1
|
Potticary AL, Belk MC, Creighton JC, Ito M, Kilner R, Komdeur J, Royle NJ, Rubenstein DR, Schrader M, Shen S, Sikes DS, Smiseth PT, Smith R, Steiger S, Trumbo ST, Moore AJ. Revisiting the ecology and evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecol Evol 2024; 14:e70175. [PMID: 39170054 PMCID: PMC11336061 DOI: 10.1002/ece3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Investigating fundamental processes in biology requires the ability to ground broad questions in species-specific natural history. This is particularly true in the study of behavior because an organism's experience of the environment will influence the expression of behavior and the opportunity for selection. Here, we provide a review of the natural history and behavior of burying beetles of the genus Nicrophorus to provide the groundwork for comparative work that showcases their remarkable behavioral and ecological diversity. Burying beetles have long fascinated scientists because of their well-developed parenting behavior, exhibiting extended post-hatching care of offspring that varies extensively within and across taxa. Despite the burgeoning success of burying beetles as a model system for the study of behavioral evolution, there has not been a review of their behavior, ecology, and evolution in over 25 years. To address this gap, we leverage a developing community of researchers who have contributed to a detailed knowledge of burying beetles to highlight the utility of Nicrophorus for investigating the causes and consequences of social and behavioral evolution.
Collapse
Affiliation(s)
- Ahva L. Potticary
- Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark C. Belk
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - J. Curtis Creighton
- Department of Biological SciencesPurdue University NorthwestHammondIndianaUSA
| | - Minobu Ito
- Department of Environmental ScienceToho UniversityFunabashiChibaJapan
| | | | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nick J. Royle
- Centre for Ecology and Conservation, Faculty of Environment, Science & the EconomyUniversity of ExeterCornwallUK
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew York CityNew YorkUSA
| | - Matthew Schrader
- Department of BiologySewanee, The University of the SouthSewaneeTennesseeUSA
| | | | - Derek S. Sikes
- University of Alaska Museum and Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Per T. Smiseth
- Institute of Ecology and EvolutionThe University of EdinburghEdinburghUK
| | - Rosemary Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Stephen T. Trumbo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutWaterburyConnecticutUSA
| | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Moiseienko M, Vlaschenko A. Quantitative evaluation of individual food intake by insectivorous vespertilionid bats (Chiroptera, Vespertilionidae). Biol Open 2021; 10:269042. [PMID: 34096574 PMCID: PMC8214420 DOI: 10.1242/bio.058511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Insectivorous bats provide important ecosystem services, especially by suppressing and controlling the insects’ biomass. To empirically quantify the number of insects consumed by European vespertilionid bats per night, we estimated their ratio of dry mass of feces to mass of consumed insects. This study combines the results of feeding in captivity and the data obtained in field surveys; dry mass of feces was measured in both cases. In captivity, we analyzed the effect of species, age and sex of bats, species of insects consumed and the mass of food portion on the dry mass of feces. Using coefficients of the regression model, we estimated the number of insects consumed by free-ranging bats based on dry mass of their feces. According to our estimates, on average, one individual of one of the largest European bat species, Nyctalusnoctula, consumes 2.2 g (ranging from 0.5 to 8.2 g) of insects per one feeding night, while the smallest European bats of genus Pipistrellus consume 0.4 g (ranging from 0.1 to 1.3 g), further confirming the importance of insectivorous bats for ecosystem services. This publication offers the novel method for the estimation of insects’ biomass consumed by bats. Summary: This study applies a combination of experiment in captivity and field survey that can be used as an easy methodological approach to estimate insect biomass consumed by bats.
