1
|
Kalirad A, Sommer RJ. The role of plasticity and stochasticity in coexistence. Ecol Lett 2024; 27:e14370. [PMID: 38348631 DOI: 10.1111/ele.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024]
Abstract
Species coexistence in ecological communities is a central feature of biodiversity. Different concepts, i.e., contemporary niche theory, modern coexistence theory, and the unified neutral theory, have identified many building blocks of such ecological assemblies. However, other factors, such as phenotypic plasticity and stochastic inter-individual variation, have received little attention, in particular in animals. For example, how resource polyphenisms resulting in predator-prey interactions affect coexistence is currently unknown. Here, we present an integrative theoretical-experimental framework using the nematode plasticity model Pristionchus pacificus with its well-studied mouth-form dimorphism resulting in cannibalism. We develop an individual-based model that relies upon synthetic data based on our empirical measurements of fecundity and polyphenism to preserve demographic heterogeneity. We demonstrate how the interplay between plasticity and individual stochasticity result in all-or-nothing outcomes at the local level. Coexistence is made possible when spatial structure is introduced.
Collapse
Affiliation(s)
- Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Komata S, Yoda S, KonDo Y, Shinozaki S, Tamai K, Fujiwara H. Functional unit of supergene in female-limited Batesian mimicry of Papilio polytes. Genetics 2023; 223:iyac177. [PMID: 36454671 PMCID: PMC9910408 DOI: 10.1093/genetics/iyac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Supergenes are sets of genes and genetic elements that are inherited like a single gene and control complex adaptive traits, but their functional roles and units are poorly understood. In Papilio polytes, female-limited Batesian mimicry is thought to be regulated by a ∼130 kb inversion region (highly diversified region: HDR) containing 3 genes, UXT, U3X, and doublesex (dsx) which switches non-mimetic and mimetic types. To determine the functional unit, we here performed electroporation-mediated RNAi analyses (and further Crispr/Cas9 for UXT) of genes within and flanking the HDR in pupal hindwings. We first clarified that non-mimetic dsx-h had a function to form the non-mimetic trait in female and only dsx-H isoform 3 had an important function in the formation of mimetic traits. Next, we found that UXT was involved in making mimetic-type pale-yellow spots and adjacent gene sir2 in making red spots in hindwings, both of which refine more elaborate mimicry. Furthermore, downstream gene networks of dsx, U3X, and UXT screened by RNA sequencing showed that U3X upregulated dsx-H expression and repressed UXT expression. These findings demonstrate that a set of multiple genes, not only inside but also flanking HDR, can function as supergene members, which extends the definition of supergene unit than we considered before. Also, our results indicate that dsx functions as the switching gene and some other genes such as UXT and sir2 within the supergene unit work as the modifier gene.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shinichi Yoda
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yûsuke KonDo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Souta Shinozaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kouki Tamai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
3
|
Dardiry M, Piskobulu V, Kalirad A, Sommer RJ. Experimental and theoretical support for costs of plasticity and phenotype in a nematode cannibalistic trait. Evol Lett 2023; 7:48-57. [PMID: 37065436 PMCID: PMC10091500 DOI: 10.1093/evlett/qrac001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/01/2022] [Accepted: 12/06/2022] [Indexed: 02/04/2023] Open
Abstract
Developmental plasticity is the ability of a genotype to express multiple phenotypes under different environmental conditions and has been shown to facilitate the evolution of novel traits. However, while the associated cost of plasticity, i.e., the loss in fitness due to the ability to express plasticity in response to environmental change, and the cost of phenotype, i.e., the loss of fitness due to expressing a fixed phenotype across environments, have been theoretically predicted, empirically such costs remain poorly documented and little understood. Here, we use a plasticity model system, hermaphroditic nematode Pristionchus pacificus, to experimentally measure these costs in wild isolates under controlled laboratory conditions. P. pacificus can develop either a bacterial feeding or predatory mouth morph in response to different external stimuli, with natural variation of mouth-morph ratios between strains. We first demonstrated the cost of phenotype by analyzing fecundity and developmental speed in relation to mouth morphs across the P. pacificus phylogenetic tree. Then, we exposed P. pacificus strains to two distinct microbial diets that induce strain-specific mouth-form ratios. Our results indicate that the plastic strain does shoulder a cost of plasticity, i.e., the diet-induced predatory mouth morph is associated with reduced fecundity and slower developmental speed. In contrast, the non-plastic strain suffers from the cost of phenotype since its phenotype does not change to match the unfavorable bacterial diet but shows increased fitness and higher developmental speed on the favorable diet. Furthermore, using a stage-structured population model based on empirically derived life history parameters, we show how population structure can alleviate the cost of plasticity in P. pacificus. The results of the model illustrate the extent to which the costs associated with plasticity and its effect on competition depend on ecological factors. This study provides support for costs of plasticity and phenotype based on empirical and modeling approaches.
