1
|
Voskamp C, Koevoet WJLM, Van Osch GJVM, Narcisi R. Senescence during early differentiation reduced the chondrogenic differentiation capacity of mesenchymal progenitor cells. Front Bioeng Biotechnol 2023; 11:1241338. [PMID: 37609111 PMCID: PMC10441241 DOI: 10.3389/fbioe.2023.1241338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Mesenchymal stromal/progenitor cells (MSCs) are promising for cartilage cell-based therapies due to their chondrogenic differentiation capacity. However, MSCs can become senescent during in vitro expansion, a state characterized by stable cell cycle arrest, metabolic alterations, and substantial changes in the gene expression and secretory profile of the cell. In this study, we aimed to investigate how senescence and the senescence-associated secretory phenotype (SASP) affect chondrogenic differentiation of MSCs. Methods: To study the effect of senescence, we exposed MSCs to gamma irradiation during expansion or during chondrogenic differentiation (the pellet culture). Western blot analysis was used to evaluate MSCs response to the chondrogenic inductor TGF-β. Results: When senescence was induced during expansion or at day 7 of chondrogenic differentiation, we observed a significant reduction in the cartilage matrix. Interestingly, when senescence was induced at day 14 of differentiation, chondrogenesis was not significantly altered. Moreover, exposing chondrogenic pellets to the medium conditioned by senescent pellets had no significant effect on the expression of anabolic or catabolic cartilage markers, suggesting a neglectable paracrine effect of senescence on cartilage generation in our model. Finally, we show that senescent MSCs showed lower phosphorylated SMAD2 levels after TGFβ1 stimulation than control MSCs. Conclusion: Overall, these results suggest that the occurrence of senescence in MSCs during expansion or early differentiation could be detrimental for cartilage tissue engineering.
Collapse
Affiliation(s)
- Chantal Voskamp
- Department of Orthopaedics and Sports Medicine, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wendy J. L. M. Koevoet
- Department of Otorhinolaryngology, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerjo J. V. M. Van Osch
- Department of Orthopaedics and Sports Medicine, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Otorhinolaryngology, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
2
|
Siraj Y, Galderisi U, Alessio N. Senescence induces fundamental changes in the secretome of mesenchymal stromal cells (MSCs): implications for the therapeutic use of MSCs and their derivates. Front Bioeng Biotechnol 2023; 11:1148761. [PMID: 37229499 PMCID: PMC10203235 DOI: 10.3389/fbioe.2023.1148761] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population containing multipotent adult stem cells with a multi-lineage differentiation capacity, which differentiated into mesodermal derivatives. MSCs are employed for therapeutic purposes and several investigations have demonstrated that the positive effects of MSC transplants are due to the capacity of MSCs to modulate tissue homeostasis and repair via the activity of their secretome. Indeed, the MSC-derived secretomes are now an alternative strategy to cell transplantation due to their anti-inflammatory, anti-apoptotic, and regenerative effects. The cellular senescence is a dynamic process that leads to permanent cell cycle arrest, loss of healthy cells' physiological functions and acquiring new activities, which are mainly accrued through the release of many factors, indicated as senescence-associated secretory phenotype (SASP). The senescence occurring in stem cells, such as those present in MSCs, may have detrimental effects on health since it can undermine tissue homeostasis and repair. The analysis of MSC secretome is important either for the MSC transplants and for the therapeutic use of secretome. Indeed, the secretome of MSCs, which is the main mechanism of their therapeutic activity, loses its beneficial functions and acquire negative pro-inflammatory and pro-aging activities when MSCs become senescent. When MSCs or their derivatives are planned to be used for therapeutic purposes, great attention must be paid to these changes. In this review, we analyzed changes occurring in MSC secretome following the switch from healthy to senescence status.
Collapse
Affiliation(s)
- Yesuf Siraj
- Department of Experimental Medicine, University of Campania, Naples, Italy
- Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania, Naples, Italy
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania, Naples, Italy
| |
Collapse
|
3
|
Manni E, Jeffery N, Chambers D, Slade L, Etheridge T, Harries LW. An evaluation of the role of miR-361-5p in senescence and systemic ageing. Exp Gerontol 2023; 174:112127. [PMID: 36804517 DOI: 10.1016/j.exger.2023.112127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Senescent cells are key regulators of ageing and age-associated disease. MicroRNAs (miRs) are a key component of the molecular machinery governing cellular senescence, with several known to regulate important genes associated with this process. We sought to identify miRs associated with both senescence and reversal by pinpointing those showing opposing directionality of effect in senescence and in response to senotherapy. Cellular senescence phenotypes were assessed in primary human endothelial cells following targeted manipulation of emergent miRNAs. Finally, the effect of conserved target gene knockdown on lifespan and healthspan was assessed in a C. elegans system in vivo. Three miRNAs (miR-5787, miR-3665 and miR-361-5p) demonstrated associations with both senescence and rejuvenation, but miR-361-5p alone demonstrated opposing effects in senescence and rescue. Treatment of late passage human endothelial cells with a miR-361-5p mimic caused a 14 % decrease in the senescent load of the culture. RNAi gene knockdown of conserved miR-361-5p target genes in a C. elegans model however resulted in adverse effects on healthspan and/or lifespan. Although miR-361-5p may attenuate aspects of the senescence phenotype in human primary endothelial cells, many of its validated target genes also play essential roles in the regulation or formation of the cytoskeletal network, or its interaction with the extracellular matrix. These processes are essential for cell survival and cell function. Targeting miR-361-5p alone may not represent a promising target for future senotherapy; more sophisticated approaches to attenuate its interaction with specific targets without roles in essential cell processes would be required.