Collapse
Affiliation(s)
- Marharyta Moiseienko
- Bat Rehabilitation Center of Feldman Ecopark, 62340 Lisne, Kharkiv Region, Ukraine
| | - Anton Vlaschenko
- Bat Rehabilitation Center of Feldman Ecopark, 62340 Lisne, Kharkiv Region, Ukraine.,H.S. Skovoroda Kharkiv National Pedagogical University, Institute of Natural Sciences, Valentynivska St., 2, Kharkiv, 61168, Ukraine.,NGO, Ukrainian Independent Ecology Institute, Plekhanivska St., 40/27, 61001 Kharkiv, Ukraine
| |
Collapse
|
3
|
Hernández-Jerez A, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Gimsing AL, Marina M, Millet M, Pelkonen O, Pieper S, Tiktak A, Tzoulaki I, Widenfalk A, Wolterink G, Russo D, Streissl F, Topping C. Scientific statement on the coverage of bats by the current pesticide risk assessment for birds and mammals. EFSA J 2019; 17:e05758. [PMID: 32626374 PMCID: PMC7009170 DOI: 10.2903/j.efsa.2019.5758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bats are an important group of mammals, frequently foraging in farmland and potentially exposed to pesticides. This statement considers whether the current risk assessment performed for birds and ground dwelling mammals exposed to pesticides is also protective of bats. Three main issues were addressed. Firstly, whether bats are toxicologically more or less sensitive than the most sensitive birds and mammals. Secondly, whether oral exposure of bats to pesticides is greater or lower than in ground dwelling mammals and birds. Thirdly, whether there are other important exposure routes relevant to bats. A large variation in toxicological sensitivity and no relationship between sensitivity of bats and bird or mammal test-species to pesticides could be found. In addition, bats have unique traits, such as echolocation and torpor which can be adversely affected by exposure to pesticides and which are not covered by the endpoints currently selected for wild mammal risk assessment. The current exposure assessment methodology was used for oral exposure and adapted to bats using bat-specific parameters. For oral exposure, it was concluded that for most standard risk assessment scenarios the current approach did not cover exposure of bats to pesticide residues in food. Calculations of potential dermal exposure for bats foraging during spraying operations suggest that this may be a very important exposure route. Dermal routes of exposure should be combined with inhalation and oral exposure. Based on the evidence compiled, the Panel concludes that bats are not adequately covered by the current risk assessment approach, and that there is a need to develop a bat-specific risk assessment scheme. In general, there was scarcity of data to assess the risks for bat exposed to pesticides. Recommendations for research are made, including identification of alternatives to laboratory testing of bats to assess toxicological effects.
Collapse
|
4
|
Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ, Mombouli JV, Olson SH, Munster VJ, Goldberg TL. Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 2018; 528:64-72. [PMID: 30576861 DOI: 10.1016/j.virol.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Bats host diverse viruses due to their unique ecology, behavior, and immunology. However, the role of other organisms with which bats interact in nature is understudied as a contributor to bat viral diversity. We discovered five viruses in the blood of fruit bats (Hypsignathus monstrosus) from the Republic of Congo. Of these five viruses, four have phylogenetic and genomic features suggesting an arthropod origin (a dicistrovirus, a nodavirus, and two tombus-like viruses), while the fifth (a hepadnavirus) is clearly of mammalian origin. We also report the parallel discovery of related tombus-like viruses in fig wasps and primitive crane flies from bat habitats, as well as high infection rates of bats with haemosporidian parasites (Hepatocystis sp.). These findings suggest transmission between arthropods and bats, perhaps through ingestion or hyperparasitism (viral infection of bat parasites). Some "bat-associated" viruses may be epidemiologically linked to bats through their ecological associations with invertebrates.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Kenneth Cameron
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Alain Ondzie
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Fabien R Niama
- Laboratoire National de Santé Publique, Brazzaville, Republic of Congo
| | | | | | - Sarah H Olson
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Vincent J Munster
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Kelly RM, Friedman R, Santana SE. Primary productivity explains size variation across the Pallid bat's western geographic range. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rochelle M. Kelly
- Department of Biology and Burke Museum of Natural History and CultureUniversity of Washington Seattle WA USA
| | - Rachel Friedman
- Department of Biology and Burke Museum of Natural History and CultureUniversity of Washington Seattle WA USA
| | - Sharlene E. Santana
- Department of Biology and Burke Museum of Natural History and CultureUniversity of Washington Seattle WA USA
| |
Collapse
|
6
|
Abstract
Order Chiroptera is the second most diverse and abundant order of mammals with great physiological and ecological diversity. They play important ecological roles as prey and predator, arthropod suppression, seed dispersal, pollination, material and nutrient distribution, and recycle. They have great advantage and disadvantage in economic terms. The economic benefits obtained from bats include biological pest control, plant pollination, seed dispersal, guano mining, bush meat and medicine, aesthetic and bat watching tourism, and education and research. Even though bats are among gentle animals providing many positive ecological and economic benefits, few species have negative effects. They cause damage on human, livestock, agricultural crops, building, and infrastructure. They also cause airplane strike, disease transmission, and contamination, and bite humans during self-defense. Bat populations appear to be declining presumably in response to human induced environmental stresses like habitat destruction and fragmentation, disturbance to caves, depletion of food resources, overhunting for bush meat and persecution, increased use of pesticides, infectious disease, and wind energy turbine. As bats are among the most overlooked in spite of their economical and ecological importance, their conservation is mandatory.