Collapse
Affiliation(s)
- Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Veysi Piskobulu
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biol Evol 2021; 13:6178796. [PMID: 33739390 PMCID: PMC8160319 DOI: 10.1093/gbe/evab057] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
5
|
McCallum J, Laing W, Bulley S, Thomson S, Catanach A, Shaw M, Knaebel M, Tahir J, Deroles S, Timmerman-Vaughan G, Crowhurst R, Hilario E, Chisnall M, Lee R, Macknight R, Seal A. Molecular Characterisation of a Supergene Conditioning Super-High Vitamin C in Kiwifruit Hybrids. PLANTS (BASEL, SWITZERLAND) 2019; 8:E237. [PMID: 31336644 PMCID: PMC6681377 DOI: 10.3390/plants8070237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
During analysis of kiwifruit derived from hybrids between the high vitamin C (ascorbic acid; AsA) species Actinidia eriantha and A. chinensis, we observed bimodal segregation of fruit AsA concentration suggesting major gene segregation. To test this hypothesis, we performed whole-genome sequencing on pools of hybrid genotypes with either high or low AsA fruit. Pool-GWAS (genome-wide association study) revealed a single Quantitative Trait Locus (QTL) spanning more than 5 Mbp on chromosome 26, which we denote as qAsA26.1. A co-dominant PCR marker was used to validate this association in four diploid (A. chinensis × A. eriantha) × A. chinensis backcross families, showing that the A. eriantha allele at this locus increases fruit AsA levels by 250 mg/100 g fresh weight. Inspection of genome composition and recombination in other A. chinensis genetic maps confirmed that the qAsA26.1 region bears hallmarks of suppressed recombination. The molecular fingerprint of this locus was examined in leaves of backcross validation families by RNA sequencing (RNASEQ). This confirmed strong allelic expression bias across this region as well as differential expression of transcripts on other chromosomes. This evidence suggests that the region harbouring qAsA26.1 constitutes a supergene, which may condition multiple pleiotropic effects on metabolism.
Collapse
Affiliation(s)
- John McCallum
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand.
- Biochemistry Department, University of Otago, Dunedin 9054, New Zealand.
| | - William Laing
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Sean Bulley
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Susan Thomson
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Andrew Catanach
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Martin Shaw
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Mareike Knaebel
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Jibran Tahir
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Simon Deroles
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Gail Timmerman-Vaughan
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Ross Crowhurst
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Elena Hilario
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Matthew Chisnall
- Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | - Robyn Lee
- Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | - Richard Macknight
- Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | - Alan Seal
- New Cultivar Innovation, The New Zealand Institute for Plant & Food Research Limited, 412 No 1 Road, RD 2 Te Puke 3182, New Zealand
| |
Collapse
|
6
|
Rodriguez J, Pitts JP, von Dohlen CD, Wilson JS. Müllerian mimicry as a result of codivergence between velvet ants and spider wasps. PLoS One 2014; 9:e112942. [PMID: 25396424 PMCID: PMC4232588 DOI: 10.1371/journal.pone.0112942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/11/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have delineated a large Nearctic Müllerian mimicry complex in Dasymutilla velvet ants. Psorthaspis spider wasps live in areas where this mimicry complex is found and are phenotypically similar to Dasymutilla. We tested the idea that Psorthaspis spider wasps are participating in the Dasymutilla mimicry complex and that they codiverged with Dasymutilla. We performed morphometric analyses and human perception tests, and tabulated distributional records to determine the fit of Psorthaspis to the Dasymutilla mimicry complex. We inferred a dated phylogeny using nuclear molecular markers (28S, elongation factor 1-alpha, long-wavelength rhodopsin and wingless) for Psorthaspis species and compared it to a dated phylogeny of Dasymutilla. We tested for codivergence between the two groups using two statistical analyses. Our results show that Psorthaspis spider wasps are morphologically similar to the Dasymutilla mimicry rings. In addition, our tests indicate that Psorthaspis and Dasymutilla codiverged to produce similar color patterns. This study expands the breadth of the Dasymutilla Müllerian mimicry complex and provides insights about how codivergence influenced the evolution of mimicry in these groups.
