI, Ugryumov MV. The brain is one of the sources of L-dihydroxyphenylalanine in systemic circulation in fetuses and neonatal rats. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mel'nikova VI, Lavrent'eva AV, Kudrin VS, Raevskii KS, Ugryumov MV. Dopamine Synthesis by Non-Dopaminergic Neurons in the Arcuate Nucleus of Rat Fetuses. ACTA ACUST UNITED AC 2005; 35:809-13. [PMID: 16132261 DOI: 10.1007/s11055-005-0129-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Indexed: 10/25/2022]
Abstract
The aim of the present work was to verify the hypothesis that non-dopaminergic neurons expressing individual complementary dopamine synthesis enzymes can perform the co-located synthesis of dopamine. According to this hypothesis, neurons expressing tyrosine hydroxylase use L-tyrosine for the synthesis of L-dihydroxyphenylalanine (L-DOPA), which then enters neurons expressing aromatic amino acid decarboxylase, which converts L-DOPA to dopamine. Experiments were performed using the mediobasal hypothalamus of rat fetuses, which mostly contains single-enzyme neurons (>99%) and occasional double-enzyme neurons (<1%). Controls were obtained from the fetal substantia nigra, which is enriched with dopaminergic neurons. High-performance liquid chromatography was used to measure levels of dopamine and L-DOPA in cell extracts and the incubation medium after incubation in the presence and absence of exogenous L-tyrosine. Addition of L-tyrosine to the medium led to increases in the level of synthesis and release of L-DOPA in the mediobasal hypothalamus and substantia nigra. In addition, L-tyrosine increased dopamine synthesis in the substantia nigra and decreased dopamine synthesis in the mediobasal hypothalamus. This regional difference in levels of dopamine synthesis is probably due to inhibition of the uptake of L-DOPA from the intercellular medium by neurons in the mediobasal hypothalamus containing aromatic amino acid decarboxylase, due to the competitive binding of the L-DOPA transporter by L-tyrosine. Thus, these results provide the first evidence for the co-located synthesis of dopamine by non-dopaminergic neurons expressing single complementary enzymes involved in the synthesis of this neurotransmitter.
Collapse
Affiliation(s)
- V I Mel'nikova
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | | | | | | | | |
Collapse
|
8
|
Kitahama K, Araneda S, Geffard M, Sei H, Okamura H. Tyramine-immunoreactive neuronal structures in the rat brain: Abundance in the median eminence of the mediobasal hypothalamus. Neurosci Lett 2005; 383:215-9. [PMID: 15955414 DOI: 10.1016/j.neulet.2005.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 11/24/2022]
Abstract
Immunoreactivity to p-tyramine, one of the natural trace amines, was studied in the rat brain by an anti-p-tyramine antibody. Immunoreactivity to this amine is very weak in the nigrostriatal dopaminergic neurons and terminals, and weak in the locus coeruleus noradrenergic ones. It was intensified in these structures after monoamine oxidase inhibition. On the other hand, this amine was highly concentrated in the median eminence of the mediobasal hypothalamus, in which its physiological function on prolactin release has been demonstrated.
Collapse
Affiliation(s)
- K Kitahama
- CNRS UMR5123, Laboratoire de Physiologie Intégrative Cellulaire et Moléculaire, Université Claude Bernard, Villeurbanne, France.
| | | | | | | | | |
Collapse
|
9
|
Lemoine S, Leroy D, Warembourg M. Progesterone receptor and dopamine synthesizing enzymes in hypothalamic neurons of the guinea pig: an immunohistochemical triple-label analysis. J Chem Neuroanat 2005; 29:13-20. [PMID: 15589698 DOI: 10.1016/j.jchemneu.2004.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 08/26/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
Interactions among gonadal steroid hormones and the dopamine synthesizing enzymes, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC), participate in hypothalamic functions. Several findings suggest that the expression patterns of the progesterone receptor (PR), TH and AADC overlap in the guinea pig brain. However, it remained to be determined whether or not these two enzymes coexist in the same neurons which contain the PR. To test this hypothesis and quantify these colocalization relationships in the hypothalamus, we used a triple-labeling immunofluorescence procedure. Only PR/AADC-immunoreactive cells were seen in the preoptic area but no PR/TH cells and, therefore, no triple immunoreactive cells were found. An occasional colocalization between PR and the two enzymes was observed throughout the rostrocaudal extent of the arcuate nucleus with the greatest concentration of triple-labeled cells in the medial subdivision. In this region, quantitative estimation of cellular immunoreactivity showed that the triple immunoreactive cells represented about 29% of PR/TH cells, 9% of PR/AADC cells and 22% of TH/AADC cells in spite of a very low percentage in relation to total populations of neurons expressing only PR, TH or AADC. Thus, the PR are only present in monoenzymatic AADC expressing neurons in the preoptic area while they can be observed in neurons expressing both enzymes in the arcuate nucleus.
Collapse
|
10
|
Ugrumov MV, Melnikova VI, Lavrentyeva AV, Kudrin VS, Rayevsky KS. Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats. Neuroscience 2004; 124:629-35. [PMID: 14980733 DOI: 10.1016/j.neuroscience.2004.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2004] [Indexed: 11/29/2022]
Abstract
This study was aimed to test our hypothesis about dopamine (DA) synthesis by non-DAergic neurons expressing individual complementary enzymes of the DA synthetic pathway in cooperation, i.e. L-dihydroxyphenylalanine (L-DOPA) synthesized in tyrosine hydroxylase (TH)-expressing neurons is transported to aromatic L-amino acid decarboxylase (AADC)-expressing neurons for conversion to DA. The mediobasal hypothalamus of rats at the 21st embryonic day was used as an experimental model because it contains mainly monoenzymatic TH neurons and AADC neurons (>99%) whereas the fraction of bienzymatic (DAergic) neurons does not exceed 1%. The fetal substantia nigra containing DAergic neurons served as a control. DA and L-DOPA were measured by high performance liquid chromatography in: (1) cell extracts of the cell suspension prepared ex tempora; (2) cell extracts and incubation medium after the static incubation of the cell suspension with, or without exogenous L-tyrosine; (3) effluents of the incubation medium during perifusion of the cell suspension in the presence, or the absence of L-tyrosine. Total amounts of DA and L-DOPA in the incubation medium and cell extracts after the static incubation were considered as the indexes of the rates of their syntheses. L-Tyrosine administration caused the increased L-DOPA synthesis in the mediobasal hypothalamus and substantia nigra. Moreover, L-tyrosine provoked an increase of DA synthesis in the substantia nigra and its decrease in the mediobasal hypothalamus. This contradiction is most probably explained by the L-tyrosine-induced competitive inhibition of the L-DOPA transport to the monoenzymatic AADC-neurons after its release from the monoenzymatic TH neurons. Thus, this study provides convincing evidence of cooperative DA synthesis by non-DAergic neurons expressing TH or AADC in fetal rats at the end of the intrauterine development.
