1
|
Alimoghadam S, Eslami A, Alimoghadam R, Bahrami Mianrood I, Azizmohammad Looha M, Khodadadi S, Shokouhi S, Alavi Darazam I. The frequency of AmpC overproduction, OprD downregulation and OprM efflux pump expression in Pseudomonas aeruginosa: A comprehensive meta-analysis. J Glob Antimicrob Resist 2024; 39:159-169. [PMID: 39303871 DOI: 10.1016/j.jgar.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a major opportunistic pathogen responsible for a wide range of infections. The emergence of antibiotic resistance in this pathogen poses a significant public health challenge. This study aims to conduct a comprehensive meta-analysis of studies conducted in Iran to determine the frequency of key antibiotic resistance mechanisms in Pseudomonas aeruginosa and their association with multidrug-resistant and extensively drug-resistant strains or pandrug-resistant strains. METHODS Systematic database searches encompassing literature up to June 2023 were undertaken. The selected studies centered on OprD downregulation, efflux pump (mexAB-OprM, mexXY-OprM) expression, and AmpC overproduction. Extracted data were synthesised in a meta-analysis for pooled frequency determination of each resistance mechanism. RESULTS In total, 24 studies were included. OprD downregulation exhibited a pooled frequency of 61%. Efflux pump component frequency ranged from 48% to 77.5%. AmpC overproduction was identified in 29.1% of isolates. Polymyxin B and colistin demonstrated lower antibiotic resistance rates, with pooled frequency of 1% and 1.6%, respectively. Conversely, resistance to other antibiotics ranged widely, with pooled frequency spanning 38.4% to 98.2%. CONCLUSIONS This study underscores the concerning frequency of diverse antibiotic resistance mechanisms in Pseudomonas aeruginosa strains from Iran. Concurrent OprD downregulation, mexAB, mexXY, OprM expression, and AmpC overproduction highlight the urgent need for stringent infection control and prudent antibiotic usage to curb the dissemination of these resistant strains. PROSPERO CRD42022379311.
Collapse
Affiliation(s)
- Shaya Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arvin Eslami
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rojina Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ibrahim Bahrami Mianrood
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sanaz Khodadadi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shervin Shokouhi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Dumont CF, Ferreira ALM, Santos RLM, de Jesus E Silva B, Costa LRM, Delfiol DJZ, Rossi DA, Melo RT. Insight into microbiological control potential of pathogens in a veterinary hospital. J Hosp Infect 2024; 150:169-171. [PMID: 38762099 DOI: 10.1016/j.jhin.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Affiliation(s)
- C F Dumont
- Applied Biotechnology Laboratory, Federal University of Uberlândia, Uberlândia, Brazil
| | - A L M Ferreira
- Applied Biotechnology Laboratory, Federal University of Uberlândia, Uberlândia, Brazil
| | - R L M Santos
- Applied Biotechnology Laboratory, Federal University of Uberlândia, Uberlândia, Brazil
| | - B de Jesus E Silva
- Applied Biotechnology Laboratory, Federal University of Uberlândia, Uberlândia, Brazil
| | - L R M Costa
- Applied Biotechnology Laboratory, Federal University of Uberlândia, Uberlândia, Brazil.