Collapse
Affiliation(s)
- Juanita Rodriguez
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - James P. Pitts
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Carol D. von Dohlen
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Joseph S. Wilson
- Department of Biology, Utah State University - Tooele, Tooele, Utah, United States of America
| |
Collapse
|
7
|
Supergenes and their role in evolution. Heredity (Edinb) 2014; 113:1-8. [PMID: 24642887 DOI: 10.1038/hdy.2014.20] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 02/03/2023] Open
Abstract
Adaptation is commonly a multidimensional problem, with changes in multiple traits required to match a complex environment. This is epitomized by balanced polymorphisms in which multiple phenotypes co-exist and are maintained in a population by a balance of selective forces. Consideration of such polymorphisms led to the concept of the supergene, where alternative phenotypes in a balanced polymorphism segregate as if controlled by a single genetic locus, resulting from tight genetic linkage between multiple functional loci. Recently, the molecular basis for several supergenes has been resolved. Thus, major chromosomal inversions have been shown to be associated with polymorphisms in butterflies, ants and birds, offering a mechanism for localised reduction in recombination. In several examples of plant self-incompatibility, the functional role of multiple elements within the supergene architecture has been demonstrated, conclusively showing that balanced polymorphism can be maintained at multiple coadapted and tightly linked elements. Despite recent criticism, we argue that the supergene concept remains relevant and is more testable than ever with modern molecular methods.
Collapse
|
8
|
Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP, Kronforst MR. doublesex is a mimicry supergene. Nature 2014; 507:229-32. [PMID: 24598547 DOI: 10.1038/nature13112] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/30/2014] [Indexed: 12/30/2022]
Abstract
One of the most striking examples of sexual dimorphism is sex-limited mimicry in butterflies, a phenomenon in which one sex--usually the female--mimics a toxic model species, whereas the other sex displays a different wing pattern. Sex-limited mimicry is phylogenetically widespread in the swallowtail butterfly genus Papilio, in which it is often associated with female mimetic polymorphism. In multiple polymorphic species, the entire wing pattern phenotype is controlled by a single Mendelian 'supergene'. Although theoretical work has explored the evolutionary dynamics of supergene mimicry, there are almost no empirical data that address the critical issue of what a mimicry supergene actually is at a functional level. Using an integrative approach combining genetic and association mapping, transcriptome and genome sequencing, and gene expression analyses, we show that a single gene, doublesex, controls supergene mimicry in Papilio polytes. This is in contrast to the long-held view that supergenes are likely to be controlled by a tightly linked cluster of loci. Analysis of gene expression and DNA sequence variation indicates that isoform expression differences contribute to the functional differences between dsx mimicry alleles, and protein sequence evolution may also have a role. Our results combine elements from different hypotheses for the identity of supergenes, showing that a single gene can switch the entire wing pattern among mimicry phenotypes but may require multiple, tightly linked mutations to do so.
Collapse
Affiliation(s)
- K Kunte
- 1] National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India [2]
| | - W Zhang
- 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2]
| | - A Tenger-Trolander
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - D H Palmer
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - A Martin
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - R D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - S P Mullen
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - M R Kronforst
- 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2] Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
9
|
Miyakawa H, Gotoh H, Sugimoto N, Miura T. Effect of juvenoids on predator-induced polyphenism in the water flea, Daphnia pulex. ACTA ACUST UNITED AC 2013; 319:440-50. [PMID: 23757335 DOI: 10.1002/jez.1807] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/22/2013] [Accepted: 05/06/2013] [Indexed: 11/10/2022]
Abstract
In Daphnia pulex, juveniles form "neckteeth" a defensive structure on their heads, in response to predatory kairomones released by Chaoborus larvae. This phenomenon provides a model experimental system for the study of developmental mechanisms and evolutionary processes in predator-induced polyphenisms. Although it is thought that kairomone signals are sensed and converted into physiological signals resulting in morphological changes, little is known about the endocrine and physiological mechanisms of this process. Juvenile hormones and related chemicals, that is, juvenoids, are key hormones responsible for various physiological events in insects, including polyphenisms. In some crustaceans, methyl farnesoate (MF) is known to act as a juvenoid. In order to investigate the functions of juvenoids in defense morph formation, we treated daphnids with MF as well as JHIII (Juvenile Hormone III, an insect juvenoid) and fenoxycarb (a synthetic juvenile hormone analog) during their developmental stages. Strikingly, in the first-instar juveniles, all examined juvenoids stimulated the formation of neckteeth only in the presence of kairomones, not by themselves. This juvenoid effect on the neckteeth formation might be due to disturbance of the JH pathway. Juvenoid treatments reduced tail-spine length, whereas predatory kairomones are known to elongate tail spine. These results suggest that other physiological factors are responsible for the tail-spine elongation.