Collapse
Affiliation(s)
- M V Ugrumov
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 117334, Russia.
| | | | | | | | | |
Collapse
|
11
|
Tóth BE, Bodnár I, Homicskó KG, Fülöp F, Fekete MIK, Nagy GM. Physiological role of salsolinol: its hypophysiotrophic function in the regulation of pituitary prolactin secretion. Neurotoxicol Teratol 2002; 24:655-66. [PMID: 12200196 DOI: 10.1016/s0892-0362(02)00216-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently observed that 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) produced by hypothalamic neurons can selectively release prolactin from the anterior lobe (AL) of the pituitary gland. Moreover, high affinity binding sites for SAL have been detected in areas, like median eminence (ME) and the neuro-intermediate lobe (NIL) that are known terminal fields of the tuberoinfundibular DAergic (TIDA) and tuberohypophysial (THDA)/periventricular (PHDA) DAergic systems of the hypothalamus, respectively. However, the in situ biosynthesis and the mechanism of action of SAL are still enigmatic, these observations clearly suggest that sites other than the AL might be targets of SAL action. Based on our recent observations it may be relevant to postulate that an "autosynaptocrine" regulatory mechanism functioning at the level of the DAergic terminals localized in both the ME and NIL, may play a role in the hypophyseotrophic regulation of PRL secretion. Furthermore, SAL may be a key player in these processes. The complete and precise mapping of these intra-terminal mechanisms should help us to understand the tonic DAerg regulation of PRL secretion. Moreover, it may also give insight into the role of pre-synaptic processes that most likely have distinct and significant functional as well as pathological roles in other brain areas using DAergic neurotransmission, like striatonigral and mesolimbic systems.
Collapse
Affiliation(s)
- Béla E Tóth
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Semmelweis University, Tuzoltó u. 58, Budapest H-1094, Hungary
| | | | | | | | | | | |
Collapse
|
12
|
Kiyama H, Emson PC, Ruth J. Distribution of Tyrosine Hydroxylase mRNA in the Rat Central Nervous System Visualized by Alkaline Phosphatase in situ Hybridization Histochemistry. Eur J Neurosci 2002; 2:512-524. [PMID: 12106021 DOI: 10.1111/j.1460-9568.1990.tb00442.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of tyrosine hydroxylase mRNA in the rat brain was examined using a novel alkaline phosphatase labelled antisense oligodeoxynucleotide probe. The alkaline phosphatase labelled probe revealed the presence of tyrosine hydroxylase mRNA in all the major cell groups and cell bodies previously described as containing catecholamine fluorescence or known to contain tyrosine hydroxylase immunoreactivity. Using standardized development protocols qualitative comparisons between the amount of mRNA signal in different adrenergic, noradrenergic or dopaminergic cell groups could be made. These studies showed that of the three known catecholaminergic cell types the level of tyrosine hydroxylase mRNA signal was high in the noradrenergic and dopaminergic cells, but much lower in the adrenergic cell groups. The sensitivity of this nonradioactive method of in situ hybridization is excellent and has considerable potential for studies of coexistence or coexpression of two mRNA signals for the localization of mRNA signals at the electron-microscope level.
Collapse
Affiliation(s)
- H. Kiyama
- MRC Group, AFRC Institute of Animal Physiology & Genetics Research, Babraham, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|
13
|
Ershov PV, Ugrumov MV, Calas A, Makarenko IG, Krieger M, Thibault J. Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis. J Chem Neuroanat 2002; 24:95-107. [PMID: 12191726 DOI: 10.1016/s0891-0618(02)00019-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We evaluated the topographic relations between tyrosine hydroxylase (TH)- and/or aromatic L-amino acid decarboxylase (AADC)-immunoreactive neurons in the arcuate nucleus (AN), as well as between TH- and/or AADC-immunoreactive axons in the median eminence (ME) in rats at the 21st embryonic day, 9th postnatal day, and in adulthood. The double-immunofluorescent technique in combination with confocal microscopy was used. Occasional bienzymatic neurons but numerous monoenzymatic TH- or AADC-immunoreactive neurons were observed in fetuses. There was almost no overlap in the distribution of monoenzymatic neurons, and therefore few appositions were observed in between. In postnatal animals, numerous bienzymatic neurons appeared in addition to monoenzymatic neurons. They were distributed throughout the AN resulting in the increased frequency of appositions. Furthermore, specialized-like contacts between monoenzymatic TH- and AADC-immunoreactive neurons appeared. The quantification of the fibers in the ME showed that there were large specific areas of the monoenzymatic TH-immunoreactive fibers and bienzymatic fibers in fetuses, followed by the gradual reduction of the former and the increase of the latter to adulthood. The specific area of the monoenzymatic AADC-immunoreactive fibers in fetuses was rather low, and thereafter increased progressively to adulthood. The fibers of all the types were in apposition in the ME at each studied age. Close topographic relations between the neurons containing individual complementary enzymes of dopamine synthesis at the level of cell bodies and axons suggest functional interaction in between.