Collapse
|
7
|
Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. Ecosystem services provided by bats. Ann N Y Acad Sci 2011; 1223:1-38. [PMID: 21449963 DOI: 10.1111/j.1749-6632.2011.06004.x] [Citation(s) in RCA: 615] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. Unfortunately, few studies estimating the economic value of ecosystem services provided by bats have been conducted to date; however, we outline a framework that could be used in future studies to more fully address this question. Consumptive goods provided by bats, such as food and guano, are often exchanged in markets where the market price indicates an economic value. Nonmarket valuation methods can be used to estimate the economic value of nonconsumptive services, including inputs to agricultural production and recreational activities. Information on the ecological and economic value of ecosystem services provided by bats can be used to inform decisions regarding where and when to protect or restore bat populations and associated habitats, as well as to improve public perception of bats.
Collapse
Affiliation(s)
- Thomas H Kunz
- Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
8
|
Adams RA. Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology 2010; 91:2437-45. [PMID: 20836465 DOI: 10.1890/09-0091.1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Climate change models predict that much of western North America is becoming significantly warmer and drier, resulting in overall reductions in availability of water for ecosystems. Herein, I demonstrate that significant declines in the reproductive success of female insectivorous bats occur in years when annual environmental conditions mimic the long-term predictions of regional climate change models. Using a data set gathered on bat populations from 1996 through 2008 along the Front Range of Colorado, I compare trends in population numbers and reproductive outcomes of six species of vespertilionid bats with data on mean annual high temperature, precipitation, snow pack, and stream discharge rates. I show that levels of precipitation and flow rates of small streams near maternity colonies is fundamentally tied to successful reproduction in female bats, particularly during the lactation phase. Across years that experienced greater than average mean temperatures with less than average precipitation and stream flow, bat populations responded by slight to profound reductions in reproductive output depending on the severity of drought conditions. In particular, reproductive outputs showed profound declines (32-51%) when discharge rates of the largest stream in the field area dropped below 7 m3/s, indicating a threshold response. Such sensitivity to environmental change portends severe impacts to regional bat populations if current scenarios for climate change in western North America are accurate. In addition, bats act as early-warning indicators of large-scale ecological effects resulting from further regional warming and drying trends currently at play in western North America.
Collapse
Affiliation(s)
- Rick A Adams
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639, USA.
| |
Collapse
|
9
|
Ratcliffe JM, Fullard JH. The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. J Exp Biol 2005; 208:4689-98. [PMID: 16326950 DOI: 10.1242/jeb.01927] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe studied the efficiency and effects of the multiple sensory cues of tiger moths on echolocating bats. We used the northern long-eared bat, Myotis septentrionalis, a purported moth specialist that takes surface-bound prey (gleaning) and airborne prey (aerial hawking), and the dogbane tiger moth, Cycnia tenera, an eared species unpalatable to bats that possesses conspicuous colouration and sound-producing organs (tymbals). This is the first study to investigate the interaction of tiger moths and wild-caught bats under conditions mimicking those found in nature and to demand the use of both aerial hawking and gleaning strategies by bats. Further, it is the first to report spectrograms of the sounds produced by tiger moths while under aerial attack by echolocating bats. During both aerial hawking and gleaning trials, all muted C. tenera and perched intact C. tenera were attacked by M. septentrionalis, indicating that M. septentrionalis did not discriminate C. tenera from palatable moths based on potential echoic and/or non-auditory cues. Intact C. tenera were attacked significantly less often than muted C. tenera during aerial hawking attacks: tymbal clicks were therefore an effective deterrent in an aerial hawking context. During gleaning attacks,intact and muted C. tenera were always attacked and suffered similar mortality rates, suggesting that while handling prey this bat uses primarily chemical signals. Our results also show that C. tenera temporally matches the onset of click production to the `approach phase' echolocation calls produced by aerial hawking attacking bats and that clicks themselves influence the echolocation behaviour of attacking bats. In the context of past research, these findings support the hypotheses that the clicks of arctiid moths are both an active defence (through echolocation disruption) and a reliable indicator of chemical defence against aerial-hawking bats. We suggest these signals are specialized for an aerial context.