Collapse
Affiliation(s)
- Hitoshi Miyakawa
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | | | | | | |
Collapse
|
10
|
Miyakawa H, Imai M, Sugimoto N, Ishikawa Y, Ishikawa A, Ishigaki H, Okada Y, Miyazaki S, Koshikawa S, Cornette R, Miura T. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex. BMC DEVELOPMENTAL BIOLOGY 2010; 10:45. [PMID: 20433737 PMCID: PMC2888767 DOI: 10.1186/1471-213x-10-45] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera). RESULTS Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. CONCLUSIONS It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.
Collapse
Affiliation(s)
- Hitoshi Miyakawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Clark R, Brown SM, Collins SC, Jiggins CD, Heckel DG, Vogler AP. Colour pattern specification in the Mocker swallowtail Papilio dardanus: the transcription factor invected is a candidate for the mimicry locus H. Proc Biol Sci 2008; 275:1181-8. [PMID: 18285283 DOI: 10.1098/rspb.2007.1762] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The swallowtail butterfly, Papilio dardanus, is an iconic example of a polymorphic Batesian mimic. The expression of various female-limited colour forms is thought to be controlled by a single autosomal locus, termed H, whose function in determining the wing pattern remains elusive. As a step towards the physical mapping of H, we established a set of 272 polymorphic amplified fragment length polymorphism (AFLP) markers (EcoRI-MseI). Segregation patterns in a 'female-informative' brood (exploiting the absence of crossing over in female Lepidoptera) mapped these AFLPs to 30 linkage groups (putative chromosomes). The difference between the hippocoon and cenea female forms segregating in this family resides on a single one of these linkage groups, defined by 14 AFLPs. In a 'male-informative' cross (markers segregating within a linkage group), a pair of AFLPs co-segregated closely with the two female forms, except in four recombinants out of 19 female offspring. Linkage with these AFLP markers using four further female-informative families demonstrated that the genetic factor determining other morphs (poultoni, lamborni and trimeni) also maps to this same linkage group. The candidate gene invected, obtained in a screen for co-segregation of developmental genes with the colour forms, resides in a 13.9 cM interval flanked by the two AFLP markers. In the male-informative family invected co-segregated perfectly with the hippocoon/cenea factor, despite the four crossovers with the AFLPs. These findings make invected, and possibly its closely linked paralogue engrailed, strong candidates for H. This is supported by their known role in eyespot specification in nymphalid butterfly wings.
Collapse
Affiliation(s)
- Rebecca Clark
- Department of Entomology, Natural History Museum, London, UK
| | | | | | | | | | | |
Collapse
|
12
|
MILLER JAMESS. Phylogeny of the Neotropical moth tribe Josiini (Notodontidae: Dioptinae): a hidden case of Müllerian mimicry. Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.1996.tb01260.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
|
14
|
Beldade P, Rudd S, Gruber JD, Long AD. A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model. BMC Genomics 2006; 7:130. [PMID: 16737530 PMCID: PMC1534037 DOI: 10.1186/1471-2164-7-130] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/31/2006] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Butterfly wing color patterns are a key model for integrating evolutionary developmental biology and the study of adaptive morphological evolution. Yet, despite the biological, economical and educational value of butterflies they are still relatively under-represented in terms of available genomic resources. Here, we describe an Expression Sequence Tag (EST) project for Bicyclus anynana that has identified the largest available collection to date of expressed genes for any butterfly. RESULTS By targeting cDNAs from developing wings at the stages when pattern is specified, we biased gene discovery towards genes potentially involved in pattern formation. Assembly of 9,903 ESTs from a subtracted library allowed us to identify 4,251 genes of which 2,461 were annotated based on BLAST analyses against relevant gene collections. Gene prediction software identified 2,202 peptides, of which 215 longer than 100 amino acids had no homology to any known proteins and, thus, potentially represent novel or highly diverged butterfly genes. We combined gene and Single Nucleotide Polymorphism (SNP) identification by constructing cDNA libraries from pools of outbred individuals, and by sequencing clones from the 3' end to maximize alignment depth. Alignments of multi-member contigs allowed us to identify over 14,000 putative SNPs, with 316 genes having at least one high confidence double-hit SNP. We furthermore identified 320 microsatellites in transcribed genes that can potentially be used as genetic markers. CONCLUSION Our project was designed to combine gene and sequence polymorphism discovery and has generated the largest gene collection available for any butterfly and many potential markers in expressed genes. These resources will be invaluable for exploring the potential of B. anynana in particular, and butterflies in general, as models in ecological, evolutionary, and developmental genetics.