Collapse
Affiliation(s)
- Petr V Ershov
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, 8 Baltiiskaya St., Moscow, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Ugrumov M, Melnikova V, Ershov P, Balan I, Calas A. Tyrosine hydroxylase- and/or aromatic L-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance. Psychoneuroendocrinology 2002; 27:533-48. [PMID: 11965353 DOI: 10.1016/s0306-4530(01)00091-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study has evaluated in vivo, ex vivo and in vitro the ontogenesis and functional significance of the neurons of the arcuate nucleus (AN) expressing either individual enzymes of dopamine (DA) synthesis, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC) as well as both of them in rats from the 17th embryonic day (E) till adulthood. Immunocytochemistry, image analysis, confocal microscopy, high performance liquid chromatography with electrochemical detection and radioimmunoassay were used to solve this problem. Monoenzymatic TH-containing neurons were initially observed on E18 located in the ventrolateral AN whereas the neurons expressing only AADC or both AADC and TH first appeared on E20 in the dorsomedial AN. On E21, the monoenzymatic TH- or AADC-expressing neurons comprised more than 99% of the whole neuron population expressing the DA-synthesizing enzymes. In spite of an extremely small number (<1%) of the neurons expressing both enzymes (DArgic neurons), the dissected AN (ex vivo) and its primary cell culture (in vitro) contained a surprisingly high amount of DA and L-dihydroxyphenylalanine (L-DOPA) which were released in response to membrane depolarization. Furthermore, DA production in the AN of fetuses occurred to be sufficient to provide an inhibitory control of prolactin secretion, as in adults. The above data suggest that DA could be synthesized, at least in the AN of fetuses, by monoenzymatic neurons containing either TH or AADC, in co-operation. This hypothesis may be extended to adult animals as their AN contained the same populations of the neurons expressing DA-synthesizing enzymes as in fetuses though the proportion of true DArgic neurons increased up to 38%. During ontogenesis, the monoenzymatic TH- and AADC-containing neurons established axosomatic and axo-axonal junctions that might facilitate the L-DOPA transport from the former to the latter. Moreover, the monoenzymatic AADC-expressing neurons project their axons to the median eminence, thereby, providing the pathway for the DA transport toward the hypophysial portal circulation. Thus, DA appears to be synthesized in the AN not only by DArgic neurons but also by monoenzymatic TH- and AADC-expressing neurons in co-operation.
Collapse
Affiliation(s)
- M Ugrumov
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 26 Vavilov St., Moscow 117808, Russia.
| | | | | | | | | |
Collapse
|
15
|
Ershov PV, Ugrumov MV, Calas A, Krieger M, Thibault J. Differentiation of tyrosine hydroxylase-synthesizing and/or aromatic L-amino acid decarboxylase-synthesizing neurons in the rat mediobasal hypothalamus: quantitative double-immunofluorescence study. J Comp Neurol 2002; 446:114-22. [PMID: 11932930 DOI: 10.1002/cne.10173] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this double-immunofluorescence study, we first quantified the neurons of the arcuate nucleus as immunoreactive (+) for tyrosine hydroxylase (TH) and/or aromatic L-amino acid decarboxylase (AADC) in rats at embryonic day 21 (E21), at postnatal day 9 (P9), and in adulthood by using conventional fluorescent or confocal microscopy. On E21, monoenzymatic (TH(+)AADC immunonegative (-) and TH(-)AADC(+)) neurons and bienzymatic (TH(+)AADC(+)) neurons accounted for 99% and 1%, respectively, of the whole neuron population expressing enzymes of dopamine synthesis. Further development was characterized by the dramatic increase in TH(+)AADC(-) dorsomedial and TH(+)AADC(+) dorsomedial populations from E21 to P9 as well as by the increase in the TH(+)AADC(+) dorsomedial population (in females) and a drop in the TH(+)AADC(-) ventrolateral and TH(+)AADC(-) dorsomedial (in males) populations from P9 to adulthood. In contrast to TH(+)AADC(-) (in males) and TH(+)AADC(+) neurons, the TH(-)AADC(+) neurons did not change in number from E21 to adulthood. Thus, in rat fetuses, the neurons synthesizing TH and/or AADC were mainly monoenzymatic, whereas during postnatal life the fraction of bienzymatic neurons increased by up to 60%.
Collapse
Affiliation(s)
- Petr V Ershov
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | | | | | | | | |
Collapse
|
16
|
Bodnár I, Göõz P, Okamura H, Tóth BE, Vecsernyé M, Halász B, Nagy GM. Effect of neonatal treatment with monosodium glutamate on dopaminergic and L-DOPA-ergic neurons of the medial basal hypothalamus and on prolactin and MSH secretion of rats. Brain Res Bull 2001; 55:767-74. [PMID: 11595361 DOI: 10.1016/s0361-9230(01)00584-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of neonatal treatment with monosodium L-glutamate (MSG) on the dopaminergic systems of the medial basal hypothalamus has been investigated using tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) immunocytochemistry. Changes in plasma levels of prolactin (PRL) and alpha-melanocyte-stimulating hormone (MSH) have also been determined in intact and in MSG-treated rats after inhibition of TH by alpha-methyl-p-tyrosine (alpha-MpT) or without inhibition of enzyme activity. Monosodium glutamate resulted in a 40% reduction in the number of TH immunopositive tuberoinfundibular neurons, but no change in the number of AADC-positive tuberoinfundibular nerve cells, indicating that this reduction has occurred mainly in TH-positive but AADC-negative elements, i.e., in L-DOPA-ergic neurons. In contrast, MSG did not cause changes in the number of TH and AADC immunoreactive neurons of the periventriculohypophysial and tuberohypophysial dopaminergic systems, and it did not influence basal plasma PRL levels. alpha-methyl-p-tyrosine has increased plasma PRL concentrations in both control and MSG-treated rats of both sexes, but significantly higher responses were detected in females. None of the treatments had any effect on plasma MSH level. These findings suggest that MSG affects primarily L-DOPA-ergic neurons located in the ventrolateral part of the arcuate nucleus, but not dopaminergic neurons situated in the dorsomedial part of the arcuate nucleus; neither PRL nor MSH secretion is altered by MSG; a significant sex difference exists in the pituitary PRL response to inhibition of TH, and this response is not affected by MSG.