Collapse
Affiliation(s)
- John M Ratcliffe
- Department of Zoology, University of Toronto at Mississauga, Toronto, Ontario, M5S 3G5, Canada.
| | | |
Collapse
|
10
|
Mclean JA, Speakman JR. Energy budgets of lactating and non‐reproductive Brown Long‐Eared Bats (Plecotus auritus) suggest females use compensation in lactation. Funct Ecol 2002. [DOI: 10.1046/j.1365-2435.1999.00321.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J. A. Mclean
- Department of Biochemistry and Nutrition, Scottish Agricultural College, Auchincruive, Ayr KA6 5HW, UK and,
| | - J. R. Speakman
- Aberdeen Centre for Energy Regulation and Obesity, Department of Zoology, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
11
|
Abstract
Tympanal sound receptors in moths evolved in response to selective pressures provided by echolocating insectivorous bats. The presence of these ultrasound detectors also set the stage for the later evolution of ultrasonic courtship signals in the tympanate moth families. Male moths have repeatedly exploited the bat-detection mechanisms in females for the purpose of finding, identifying and obtaining mates. Ultrasonic courtship has been described in several members of the moth families Arctiidae, Noctuidae and Pyralidae, and ultrasound is predicted to play a significant role in the courtship of other tympanate moths including the Sphingidae, Lymantriidae, Notodontidae and Geometridae. Ultrasonic signals are involved in species recognition, in male-male competition for mates and in female mate-choice systems. Pre-existing motor systems, including those involved in bat defence, have also been exploited for the purpose of generating high-frequency courtship signals. Sound production mechanisms in moths include thoracic tymbals, tegular tymbals, alar castanets and genital stridulatory organs. Thus, in both their sensory and motor aspects, the weapons of bat/moth warfare have frequently evolved into components of courtship systems.
Collapse
Affiliation(s)
- WE Conner
- Department of Biology, Wake Forest University, PO Box 7325, Winston-Salem, NC 27109, USA.
| |
Collapse
|
12
|
Adams RA. Size-specific resource use in juvenile little brown bats, Myotis lucifugus (Chiroptera: Vespertilionidae): Is there an ontogenetic shift? CAN J ZOOL 1996. [DOI: 10.1139/z96-133] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper correlates shifts in habitat use and diet with morphological transitions occurring during postpartum growth and development (ontogenetic niche) in little brown bats, Myotis lucifugus. Juveniles were captured in mist nets as they foraged in different microhabitats that were defined and quantified using "clutter indices" ranging from 0 (least cluttered) to 5 (most cluttered). I analyzed fecal samples from captured individuals to assess diet. Chi-squared analyses showed that there was a significant difference in habitat use and diet among juveniles captured in early, mid, and late July. Juveniles with smaller wings foraged in the least cluttered habitats, whereas juveniles with larger wings foraged in habitats with a high degree of clutter. Juveniles with larger wings were captured in all microhabitats, whereas those with smaller wings were captured predominantly in open microhabitats. Juveniles with relatively higher aspect ratios and lower wing loadings used a greater diversity of habitats than those with lower aspect ratios and higher wing loadings. In addition, differences in diet were significant and correlated with wing size. My results suggest resource partitioning between juveniles as a function of wing size. These data have important implications regarding how relative size among juveniles may effect intraspecific structuring of populations.
Collapse
|
13
|
Robinson MF, Stebbings RE. Food of the serotine bat,Eptesicus serotinus-is faecal analysis a valid qualitative and quantitative technique? J Zool (1987) 1993. [DOI: 10.1111/j.1469-7998.1993.tb01915.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Webb PI, Speakman JR, Racey PA. Defecation, apparent absorption efficiency, and the importance of water obtained in the food for water balance in captive brown long-eared (Plecotus auritus) and Daubenton's (Myotis daubentoni) bats. J Zool (1987) 1993. [DOI: 10.1111/j.1469-7998.1993.tb02710.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Brigham RM, Fenton MB. Convergence in foraging strategies by two morphologically and phylogenetically distinct nocturnal aerial insectivores. J Zool (1987) 1991. [DOI: 10.1111/j.1469-7998.1991.tb04778.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|