Collapse
Affiliation(s)
- Patrícia Beldade
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, USA
- Institute of Biology of the University of Leiden, Leiden, The Netherlands
| | - Stephen Rudd
- Bioinformatics Laboratory, Turku Centre for Biotechnology, Turku, Finland
| | - Jonathan D Gruber
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, USA
| |
Collapse
|
15
|
Badyaev AV, Young RL. Complexity and integration in sexual ornamentation: an example with carotenoid and melanin plumage pigmentation. J Evol Biol 2004; 17:1317-27. [PMID: 15525416 DOI: 10.1111/j.1420-9101.2004.00781.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual ornaments often consist of several components produced by distinct developmental processes. The complexity of sexual ornaments might be favoured by mate choice of individual components in different environments which ultimately results in weak interrelationships (integration) among the developmental processes that produce these components. At the same time, sexual selection for greater exaggeration of individual components favours their stronger co-dependence on organismal resources. This should ultimately produce stronger condition-mediated integration among ornaments' components in individuals with the most exaggerated ornamentation. Here we distinguish between these two sources of integration by examining the relationship between integration and elaboration of sexual ornamentation in three bird species: two with carotenoid-based sexual ornamentation (the house finch, Carpodacus mexicanus and common redpoll, Carduelis flammea) and a species with melanin-based sexual ornamentation (house sparrow, Passer domesticus). We found that integration of components varied with elaboration of carotenoid-based ornamentation but not of melanin ornamentation. In the house finches, integration was the highest in individuals with small ornaments and decreased with ornament elaboration whereas the pattern was the opposite in common redpolls. These results suggest that in these species integration and complexity of carotenoid-based ornamental components are due to shared condition-dependence of distinct developmental pathways, whereas integration and complexity of the melanin ornamentation is due to organismal integration of developmental pathways and is largely condition- and environment-invariant. Thus, functionally, ornamentation of the house sparrows can be considered a single trait, whereas complexity of the house finch and redpoll ornamentation varies with ornament elaboration and individual condition.
Collapse
Affiliation(s)
- A V Badyaev
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA.
| | | |
Collapse
|
16
|
Abstract
The mocker swallowtail, Papilio dardanus, has a female-limited polymorphic mimicry. This polymorphism is controlled by allelic variation at a single locus with at least 11 alleles. Many of the alternative morphs are accurate mimics of different species of distasteful butterflies. Geneticists have long been interested in the mechanism by which a single gene can have such diverse and profound effects on the phenotype and in the process by which these complex phenotypic effects could have evolved. Here we present the results of a morphometric analysis of the pleiotropic effects of the mimicry gene on the array of elements that makes up the overall pattern. We show that the patterns controlled by mimicking alleles are more variable and less internally correlated than those controlled by nonmimicking alleles, suggesting the two are subject to different degrees of selection and mutational variance. Analysis of the pleiotropic dominance of the alleles reveals a consistent pattern of dominance within a coevolved genetic background and a mosaic pattern of dominant and recessive effects (including overdominance) in a heterologous genetic background. The alleles of the mimicry gene have big effects on some pattern elements and small effects on others. When the array of big phenotypic effects of the mimicry gene is applied to the presumptive ancestral color pattern, it produces a reasonable resemblance to distasteful models and suggests the initial steps that may have produced the mimicry as well as the polymorphism.