Collapse
Affiliation(s)
- I Bodnár
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Balan IS, Ugrumov MV, Calas A, Mailly P, Krieger M, Thibault J. Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J Comp Neurol 2000; 425:167-76. [PMID: 10954837 DOI: 10.1002/1096-9861(20000918)425:2<167::aid-cne1>3.0.co;2-k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this quantitative and semiquantitative immunocytochemical study, the authors evaluated the differentiation of neurons expressing tyrosine hydroxylase (TH) and/or aromatic L-amino acid decarboxylase (AADC) in the mediobasal hypothalamus (MBH) of male and female rats on embryonic day 18 (E18), E20, and postnatal day 9 (P9). Four neuronal populations were distinguished according to either enzyme expression or neuron location. The earliest and most prominent first population was represented by TH-immunoreactive (IR)/AADC-immunonegative (IN) neurons that were detected initially at E18 and always were located in the ventrolateral region of the MBH. The second population of TH-IN/AADC-IR neurons was observed first at E20 and, after that time, was distributed dorsomedially. The third minor population of TH-IR/AADC-IR neurons initially was detected at E20 and was located dorsomedially. The fourth population was represented by TH-IR/AADC-IN neurons that were distributed in the dorsomedial region at any studied age. The numbers of TH-IR and AADC-IR neurons increased from their initial detection at E18 and E20 until P9. The area of TH-IR and AADC-IR neurons also increased from E18 to E20 and from E20 to P9, respectively. Both TH-IR and AADC-IR neurons showed sex differences in the neuron number, size, and optic density (OD). The numbers of TH-IR neurons in males exceeded those of females at E20 and at P9, although, at P9, sexual dimorphism was a characteristic only of the ventrolateral population. The area and OD of TH-IR neurons from females exceeded those from males in the entire mediobasal hypothalamus (MBH) at E18 and E20 but only in its dorsomedial region at P9. Sexual dimorphism also was an attribute of AADC-IR neurons at E20 and P9. Their number, size, and OD were significantly higher in females than in males. Thus, the MBH of perinatal rats contained two major populations of TH-IR/AADC-IN or TH-IN-AADC-IR neurons and a minor population of TH-IR/AADC-IR neurons. The differentiating neurons expressing either enzyme showed sexual dimorphism.
Collapse
Affiliation(s)
- I S Balan
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow 117808, Russia
| | | | | | | | | | | |
Collapse
|
18
|
Kitahama K, Ikemoto K, Jouvet A, Nagatsu I, Sakamoto N, Pearson J. Aromatic L-amino acid decarboxylase- and tyrosine hydroxylase-immunohistochemistry in the adult human hypothalamus. J Chem Neuroanat 1998; 16:43-55. [PMID: 9924972 DOI: 10.1016/s0891-0618(98)00060-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distribution of cell bodies immunoreactive for tyrosine hydroxylase and aromatic L-amino acid decarboxylase was studied in the adult human hypothalamus. Many neurons in the posterior (A11) and caudal dorsal hypothalamic areas (A13) as well as in the arcuate (A12) and periventricular (A14) zone were immunoreactive for the two enzymes, suggesting that they were dopaminergic. Numerous tyrosine hydroxylase-immunoreactive neurons, which were not immunoreactive for aromatic L-amino acid decarboxylase, could be seen in the paraventricular, supraoptic and accessory nuclei (A15) as well as in the rostral dorsal hypothalamic area. These were considered to be non-dopaminergic. Conversely, large numbers of small neurons immunoreactive for aromatic L-amino acid decarboxylase but not for tyrosine hydroxylase, were identified in the premammillary nucleus (D8), zona incerta (D10), lateral hypothalamic area (D11), anterior portion of the dorsomedial nucleus (D12), suprachiasmatic nucleus (D13), medial preoptic area and bed nucleus of the stria terminalis (D14). In the human hypothalamus, besides dopaminergic cell bodies, there exists a large number of tyrosine hydroxylase-only and aromatic L-amino acid decarboxylase-only neurons, whose physiological roles remain to be determined.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, INSERM U480, CNRS ERS5645, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | | | | | |
Collapse
|
19
|
Hoffman BJ, Hansson SR, Mezey E, Palkovits M. Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 1998; 19:187-231. [PMID: 9665836 DOI: 10.1006/frne.1998.0168] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The monoamines, serotonin, dopamine, norepinephrine, epinephrine and histamine, play a critical role in the function of the hypothalamic-pituitary-adrenal axis and in the integration of information in sensory, limbic, and motor systems. The primary mechanism for termination of monoaminergic neurotransmission is through reuptake of released neurotransmitter by Na+, CI-dependent plasma membrane transporters. A second family of transporters packages monoamines into synaptic and secretory vesicles by exchange of protons. Identification of those cells which express these two families of neurotransmitter transporters is an initial step in understanding what adaptive strategies cells expressing monoamine transporters use to establish the appropriate level of transport activity and thus attain the appropriate efficiency of monoamine storage and clearance. The most recent advances in this field have yielded several surprises about their function, cellular and subcellular localization, and regulation, suggesting that these molecules are not static and most likely are the most important determinants of extracellular levels of monoamines. Here, information on the localization of mRNAs for these transporters in rodent and human brain is summarized along with immunohistochemical information at the light and electron microscopic levels. Regulation of transporters at the mRNA level by manipulation in rodents and differences in transporter site densities by tomographic techniques as an index of regulation in human disease and addictive states are also reviewed. These studies have highlighted the presence of monoamine neurotransmitter transporters in neurons but not in glia in situ. The norepinephrine transporter is present in all cells which are both tyrosine hydroxylase (TH)- and dopamine beta-hydroxylase-positive but not in those cells which are TH- and phenyl-N-methyltransferase-positive, suggesting that epinephrine cells may have their own, unique transporter. In most dopaminergic cells, dopamine transporter mRNA completely overlaps with TH mRNA-positive neurons. However, there are areas in which there is a lack of one to one correspondence. The serotonin transporter (5-HTT) mRNA is found in all raphe nuclei and in the hypothalamic dorsomedial nucleus where the 5-HTT mRNA is dramatically reduced following immobilization stress. The vesicular monoamine transporter 2 (VMAT2) is present in all monoaminergic neurons including epinephrine- and histamine-synthesizing cells. Immunohistochemistry demonstrates that the plasma membrane transporters are present along axons, soma, and dendrites. Subcellular localization of DAT by electron microscopy suggests that these transporters are not at the synaptic density but are confined to perisynaptic areas, implying that dopamine diffuses away from the synapse and that contribution of diffusion to dopamine signalling may vary between brain regions. Interestingly, the presence of VMAT2 in vesicles underlying dendrites, axons, and soma suggests that monoamines may be released at these cellular domains. An understanding of the regulation of transporter function may have important therapeutic consequences for neuroendocrine function in stress and psychiatric disorders.