| | - D J Z Delfiol
- Veterinary Hospital, Federal University of Uberlândia, Uberlândia, Brazil
| | - D A Rossi
- Applied Biotechnology Laboratory, Federal University of Uberlândia, Uberlândia, Brazil
| | - R T Melo
- Applied Biotechnology Laboratory, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
3
|
Sammarro Silva KJ, Lima AR, Dias LD, de Souza M, Nunes Lima TH, Bagnato VS. Hydrogen peroxide preoxidation as a strategy for enhanced antimicrobial photodynamic action against methicillin-resistant Staphylococcus aureus. JOURNAL OF WATER AND HEALTH 2023; 21:1922-1932. [PMID: 38153721 PMCID: wh_2023_245 DOI: 10.2166/wh.2023.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Antimicrobial photodynamic treatment (aPDT) is a photooxidative process based on the excitation of a photosensitizer (PS) in the presence of molecular oxygen, under specific wavelengths of light. It is a promising method for advanced treatment of water and wastewater, particularly targeting disinfection challenges, such as antibiotic-resistant bacteria (ARB). Research in improved aPDT has been exploring new PS materials, and additives in general. Hydrogen peroxide (H2O2) a widely applied disinfectant, mostly in the food industry and clinical settings, present environmentally negligible residuals at the usually applied concentrations, making it friendly for the water and wastewater sectors. Here, we explored the effects of preoxidation with H2O2 followed by blue light-mediated (450 nm) aPDT using curcumin (a natural-based PS) against methicillin-resistant Staphylococcus aureus (MRSA). Results of the sequential treatment pointed to a slight hampering in aPDT efficiency at very low H2O2 concentrations, followed by an increasing cooperative effect up to a deleterious point (≥7 log10 inactivation in CFU mL-1), suggesting a synergistic interaction of preoxidation and aPDT. The increased performance in H2O2-pretreated aPDT encourages studies of optimal operational conditions for the assisted technology and describes potentials for using the described strategy to tackle the issue of ARB spread.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil E-mail:
| | - Alessandra Ramos Lima
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Lucas Danilo Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil
| | - Mariana de Souza
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Thalita Hellen Nunes Lima
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Vanderlei Salvador Bagnato
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil; Biomedical Engineering, Texas A&M University College of Engineering, 3127 TAMU, College Station, TX 77843-3127, USA
| |
Collapse
|
4
|
Denissen J, Reyneke B, Barnard T, Khan S, Khan W. Risk assessment of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa in environmental water sources: Development of surrogate models for antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166217. [PMID: 37604372 DOI: 10.1016/j.scitotenv.2023.166217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The presence of Enterococcus faecium (E. faecium), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), and the aminoglycoside resistance genes, aac(6')-Ib and aac(6')-aph(2″), was investigated in environmental water sources obtained from informal settlements in the Western Cape (South Africa). Using ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR) analysis, E. faecium, K. pneumoniae, and P. aeruginosa were detected in 88.9 %, 100 %, and 93.3 % of the samples (n = 45), respectively, with a significantly higher mean concentration recorded for K. pneumoniae (7.83 × 104 cells/100 mL) over the sampling period. The aac(6')-Ib gene was detected in 95.6 % (43/45) of the environmental water samples [mean concentration of 7.07 × 106 gene copies (GC)/100 mL], while the aac(6')-aph(2″) gene was detected in 100 % (n = 45) of the samples [mean concentration of 6.68 × 105 GC/100 mL]. Quantitative microbial risk assessment (QMRA) subsequently indicated that the risks posed by K. pneumoniae and P. aeruginosa were linked to intentional drinking, washing/bathing, cleaning of the home, and swimming, in the samples collected from the various sampling sites. Surrogate risk assessment models were then designed and applied for Gram-positive [aac(6')-aph(2″) gene] and Gram-negative [aac(6')-Ib gene] pathogens that may exhibit aminoglycoside resistance. The results indicated that only the Gram-negative pathogens posed a risk (>10-4) in all the samples for cleaning of the home and intentional drinking, as well as for washing laundry by hand, garden hosing, garden work, washing/bathing, accidental consumption, and swimming at the stream and marsh sites. Thus, while environmental waters may pose a health risk of exposure to pathogenic bacteria, the results obtained indicate that screening for antibiotic resistant genes, associated with multiple genera/species, could serve as a surrogate model for estimating risks with the target group under investigation.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Tobias Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 7305, South Africa
| | - Sehaam Khan
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 7305, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
5
|
Szemraj M, Glajzner P, Sienkiewicz M. Decreased susceptibility to vancomycin and other mechanisms of resistance to antibiotics in Staphylococcus epidermidis as a therapeutic problem in hospital treatment. Sci Rep 2023; 13:13629. [PMID: 37604965 PMCID: PMC10442409 DOI: 10.1038/s41598-023-40866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Multidrug-resistant coagulase-negative staphylococci represent a real therapeutic challenge. The aim of the study was to emphasize the importance of heteroresistance to vancomycin presence in methicillin-resistant strains of S. epidermidis. The research comprised 65 strains of S. epidermidis. Heteroresistance to vancomycin was detected with the use of the agar screening method with Brain Heart Infusion and a population profile analysis (PAP test). In addition, types of cassettes and genes responsible for resistance to antibiotics for 22 multidrug resistant strains were determined. Our investigations showed that 56 of 65 S. epidermidis strains were phenotypically resistant to methicillin. The tested strains were mostly resistant to erythromycin, gentamicin, clindamycin, and ciprofloxacin. Six strains showed decreased susceptibility to vancomycin and their heterogeneous resistance profiles were confirmed with the PAP test. All tested multi-resistant strains exhibited the mecA gene. More than half of them possessed type IV cassettes. ant(4')-Ia and aac(6')/aph(2''), ermC and tetK genes were most commonly found. The described phenomenon of heteroresistance to vancomycin in multidrug resistant bacteria of the Staphylococcus genus effectively inhibits a therapeutic effect of treatment with this antibiotic. That is why it is so important to search for markers that will enable to identify heteroresistance to vancomycin strains under laboratory conditions.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland.
| | - Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Szemraj M, Lisiecki P, Glajzner P, Szewczyk EM. Vancomycin heteroresistance among methicillin-resistant clinical isolates S. haemolyticus, S. hominis, S. simulans, and S. warneri. Braz J Microbiol 2023; 54:159-167. [PMID: 36374479 PMCID: PMC9944261 DOI: 10.1007/s42770-022-00870-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
Besides being an essential part of the skin microbiome, coagulase-negative staphylococci are the etiological factors of serious infections. The aim of the study was to evaluate the heteroresistance to vancomycin and the potential antimicrobial efficacy of teicoplanin and daptomycin against the multiresistant strains of S. haemolyticus, S. hominis, S. warneri, and S. simulans. The study covered 80 clinical coagulase-negative staphylococci. Teicoplanin, vancomycin, and daptomycin MICs for the tested strains were determined according to EUCAST recommendation. The vanA and vanB genes were searched. The brain heart infusion screen agar method detected vancomycin heteroresistance. The population analysis profile method and analysis of autolytic activity were applied for the strains growing on BHI containing 4 mg/L vancomycin. Seven S. haemolyticus, two S. hominis, and two S. warneri strains presented a heterogeneous resistance to vancomycin. Their subpopulations were able to grow on a medium containing 4-12 mg/L of vancomycin. Monitoring heteroresistance to peptide antibiotics, which are often the last resort in staphylococcal infections, is essential due to the severe crisis in antibiotic therapy and the lack of alternatives to treat infections with multiresistant strains. Our work highlights the selection of resistant strains and the need for more careful use of peptide antibiotics.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland.
| | - Paweł Lisiecki
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland
| | - Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszyńskiego 1, 90-235, Łódź, Poland
| |
Collapse
|
7
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
8
|
Prevalence of ESBL-Producing Enterobacter Species Resistant to Carbapenems in Iran: A Systematic Review and Meta-Analysis. Int J Microbiol 2022; 2022:8367365. [PMID: 36312785 PMCID: PMC9616654 DOI: 10.1155/2022/8367365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Carbapenems are the last-line therapy for multidrug-resistant (MDR) infections caused by Enterobacterales, including those caused by Enterobacter species. However, the recent emergence of carbapenem-resistant (CR) and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae pathogens, which are resistant to nearly all antibiotics, has raised concerns among international healthcare organizations. Hence, because there is no comprehensive data in Iran, the current study aimed to evaluate the prevalence of antibiotic resistance among Enterobacter species, especially CR and ESBL-producing strains, in Iran. Methods The literature search was performed up to June 21, 2021, in national and international databases using MeSH-extracted keywords, i.e., Enterobacter, antibiotic resistance, carbapenem, ESBL, and Iran. Study selection was done based on the predefined inclusion and exclusion criteria, and data analysis was carried out using the Comprehensive Meta-Analysis (CMA) software. Results The pooled prevalence of Enterobacter species resistant to various antibiotics is as follows: imipenem 16.6%, meropenem 16.2%, aztreonam 40.9%, ciprofloxacin 35.3%, norfloxacin 31%, levofloxacin 48%, gentamicin 42.1%, amikacin 30.3%, tobramycin 37.2%, tetracycline 50.1%, chloramphenicol 25.7%, trimethoprim/sulfamethoxazole 52%, nalidixic acid 49.1%, nitrofurantoin 43%, ceftriaxone 49.3%, cefixime 52.4%, cefotaxime 52.7%, ceftazidime 47.9%, cefepime 43.6%, and ceftizoxime 45.5%. The prevalence rates of MDR and ESBL-producing Enterobacter species in Iran were 63.1% and 32.8%, respectively. Conclusion In accordance with the warning of international organizations, our results revealed a high prevalence of ESBL-producing Enterobacter species in Iran, which is probably associated with the high prevalence of Enterobacter species resistant to most of the assessed antibiotics, especially MDR strains. However, the resistance rate to carbapenems was relatively low, and these drugs can still be considered as drugs of choice for the treatment of Enterobacter infections in Iran. Nevertheless, continuous monitoring of drug resistance along with antibiotic therapy based on the local data and evaluation of the therapeutic efficacy of new antibiotics or combination therapeutic strategies, such as ceftazidime/avibactam, meropenem/vaborbactam, plazomicin, and eravacycline, is recommended.