Collapse
|
17
|
Brakefield PM, French V, Zwaan BJ. Development and the Genetics of Evolutionary Change Within Insect Species. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2003. [DOI: 10.1146/annurev.ecolsys.34.011802.132425] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
▪ Abstract Changes in genes and in developmental processes generate the phenotypic variation that is sorted by natural selection in adaptive evolution. We review several case studies in which artificial selection experiments in insects have led to divergent morphologies, and where further work has revealed information about the underlying changes at both the genetic and developmental levels. In addition, we examine several studies of phenotypic plasticity where multidisciplinary approaches are also beginning to reveal more about how developmental processes are modulated. Such integrated research will lead to a richer understanding of the changes in development that occur during evolutionary responses to natural selection, and it will also more rigorously examine how developmental processes can influence the tempo and direction of evolutionary change.
Collapse
Affiliation(s)
- Paul M. Brakefield
- Institute of Biology, Leiden University, Leiden, 2300 RA The Netherlands
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Vernon French
- Institute of Biology, Leiden University, Leiden, 2300 RA The Netherlands
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Bas J. Zwaan
- Institute of Biology, Leiden University, Leiden, 2300 RA The Netherlands
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
18
|
|
19
|
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA.
| | | |
Collapse
|
20
|
Beldade P, Koops K, Brakefield PM. Modularity, individuality, and evo-devo in butterfly wings. Proc Natl Acad Sci U S A 2002; 99:14262-7. [PMID: 12391291 PMCID: PMC137872 DOI: 10.1073/pnas.222236199] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Indexed: 11/18/2022] Open
Abstract
Modularity in animal development is thought to have facilitated morphological diversification, but independent change of those traits integrated within a module might be restricted. Correlations among traits describe potential developmental constraints on evolution. These have often been postulated to explain patterns of morphological variation and have been examined theoretically but seldom analyzed experimentally. Here, we use artificial selection to explore the modular organization of butterfly wing patterns and the extent to which their evolution is constrained by the genetic correlations among repeated pattern elements. We show that, in Bicyclus anynana butterflies, despite the evidence that all eyespots are developmentally coupled, the response to selection for increased size of one individual eyespot can proceed in a manner largely independent from selection imposed on another eyespot. We argue that among-eyespot correlations are unlikely to have constrained the evolutionary diversification of butterfly wing patterns but might be important when only limited time is available for adaptive evolution to occur. The ease with which we have been able to produce independent responses to artificial selection on different eyespots may be linked to a legacy of natural selection favoring individuality. Our results are discussed within the context of the evolution of modularity and individuality of serially repeated morphological traits.
Collapse
Affiliation(s)
- Patricia Beldade
- Institute of Evolutionary and Ecological Sciences, P.O. Box 9516, 2300 RA, Leiden, The Netherlands.
| | | | | |
Collapse
|
21
|
Abstract
Understanding how the spectacular diversity of colour patterns on butterfly wings is shaped by natural selection, and how particular pattern elements are generated, has been the focus of both evolutionary and developmental biologists. The growing field of evolutionary developmental biology has now begun to provide a link between genetic variation and the phenotypes that are produced by developmental processes and that are sorted by natural selection. Butterfly wing patterns are set to become one of the few examples of morphological diversity to be studied successfully at many levels of biological organization, and thus to yield a more complete picture of adaptive morphological evolution.
Collapse
Affiliation(s)
- Patrícia Beldade
- Institute of Evolutionary and Ecological Sciences, Leiden University, PO Box 9516, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
22
|
|
23
|
Brakefield PM. The evolution–development interface and advances with the eyespot patterns of Bicyclus butterflies. Heredity (Edinb) 1998. [DOI: 10.1046/j.1365-2540.1998.00366.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Jiggins CD, McMillan WO. The genetic basis of an adaptive radiation: warning colour in two
Heliconius
species. Proc Biol Sci 1997. [DOI: 10.1098/rspb.1997.0161] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chris D. Jiggins
- The Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK
| | - W. Owen McMillan
- The Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK
| |
Collapse
|
25
|
Abstract
Butterflies have uniquely vivid and varied wing-colour patterns. Recent studies show that their formation involves novel expression of homologues of Drosophila appendage-patterning genes, notably Distal-less. Pattern diversity can arise at several developmental stages, either through mutation or in response to environmental conditions. Many loci are known (e.g. in Heliconius) that have major effects on the colour pattern and these invite molecular analysis.
Collapse
Affiliation(s)
- V French
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratory, UK.
| |
Collapse
|