Collapse
Affiliation(s)
- B J Hoffman
- Unit on Molecular Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
20
|
Kitahama K, Ikemoto K, Jouvet A, Nagatsu I, Geffard M, Okamura H, Pearson J. Dopamine synthesizing enzymes in paraventricular hypothalamic neurons of the human and monkey (Macaca fuscata). Neurosci Lett 1998; 243:1-4. [PMID: 9535098 DOI: 10.1016/s0304-3940(98)00057-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using immunohistochemistry, we demonstrated that paraventricular hypothalamic neurons immunoreactive for tyrosine hydroxylase (TH) were not immunopositive for the second step catecholamine synthesizing enzyme L-amino acid decarboxylase (AADC) in the human and monkey Macaca fuscata. In the latter species, they were not immunoreactive for dopamine. It is most likely that primate paraventricular TH-containing neurons do not synthesize dopamine.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, INSERM U480, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
More than two decades of research indicate that the peptide neurotensin (NT) and its cognate receptors participate to a remarkable extent in the regulation of mammalian neuroendocrine systems, potentially at multiple levels in a given system. NT-synthesizing neurons appear to exert a direct or indirect stimulatory influence on neurosecretory cells that synthesize gonadotropin-releasing hormone, dopamine (DA), somatostatin, and corticotropin-releasing hormone (CRH). In addition, context-specific synthesis of NT occurs in hypothalamic neurosecretory cells located in the arcuate nucleus and parvocellular paraventricular nucleus, including distinct subsets of cells which release DA, CRH, or growth hormone-releasing hormone into the hypophysial portal circulation. At the level of the anterior pituitary, NT stimulates secretion of prolactin and occurs in subsets of gonadotropes and thyrotropes. Moreover, circulating hormones influence NT synthesis in the hypothalamus and anterior pituitary, raising the possibility that NT mediates certain feedback effects of the hormones on neuroendocrine cells. Gonadal steroids alter NT levels in the preoptic area, arcuate nucleus, and anterior pituitary; adrenal steroids alter NT levels in the hypothalamic periventricular nucleus and arcuate nucleus; and thyroid hormones alter NT levels in the hypothalamus and anterior pituitary. Finally, clarification of the specific neuroendocrine roles subserved by NT should be greatly facilitated by the use of newly developed agonists and antagonists of the peptide.
Collapse
Affiliation(s)
- W H Rostène
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | |
Collapse
|
22
|
Abstract
L-DOPA is proposed to be a neurotransmitter and/or neuromodulator in CNS. It is released probably from neurons, which may contain L-DOPA as an end-product, and/or from some compartment other than catecholamine-containing vesicles. The L-DOPA itself produces presynaptic and postsynaptic responses. All are stereoselective and most are antagonized by competitive antagonist. In striatum, L-DOPA is neuromodulator, mother of catecholamines, not only a precursor for dopamine but also a potentiator of children for presynaptic beta-adrenoceptors to facilitate dopamine release and postsynaptic D2 receptors, and ACh release inhibitor. All may cooperate for Parkinson's disease. Meanwhile, supersensitization of increase in L-glutamate release to nanomolar levodopa was seen in Parkinson's model rats, which may relate to dyskinesia or "on-off" during chronic therapy. In lower brainstem, L-DOPA tonically activates postsynaptic depressor sites of NTS and CVLM and pressor sites of RVLM. L-DOPA is probably a neurotransmitter of primary baroreceptor afferents terminating in NTS. GABA, the inhibitory neuromodulator for baroreflex in NTS, tonically functions to inhibit, via GABAA receptors, L-DOPA release and depressor responses to levodopa. Levodopa inversely releases GABA. L-DOPAergic monosynaptic relay from NTS to CVLM and from PHN to RVLM is suggested. Tonic L-DOPAergic baroreceptor-aortic nerve-NTS-CVLM relay seems to carry baroreflex information. Disturbance of neuronal activity to release L-DOPA in NTS, loss of the activity in CVLM, enhancement of the activity with decreased decarboxylation and increase in sensitivity to levodopa in RVLM may be involved in maintenance of hypertension in SHR. This is a story of "L-DOPAergic receptors" with extremely high affinity and low density.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
23
|
Tillet Y, Thibault J, Krieger M. Aromatic L-amino acid decarboxylase immunohistochemistry in the suprachiasmatic nucleus of the sheep. Comparison with tyrosine hydroxylase immunohistochemistry. Brain Res 1994; 648:319-23. [PMID: 7922547 DOI: 10.1016/0006-8993(94)91134-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using antisera against tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC), we have demonstrated the presence of numerous AADC immunoreactive neurons and a few TH immunoreactive neurons, homogeneously distributed throughout the suprachiasmatic nucleus. Similar results have been described in other species. These observations show that this nucleus is able to synthesize trace amines (such as phenylethylamine or tyramine) in addition to dopamine. It is hypothesized that these trace amines are possibly involved in the integration of day length variation in sheep, a species whose reproduction is closely related to photoperiod.