Collapse
|
9
|
Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, Khan W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int J Hyg Environ Health 2022; 244:114006. [PMID: 35841823 DOI: 10.1016/j.ijheh.2022.114006] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
Abstract
The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens are characterised by increased levels of resistance towards multiple classes of first line and last-resort antibiotics. Although these pathogens are frequently isolated from clinical environments and are implicated in a variety of life-threatening, hospital-associated infections; antibiotic resistant ESKAPE strains have been isolated from environmental reservoirs such as surface water, wastewater, food, and soil. Literature on the persistence and subsequent health risks posed by the ESKAPE isolates in extra-hospital settings is however, limited and the current review aims to elucidate the primary reservoirs of these pathogens in the environment, their antibiotic resistance profiles, and the link to community-acquired infections. Additionally, information on the current state of research regarding health-risk assessments linked to exposure of the ESKAPE pathogens in the natural environment, is outlined.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Tobias Barnard
- Water and Health Research Centre, University of Johannesburg, PO Box 17011, Doornfontein, 7305, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
10
|
Biofilm Matrix Formation in Human: Clinical Significance, Diagnostic Techniques, and Therapeutic Drugs. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Some recent reports have indicated that almost 80% of clinical infections in humans have biofilm origin and impose additional healthcare costs. This study was an updated review of extracellular polymeric substance matrix (Biofilm) formation in humans and elaborated on its clinical significance, diagnosis, and therapeutic approaches. Evidence Acquisition: This narrative study reviewed the most recent information on the significance of microbial biofilm formation in clinical settings, common biofilm-producing bacterial species, its diagnosis, antibiotic drug resistance, and new approaches to the treatment of infections associated with biofilm formation. Results: Evidence indicated a permanent increase in the frequency of microbial biofilm in the central venous catheter, mechanical heart valve, and urinary catheter, as well as persistent infections. However, antimicrobial resistance induced by biofilms formation and the antimicrobial treatment of biofilms were problematic. Moreover, several assays and lab devices were described to evaluate biofilm formation. Furthermore, new attitudes towards anti-biofilm treatments were introduced in this paper. Conclusions: The number of different mechanisms were in accordance with the recent knowledge on how biofilms play a critical role in the disease pathogenesis. Biofilm strikes the treatment and surveillance of patients bearing infectious diseases under different conditions. The use of new methods in anti-biofilm treatments is effective for the recovery of infected patients.
Collapse
|
11
|
Nasiri MJ, Mirsaeidi M, Mousavi SMJ, Arshadi M, Fardsanei F, Deihim B, Davoudabadi S, Zamani S, Hajikhani B, Goudarzi H, Goudarzi M, Seghatoleslami ZS, Dabiri H, Tabarsi P. Prevalence and Mechanisms of Carbapenem Resistance in Klebsiella pneumoniae and Escherichia coli: A Systematic Review and Meta-Analysis of Cross-Sectional Studies from Iran. Microb Drug Resist 2020; 26:1491-1502. [DOI: 10.1089/mdr.2019.0440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | - Mania Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Deihim
- Department of Bacteriology and Virology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Sara Davoudabadi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Zamani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Seghatoleslami
- Department of Infectious Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical TB and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Molecular Detection of Panton Valentine Leukocidin Toxin in Clinical Isolates of Staphylococcus aureus from Kiambu County, Kenya. Int J Microbiol 2020; 2020:3106747. [PMID: 32908521 PMCID: PMC7474361 DOI: 10.1155/2020/3106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022] Open
Abstract
Panton-Valentine leukocidin gene is produced by Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus isolates as a pore-forming toxin is largely responsible for skin and soft tissue illnesses. MRSA produces PVL toxins through lukS and lukF proteins causing tissue necrosis by damaging membrane of the defense cells. Presence of PVL toxin was tested from the 54 S. aureus clinical isolates obtained from Thika and Kiambu Level 5 Hospitals, in Kiambu County, Kenya, by Geno Type® MRSA assay (Hain Life Science, Nehren, Germany). DNA was isolated from freshly harvested bacterial cultures by spin column using Geno Type DNA isolation kit. The detection of PVL toxins was performed by amplification of genomic DNA and by reverse hybridization that identifies PVL genes using Geno Type MRSA kit. Out of 138 samples that were collected from patients in Kiambu County, 54 S. aureus isolates were obtained, of which 14 (25.9%; 95% CI = 11.9-38.9) samples had PVL toxins. The isolates that were obtained from the female patients had a higher PVL toxin prevalence of 35.7%, while the isolates collected from the male patients had a lower prevalence of 15.4% (P = 0.09). The pediatrics department had the highest PVL gene prevalence compared to outpatient department and surgical units (P = 0.08). However, the age groups of patients and the hospital attended by patients showed no significant difference in terms of PVL gene prevalence (P = 0.26). Therefore, the patients' gender and hospital units were not significantly associated with PVL gene prevalence (P = 0.08). This study shows that PVL positive isolates occur in the sampled hospitals in the county and female as well as children must be taken into consideration among patients with wound infections when isolating S. aureus.