Collapse
Affiliation(s)
- Emad Manni
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - Nicola Jeffery
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London WC2R 2LS, UK
| | - Luke Slade
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Lorna W Harries
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
4
|
Kyi P, Hendee K, Hunyenyiwa T, Matus K, Mammoto T, Mammoto A. Endothelial senescence mediates hypoxia-induced vascular remodeling by modulating PDGFB expression. Front Med (Lausanne) 2022; 9:908639. [PMID: 36203755 PMCID: PMC9530050 DOI: 10.3389/fmed.2022.908639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Uncontrolled accumulation of pulmonary artery smooth muscle cells (PASMCs) to the distal pulmonary arterioles (PAs) is one of the major characteristics of pulmonary hypertension (PH). Cellular senescence contributes to aging and lung diseases associated with PH and links to PH progression. However, the mechanism by which cellular senescence controls vascular remodeling in PH is not fully understood. The levels of senescence marker, p16INK4A and senescence-associated β-galactosidase (SA-β-gal) activity are higher in PA endothelial cells (ECs) isolated from idiopathic pulmonary arterial hypertension (IPAH) patients compared to those from healthy individuals. Hypoxia-induced accumulation of α-smooth muscle actin (αSMA)-positive cells to the PAs is attenuated in p16fl/fl-Cdh5(PAC)-CreERT2 (p16iΔEC) mice after tamoxifen induction. We have reported that endothelial TWIST1 mediates hypoxia-induced vascular remodeling by increasing platelet-derived growth factor (PDGFB) expression. Transcriptomic analyses of IPAH patient lungs or hypoxia-induced mouse lung ECs reveal the alteration of senescence-related gene expression and their interaction with TWIST1. Knockdown of p16INK4A attenuates the expression of PDGFB and TWIST1 in IPAH patient PAECs or hypoxia-treated mouse lungs and suppresses accumulation of αSMA–positive cells to the supplemented ECs in the gel implanted on the mouse lungs. Hypoxia-treated mouse lung EC-derived exosomes stimulate DNA synthesis and migration of PASMCs in vitro and in the gel implanted on the mouse lungs, while p16iΔEC mouse lung EC-derived exosomes inhibit the effects. These results suggest that endothelial senescence modulates TWIST1-PDGFB signaling and controls vascular remodeling in PH.
Collapse
Affiliation(s)
- Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Tadanori Mammoto
| |
Collapse
|
5
|
Horn G, Schäfers C, Thiermann H, Völkl S, Schmidt A, Rothmiller S. Sulfur mustard single-dose exposure triggers senescence in primary human dermal fibroblasts. Arch Toxicol 2022; 96:3053-3066. [PMID: 35906424 PMCID: PMC9525386 DOI: 10.1007/s00204-022-03346-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Chronic wounds, skin blisters, and ulcers are the result of skin exposure to the alkylating agent sulfur mustard (SM). One potential pathomechanism is senescence, which causes permanent growth arrest with a pro-inflammatory environment and may be associated with a chronic wound healing disorder. SM is known to induce chronic senescence in human mesenchymal stem cells which are subsequently unable to fulfill their regenerative function in the wound healing process. As dermal fibroblasts are crucial for cutaneous wound healing by being responsible for granulation tissue formation and synthesis of the extracellular matrix, SM exposure might also impair their function in a similar way. This study, therefore, investigated the SM sensitivity of primary human dermal fibroblasts (HDF) by determining the dose-response curve. Non-lethal concentrations LC1 (3 µM) to LC25 (65 µM) were used to examine the induction of senescence. HDF were exposed once to 3 µM, 13 µM, 24 µM, 40 µM or 65 μM SM, and were then cultured for 31 days. Changes in morphology as well as at the genetic and protein level were investigated. For the first time, HDF were shown to undergo senescence in a time- and concentration-dependent manner after SM exposure. They developed a characteristic senescence phenotype and expressed various senescence markers. Proinflammatory cytokines and chemokines were significantly altered in SM-exposed HDF as part of a senescence-associated secretory phenotype. The senescent fibroblasts can thus be considered a contributor to the SM-induced chronic wound healing disorder and might serve as a new therapeutic target in the future.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Catherine Schäfers
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Sandra Völkl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Institute of Sport Science, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|