Collapse
Affiliation(s)
- Y Tillet
- Laboratoire de Neuroendocrinologie Sexuelle, INRA, Nouzilly, France
| | | | | |
Collapse
|
24
|
Zoli M, Agnati LF, Tinner B, Steinbusch HW, Fuxe K. Distribution of dopamine-immunoreactive neurons and their relationships to transmitter and hypothalamic hormone-immunoreactive neuronal systems in the rat mediobasal hypothalamus. A morphometric and microdensitometric analysis. J Chem Neuroanat 1993; 6:293-310. [PMID: 7506039 DOI: 10.1016/0891-0618(93)90034-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A morphometric and microdensitometric characterization of the dopamine neurons of the mediobasal hypothalamus and their relationships with several other chemically identified systems, including putative tyrosine hydroxylase-positive/dopamine-negative neurons, was carried out after visualization of dopamine content by both immunocytochemistry and the Falck-Hillarp technique. Quantitative assessment of co-existence demonstrated that more than 95% of dopamine-immunoreactive neurons also contained tyrosine hydroxylase immunoreactivity and more than 90% of growth hormone-releasing factor-immunoreactive neurons also contained tyrosine hydroxylase immunoreactivity. Morphometric and densitometric analysis of dopamine, tyrosine hydroxylase and growth hormone-releasing factor-immunoreactive neurons in the arcuate nucleus showed that dopamine/tyrosine hydroxylase-containing and growth hormone-releasing factor/tyrosine hydroxylase-containing neuronal populations are two largely segregated cell groups with specific localization in the arcuate region, rostrocaudal extension and tyrosine hydroxylase-immunoreactivity content. Morphometric characteristics of dopamine-immunoreactive neurons were shown to be equivalent to those of catecholamine fluorescent cell bodies in the arcuate region. In addition, a cell group lacking detectable catecholamine fluorescence in normal animals but accumulating L-DOPA after peripheral loading was identified and characterized from a morphometric standpoint in the ventral premammillary nucleus. Quantitative analysis of nerve terminal co-distribution in the median eminence revealed significant correlations between dopamine and other transmitter or neurohormone systems, such as gamma-aminobutyric acid, galanin, luteinizing hormone-releasing hormone, in specific subregions of the palissade zone. These data point to discrete subregions of the median eminence, which have been called 'medianosomes', as main sites of interactions between transmitter-identified nerve terminal systems in the control of hypothalamic hormone release.
Collapse
Affiliation(s)
- M Zoli
- Institute of Human Physiology, University of Modena, Italy
| | | | | | | | | |
Collapse
|
25
|
Abstract
Hypothalamic neurosecretory neurons transcribe, translate, store, and secrete a large number of chemical messengers. The neurons contain hypothalamic signal substances that regulate the secretion of anterior pituitary hormones as well as the neurohypophysial peptides vasopressin and oxytocin. In addition to the classical hypophysiotropic hormones, a large number of neuropeptides and classical transmitters of amine and amino acid nature are present in the same cells. This is particularly evident in the magnocellular neurons of the supraoptic and paraventricular nuclei, and in parvocellular neurons of the arcuate and paraventricular nuclei. The changes in gene expression induced by experimental manipulations and the colocalization chemical messengers in hypothalamic neurosecretory neurons and its possible significance is summarized in this review.
Collapse
Affiliation(s)
- B Meister
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Le Van Thai A, Coste E, Allen JM, Palmiter RD, Weber MJ. Identification of a neuron-specific promoter of human aromatic L-amino acid decarboxylase gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 17:227-38. [PMID: 8510497 DOI: 10.1016/0169-328x(93)90006-b] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have cloned the 5' region of human aromatic L-amino acid decarboxylase (AADC) gene in a cosmid and an overlapping lambda clone, and sequenced the first five exons. A 61 base pair (bp) non-coding, first exon containing for the 5' end of a human pheochromocytoma AADC cDNA was localized 16 kb upstream of exon 2, in which translation is initiated. The transcription start site was localized by RNAse mapping, primer extension and reverse transcription-PCR. The non-conventional cap site was preceded by a modified TATA box at position -29. A strong promoter was characterized in the 560 bp region upstream of the cap site by linkage to the reporter gene LacZ, and transfection in human neuroblastoma SK-N-BE and SK-N-BE-K2 cells. Using a series of constructs bearing a varying length of 5' flanking region, three positive regulatory elements have been localized in the -560 to -394, -244 to -200 and -147 to -1 regions. Negative regulatory elements were localized in the -9000 to -560 and -394 to -316 regions. Surprisingly, constructs comprising all or the major part of intron 1 were inactive, suggesting the presence of a silencer in the first intron, or incorrect splicing events. The construct containing 560 bp of 5' flanking sequence did not express in human cholinergic neuroepithelioma cells MC-I-XC, and in three non-neuronal cell lines which displayed high AADC activities: human pancreatic carcinoma cells AsPC-1, rat insulinoma cells RINm5F and mouse anterior pituitary cells AtT20. These data suggest that we have identified a neuron-specific AADC promoter. An extensive search for a second promoter responsible for AADC gene expression in non-neuronal cells only gave negative results.
Collapse
Affiliation(s)
- A Le Van Thai
- Laboratoire de Biologie Moléculaire des Eucaryotes, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | |
Collapse
|
27
|
Takada M, Sugimoto T, Hattori T. Tyrosine hydroxylase immunoreactivity in cerebellar Purkinje cells of the rat. Neurosci Lett 1993; 150:61-4. [PMID: 8097025 DOI: 10.1016/0304-3940(93)90108-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Employing tyrosine hydroxylase (TH) immunohistochemistry, we have revealed that TH immunoreactivity occurs in cerebellar Purkinje cells in the rat. These TH-immunoreactive Purkinje cells were distributed predominantly in the crus I & II ansiform lobules and the paraflocculus, and to a lesser extent in the I & X vermal lobules. Since Purkinje cells in such cerebellar regions displayed no immunoreactivity to dopamine-beta-hydroxylase, the TH-immunoreactive Purkinje cells identified in the present study might contain dopamine or L-DOPA.