Collapse
|
13
|
Antibiofilm Activity of Cellobiose Dehydrogenase Enzyme (CDH) Isolated from Aspergillus niger on Biofilm of Clinical Staphylococcus epidermidis and Pseudomonas aeruginosa Isolates. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.90635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Preparation and Purification of Recombinant Protein Fragment OmpA240-356 from Acinetobacter baumannii as a Novel Epitope for Vaccination. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.85933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Nasiri MJ, Zamani S, Fardsanei F, Arshadi M, Bigverdi R, Hajikhani B, Goudarzi H, Tabarsi P, Dabiri H, Feizabadi MM. Prevalence and Mechanisms of Carbapenem Resistance in Acinetobacter baumannii: A Comprehensive Systematic Review of Cross-Sectional Studies from Iran. Microb Drug Resist 2019; 26:270-283. [PMID: 30822197 DOI: 10.1089/mdr.2018.0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Carbapenem-resistant Acinetobacter baumannii (CRAB) is recognized to be among the most difficult antimicrobial-resistant gram-negative bacilli to control and treat. An understanding of the epidemiology of CRAB and the mechanisms of resistance to carbapenems is necessary to develop strategies to curtail their spread. Methods: Electronic databases were searched from January 1995 to December 2017 for all studies, which: (1) provide data on the frequency and antibiotic resistance profile of the isolated A. baumannii and (2) describe the mechanisms of carbapenem resistance in detail. Results: Sixty-eight studies were found referring to mechanisms of carbapenem resistance in clinical isolates of A. baumannii, and 56 studies were found referring to the frequency of CRAB. The pooled frequency of carbapenem resistance was 85.1% (95% confidence interval [CI]: 82.2-88.1) in 8,067 clinical isolates of A. baumannii. Resistances due to blaOXA23 (55.3%), blaOXA24 (41.4%), and blaOXA58 (5.2%) genes were the most prevalent reported mechanisms of resistance to carbapenem, respectively. Conclusions: Our data warn that CRAB will rise if the current situation remains uncontrolled. Better control infection strategies and antibiotic managements, particularly in the health care systems, are needed to limit the spread of this pathogen.
Collapse
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Zamani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mania Arshadi
- Department of Medical Laboratory Sciences, Faculty of Para Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical TB and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kaushik A, Kaushik M, Lather V, Dua J. Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance. Curr Drug Targets 2019; 20:756-762. [DOI: 10.2174/1389450120666181217101812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
An emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations,
posing a global threat to human health. The production of the metallo-β-lactamase enzyme is the
most powerful strategy of bacteria to produce resistance. An efficient way to combat this global health
threat is the development of broad/non-specific type of metallo-β-lactamase inhibitors, which can inhibit
the different isoforms of the enzyme. Till date, there are no clinically active drugs against metallo-
β-lactamase. The lack of efficient drug molecules against MBLs carrying bacteria requires continuous
research efforts to overcome the problem of multidrug-resistance bacteria. The present review will
discuss the clinically potent molecules against different variants of B1 metallo-β-lactamase.
Collapse
Affiliation(s)
| | | | - Viney Lather
- Amity institute of Pharmacy, Amity University, Noida, India
| | - J.S. Dua
- School of Pharmacy, MMU, Sadopur, Ambala, India
| |
Collapse
|
17
|
Detection of Genes Involved in Biofilm Formation in MDR and XDR Acinetobacter baumannii Isolated from Human Clinical Specimens in Isfahan, Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.85766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Overview Perspective of Bacterial Strategies of Resistance to Biocides and Antibiotics. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.65744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|