1
|
Koul D, Chander D, Manhas RS, Hossain MM, Dar MJ, Chaubey A. Purification, functional characterization and enhanced production of serratiopeptidase from Serratia marcescens MES-4: An endophyte isolated from Morus rubra. J Biotechnol 2024; 387:58-68. [PMID: 38582407 DOI: 10.1016/j.jbiotec.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Serratiopeptidase, a proteolytic enzyme serves as an important anti-inflammatory and analgesic medication. Present study reports the production and purification of extracellular serratiopeptidase from an endophyte, Serratia marcescens MES-4, isolated from Morus rubra. Purification of the enzyme by Ion exchange chromatography led to the specific activity of 13,030 U/mg protein of serratiopeptidase, showcasing about 3.1 fold enhanced activity. The catalytic domain of the purified serratiopeptidase, composed of Zn coordinated with three histidine residues (His 209, His 213, and His 219), along with glutamate (Glu 210) and tyrosine (Tyr 249). The molecular mass, as determined by SDS-PAGE was ∼51 kDa. The purified serratiopeptidase displayed optimal activity at pH 9.0, temperature 50°C. Kinetic studies revealed Vmax and Km values of 33,333 U/mL and 1.66 mg/mL, respectively. Further, optimized conditions for the production of serratiopeptidase by Taguchi design led to the productivity of 87 U/mL/h with 87.9 fold enhanced production as compared to the previous conditions.
Collapse
Affiliation(s)
- Diksha Koul
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, Campus Ghaziabad, Ghaziabad 201002, India
| | - Devtulya Chander
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, Campus Ghaziabad, Ghaziabad 201002, India
| | - Ravi S Manhas
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Md Mehedi Hossain
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, Campus Ghaziabad, Ghaziabad 201002, India
| | - Mohd Jamal Dar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, Campus Ghaziabad, Ghaziabad 201002, India
| | - Asha Chaubey
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, Campus Ghaziabad, Ghaziabad 201002, India.
| |
Collapse
|
2
|
Rouhani M, Valizadeh V, Bakhshandeh H, Hosseinzadeh SA, Molasalehi S, Atyabi SM, Norouzian D. Improved anti-biofilm activity and long-lasting effects of novel serratiopeptidase immobilized on cellulose nanofibers. Appl Microbiol Biotechnol 2023; 107:6487-6496. [PMID: 37672071 DOI: 10.1007/s00253-023-12734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
Today, enzymatic treatment is a progressive field in combating biofilm producing pathogens. In this regard, serratiopeptidase, a medicinally important metalloprotease, has been recently highlighted as an enzyme with proved anti-biofilm activity. In the present study, in order to increase the long-lasting effects of the enzyme, serratiopeptidase and the novel engineered forms with enhanced anti-biofilm activity were immobilized on the surface of cellulose nanofibers (CNFs) as a natural polymer with eminent properties. For this, recombinant serratiopeptidases including the native and previously designed enzymes were produced, purified and conjugated to the CNF by chemical and physical methods. Immobilization was confirmed using different scanning and microscopic methods. The enzyme activity was assessed using casein hydrolysis test. Enzyme release analysis was performed using dialysis tube method. Anti-biofilm activity of free and immobilized enzymes has been examined on Staphylococcus aureus and Pseudomonas aeruginosa strains. Finally, cytotoxicity of enzyme-conjugated CNFs was performed by MTT assay. The casein hydrolysis results confirmed fixation of all recombinant enzymes on CNFs by chemical method; however, inadequate fixation of these enzymes was found using cold atmospheric plasma (CAP). The AFM, FTIR, and SEM analysis confirmed appropriate conjugation of enzymes on the surface of CNFs. Immobilization of enzymes on CNFs improved the anti-biofilm activity of serratiopeptidase enzymes. Interestingly, the novel engineered serratiopeptidase (T344 [8-339ss]) exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms. In conclusion, incorporation of serratiopeptidases into CNFs improves their anti-biofilm activities without baring any cytotoxicity. KEY POINTS: • Enzymes were successfully immobilized on cellulose nanofibers using chemical method. • Immobilization of enzymes on CNFs improved their anti-biofilm activity. • T344 [8-339ss] exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Haleh Bakhshandeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
- QC Department, Osve Pharmaceutical Co., Tehran, Iran
| | - Sara Ali Hosseinzadeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Molasalehi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Atyabi
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Nair SR, C SD. Serratiopeptidase: An integrated View of Multifaceted Therapeutic Enzyme. Biomolecules 2022; 12:1468. [PMID: 36291677 PMCID: PMC9599151 DOI: 10.3390/biom12101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2023] Open
Abstract
Microbial products have been used for the treatment of different diseases for many centuries. The serratiopeptidase enzyme provides a new hope for COVID-19-infected patients. Nowadays, anti-inflammatory drugs are easy to obtain at minimal expenditure from microbial sources. Serratia sp. is identified as one of the most efficient bacteria produced from serratiopeptidase. Screening for new and efficient bacterial strains from different sources has been of interest in recent years. Serratiopeptidase remains the most well-known anti-inflammatory drug of choice. Serratiopeptidase is a cheaper and safer anti-inflammatory drug alternative to NSAIDs. The multifaceted properties of serratiopeptidase may lead towards arthritis, diabetes, cancer and thrombolytic treatments. Existing serratiopeptidase treatments in combination with antibiotics are popular in the treatment of postoperative swelling. Although an exclusive number of serratiopeptidase-producing strains have been derived, there is an urge for new recombinant strains to enhance the production of the enzyme. This review explores the properties of serratiopeptidase, different therapeutic aspects, industrial production, and various analytical techniques used in enzyme recovery. In addition, the review highlights the therapeutic and clinical aspects of the serratiopeptidase enzyme to combat COVID-19-induced respiratory syndrome.
Collapse
Affiliation(s)
| | - Subathra Devi. C
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
4
|
Enhanced Production Process of Recombinant Mature Serratiopeptidase in Escherichia coli Using Fed-Batch Culture by Self-Proteolytic Activity of Fusion Protein. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial enzymes are increasingly finding applications as therapeutics due to their targeted activity and minimal side effects. Serratiopeptidase, also known as a miracle enzyme, has already proved its potential as an anti-inflammatory, mucolytic, fibrinolytic, analgesic in many studies. A cost effective, bioreactor level production process has been described here comprising of the fed-batch fermentation to produce recombinant serratiopeptidase protein expressed as a fusion construct. High yield of cell mass as well as protein was obtained by the optimization of bioreactor parameters. The downstream solubilization and purification processes were also optimized to achieve maximum yield of pure, active serratiopeptidase protein. A final yield of 2.5 ± 0.764 g L−1 of protein was obtained, having 8382 ± 291 U mg−1 of specific caseinolytic activity. Additionally, a novel, unexpected self-proteolytic activity of the enzyme that cleaves the N-terminal 6× His-SUMO fusion tag along with the enzyme propeptide, thus yielding a mature serratiopeptidase, was also found.
Collapse
|
5
|
Wang Y, Wang J, Zhang X, Tong Y, Yang R. Genomic and transcriptomic analysis of Bacillus subtilis JNFE1126 with higher nattokinase production through ultraviolet combined 60Co-γ ray mutagenesis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|