Collapse
Affiliation(s)
- M Takada
- Department of Anatomy and Cell Biology, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
28
|
De Vitry F, Hillion J, Catelon J, Thibault J, Benoliel JJ, Hamon M. Dopamine increases the expression of tyrosine hydroxylase and aromatic amino acid decarboxylase in primary cultures of fetal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 59:123-31. [PMID: 1680579 DOI: 10.1016/0165-3806(91)90092-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies, aimed at identifying which diffusible signals may influence the differentiation of embryonic neurons towards the monoaminergic phenotypes during brain development, have shown that serotonin itself could promote the 'serotoninergic-like properties' of hypothalamic cells from mouse embryos. We presently reinvestigated such 'autocrine/paracrine' regulatory mechanisms by exposing dissociated cell cultures from embryonic rat hypothalamus and brain stem to dopamine--or related agonists--in an attempt to influence their differentiation towards the catecholaminergic phenotype. Chronic treatment of cells by dopamine or apomorphine (a mixed D1/D2 agonist), but not selective D1 and D2 agonists, significantly increased the number of cells that expressed tyrosine hydroxylase (TH: as assessed with a specific anti-TH antiserum) and the activity of aromatic L-amino acid decarboxylase (AADC) in the cultures. Furthermore, apomorphine treatment also decreased the levels of cholecystokinin-like material in primary cultures from the brainstem (but not the hypothalamus) where both dopamine and cholecystokinin are--partly--colocalized in mesencephalic dopaminergic neurons. The maximal effects of both dopamine and apomorphine on TH expression and AADC activity occurred earlier in the brainstem (on cells from 14- to 15-day-old embryos) than in the hypothalamus (on cells from 15- to 16-day-old embryos), in line with the well established caudo-rostral maturation of the rat brain. Furthermore both the expression and the dopamine-induced modulation of AADC activity and TH immunoreactivity appeared to occur independently of each other. Present and previous data are in agreement with a possible autocrine/paracrine action of dopamine and serotonin during brain development.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F De Vitry
- Groupe de Neuroendocrinologie Cellulaire et Moléculaire, CNRS-URA 1115, Collège de France, Paris
| | | | | | | | | | | |
Collapse
|
29
|
Kummer W, Gibbins IL, Stefan P, Kapoor V. Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res 1990; 261:595-606. [PMID: 1978803 DOI: 10.1007/bf00313540] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cranial and spinal sensory ganglia of the guinea-pig were investigated by means of histochemistry and biochemistry for the presence of catecholamines and catecholamine-synthesizing enzymes. Sensory neurons exhibiting immunoreactivity to the rate-limiting enzyme of catecholamine synthesis, tyrosine hydroxylase (TH), were detected by immunohistochemistry in lumbo-sacral dorsal root ganglia, the nodose ganglion and the petrosal/jugular ganglion complex. The carotid body was identified as a target of TH-like-immunoreactive (TH-LI) neurons by the use of combined retrograde tracing and immunohistochemistry. Double-labelling immunofluorescence revealed that most TH-LI neurons also contained somatostatin-LI, but TH-LI did not coexist with either calcitonin gene-related peptide- or substance P-LI. TH-LI neurons did not react with antibodies to other enzymes involved in catecholamine synthesis, i.e., aromatic amino acid decarboxylase (AADC), dopamine-beta-hydroxylase (D beta H), and phenylethanolamine-N-methyl-transferase (PNMT). Petrosal neurons as well as their endings in the carotid body lacked dopamine- and L-DOPA-LI. Sensory neurons did not display glyoxylic acid-induced catecholamine fluorescence. Ganglia containing TH-LI neurons were kept in short-term organ culture after crushing their roots and the exiting nerve in order to enrich intra-axonal transmitter content at the ganglionic side of the crush. However, even under these conditions, catecholamine fluorescence was not detected in axons projecting peripherally or centrally from the ganglia. Sympathetic noradrenergic nerves entered the ganglia and terminated within them. Accordingly, biochemical analyses of guinea-pig sensory ganglia revealed noradrenaline but no dopamine. In conclusion, catecholamines within guinea-pig sensory ganglia are confined to sympathetic nerves, which fulfill presently unknown functions. The TH-LI neurons themselves, however, lack any additional sign of catecholamine synthesis, and the presence of enzymatically active TH within these neurons is questionable.
Collapse
Affiliation(s)
- W Kummer
- Institute for Anatomy and Cell Biology, University of Heidelberg, FRG
| | | | | | | |
Collapse
|
30
|
Kitahama K, Geffard M, Okamura H, Nagatsu I, Mons N, Jouvet M. Dopamine- and dopa-immunoreactive neurons in the cat forebrain with reference to tyrosine hydroxylase-immunohistochemistry. Brain Res 1990; 518:83-94. [PMID: 1975219 DOI: 10.1016/0006-8993(90)90957-d] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution of cell bodies containing immunoreactivities to dopamine (DA), L-3,4-dihydroxyphenylalanine (DOPA) and tyrosine hydroxylase (TH) was studied immunohistochemically in the cat forebrain especially in the hypothalamus with or without intraventricular administration of colchicine. In normal cats, DA-immunoreactive (IR) neurons, whose intensity of immunostainings was variable from one to another, were localized exclusively in the hypothalamus and showed a distribution pattern similar to that of TH-IR ones. They were distributed in the posterior, dorsal and periventricular hypothalamic areas. Arcuate cells showed no or very weak DA-immunoreactivity. Weak to intense DOPA-IR cells were distributed in a similar manner to DA-IR ones but were far smaller in number. In colchicine-treated animals, DA- and DOPA-immunoreactivities were enhanced particularly in arcuate and dorsal hypothalamic cells. A cluster composed of small DA- and DOPA-IR cells was identified in the area ventral to the mamillothalamic tract equivalent to rat A13c TH-IR cell group. Colchicine treatment enabled us to visualize a large number of TH-IR perikarya in the medial and lateral preoptic areas, anterior commissure nucleus, basal forebrain, area closely related to the organum vasculosum laminae terminalis, and some in the bed nucleus of the stria terminalis as has been reported in other species. However, virtually none of these cells contained detectable DA- and DOPA-immunoreactivities.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, C.N.R.S. U.R.A.1195, I.N.S.E.R.M. U.52, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | | | | | |
Collapse
|
31
|
Vincent SR, Hope BT. Tyrosine hydroxylase containing neurons lacking aromatic amino acid decarboxylase in the hamster brain. J Comp Neurol 1990; 295:290-8. [PMID: 1972709 DOI: 10.1002/cne.902950211] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have recently described populations of tyrosine hydroxylase-immunoreactive neurons in the hamster brain in regions not known to contain catecholamine cell bodies. In the present study, the nature of the tyrosine hydroxylase immunoreactivity in the hamster brain was determined. In addition, these tyrosine hydroxylase-immunoreactive cell groups were examined for their ability to express aromatic amino acid decarboxylase. Immunohistochemistry with two different antibodies to tyrosine hydroxylase identified immunoreactive cell bodies in regions known to contain catecholamine neurons, including the substantia nigra and locus ceruleus. In addition, tyrosine hydroxylase-immunoreactive neurons were observed in other regions, including the basal forebrain, inferior colliculus, lateral parabrachial nucleus, and dorsal motor nucleus of the vagus. Western blotting indicated that hamster brain contained only one immunoreactive molecule, very similar in size to rat tyrosine hydroxylase. Thus it is likely that the immunohistochemical studies stained authentic hamster tyrosine hydroxylase. Indeed, in situ hybridization studies using a synthetic oligonucleotide probe against tyrosine hydroxylase mRNA resulted in specific and heavy labelling of these novel tyrosine hydroxylase-immunoreactive neurons. When adjacent sections were stained with antibodies to aromatic amino acid decarboxylase, known catecholamine cell groups were stained. However, the novel tyrosine hydroxylase cell groups did not display any aromatic amino acid decarboxylase immunoreactivity. These results suggest that neurons are present in the hamster brain that are able to hydroxylate tyrosine to L-DOPA, but that lack the ability to decarboxylate aromatic amino acids to produce dopamine or other catecholamines.
Collapse
Affiliation(s)
- S R Vincent
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
32
|
Kitahama K, Okamura H, Goldstein M, Nagatsu I, Bérod A, Jouvet M. A new group of tyrosine hydroxylase-immunoreactive neurons in the cat thalamus. Brain Res 1989; 478:156-60. [PMID: 2564297 DOI: 10.1016/0006-8993(89)91489-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new cell group composed of a large number of neurons immunoreactive to tyrosine hydroxylase (TH) was demonstrated in the paraventricular nucleus and midline nuclei of the cat thalamus, using four different anti-TH sera after colchicine treatment. However, in these regions, we did not detect any cell bodies containing other catecholamine synthesizing enzymes nor dopamine.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, INSERM U52, C.N.R.S. UA1195, Faculté de Médecine, Lyon, France
| | | | | | | | | | | |
Collapse
|
33
|
Kitahama K, Mons N, Okamura H, Jouvet M, Geffard M. Endogenous L-dopa, its immunoreactivity in neurons of midbrain and its projection fields in the cat. Neurosci Lett 1988; 95:47-52. [PMID: 3226622 DOI: 10.1016/0304-3940(88)90630-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
L-DOPA (L-3,4-dihydroxyphenylalanine) immunoreactivity was demonstrated in neurons of the cat ventral midbrain and its projection areas, using an immunohistochemical method in conjunction with a newly developed highly specific anti-L-DOPA serum. L-DOPA-immunoreactive (IR) neurons were found in the substantia nigra, retrorubral area and ventral tegmental area of Tsai. L-DOPA-labeled fibers and terminals were hardly detectable in the nigrostriatal pathway and in the caudate nucleus which showed very intense dopamine-immunoreactivity. In contrast, many short labeled processes were detectable in the central amygdala and, although very few in number, in the entorhinal cortex.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, C.N.R.S. UA1195, INSERM U52, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | | | |
Collapse
|
34
|
Okamura H, Kitahama K, Nagatsu I, Geffard M. Comparative topography of dopamine- and tyrosine hydroxylase-immunoreactive neurons in the rat arcuate nucleus. Neurosci Lett 1988; 95:347-53. [PMID: 2906418 DOI: 10.1016/0304-3940(88)90683-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The distribution of dopamine (DA)-immunoreactive (IR) cells is described in the rat arcuate nucleus of the hypothalamus and its adjacent areas and compared with that of tyrosine hydroxylase (TH)-IR cells. Small DA-IR cells were seen to be aggregated mainly in the dorsomedial part of the nucleus, but were hardly detectable in its ventrolateral portion and neighbouring periarcuate region which showed many larger TH-IR cells. This study reveals, for the first time, the differences in the respective topography of those neurons which actually contain detectable DA and those which contain TH, the initial synthesizing enzyme of catecholamine.
Collapse
Affiliation(s)
- H Okamura
- INSERM U171, C.N.R.S. UA1195, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | | | | | | |
Collapse
|
35
|
Okamura H, Kitahama K, Mons N, Ibata Y, Jouvet M, Geffard M. L-dopa-immunoreactive neurons in the rat hypothalamic tuberal region. Neurosci Lett 1988; 95:42-6. [PMID: 3226621 DOI: 10.1016/0304-3940(88)90629-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The presence of L-DOPA-immunoreactivity is reported for the first time in the rat hypothalamic tuberal region. L-DOPA-immunoreactive neurons were demonstrated to be present in the ventrolateral part of the arcuate nucleus and periarcuate region just dorsal to the ventral surface of the brain (VLAR/PA). Weakly L-DOPA-immunostained neurons were found in the dorsomedial part of the arcuate nucleus and its neighboring periventricular nucleus (DMAR/PV). In contrast, dopamine (DA)-immunoreactive neurons were detected only in the DMAR/PV. These findings suggest that L-DOPA exists not only as a precursor of DA in neurons of the DMAR/PV, but also as an end-product in cells of the VLAR/PA.
Collapse
Affiliation(s)
- H Okamura
- Department of Anatomy, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | |
Collapse
|