1
|
Ferrer V, Costantino G, Paymal N, Quinton C, Perdomo EC, Paoli M, Mournet P, Ollitrault P, Tomi F, Luro F. Inheritance and Quantitative Trait Loci Mapping of Aromatic Compounds from Clementine ( Citrus × clementina Hort. ex Tan.) and Sweet Orange ( C. × sinensis (L.) Osb.) Fruit Essential Oils. Genes (Basel) 2023; 14:1800. [PMID: 37761942 PMCID: PMC10531275 DOI: 10.3390/genes14091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Despite their importance in food processing, perfumery and cosmetics, the inheritance of sweet orange aromatic compounds, as well as their yield in the fruit peel, has been little analyzed. In the present study, the segregation of aromatic compounds was studied in an F1 population of 77 hybrids resulting from crosses between clementine and blood sweet orange. Fruit-peel essential oils (PEOs) extracted by hydrodistillation were analyzed by gas chromatography coupled with flame ionization detection. Genotyping by sequencing was performed on the parents and the hybrids. The resulting "clementine × sweet blood orange" genetic map consists of 710 SNP markers distributed in nine linkage groups (LGs), representing the nine citrus chromosomes, and spanning 1054 centimorgans. Twenty quantitative trait loci (QTLs) were identified, explaining between 20.5 and 55.0% of the variance of the major aromatic compounds and PEO yield. The QTLs for monoterpenes and aliphatic aldehydes predominantly colocalized on LGs 5 and 8, as did the two QTLs for PEO yield. The sesquiterpene QTLs were located on LGs 1, 3, 6 and 8. The detection of major QTLs associated with the synthesis of aliphatic aldehydes, known for their strong aromatic properties, open the way for marker-assisted selection.
Collapse
Affiliation(s)
- Vincent Ferrer
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
- Rémy Cointreau—Les Molières, 49124 Saint-Barthélemy-d’Anjou, France; (N.P.); (C.Q.)
| | - Gilles Costantino
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
| | - Noémie Paymal
- Rémy Cointreau—Les Molières, 49124 Saint-Barthélemy-d’Anjou, France; (N.P.); (C.Q.)
| | - Carole Quinton
- Rémy Cointreau—Les Molières, 49124 Saint-Barthélemy-d’Anjou, France; (N.P.); (C.Q.)
| | - Estefania Carrillo Perdomo
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
| | - Mathieu Paoli
- UMR SPE 6134—Université de Corse—CNRS, 20000 Ajaccio, France; (M.P.); (F.T.)
| | - Pierre Mournet
- CIRAD, UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France;
| | - Patrick Ollitrault
- CIRAD, UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France;
| | - Félix Tomi
- UMR SPE 6134—Université de Corse—CNRS, 20000 Ajaccio, France; (M.P.); (F.T.)
| | - François Luro
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; (V.F.); (G.C.); (E.C.P.)
| |
Collapse
|
2
|
Wolfe TM, Balao F, Trucchi E, Bachmann G, Gu W, Baar J, Hedrén M, Weckwerth W, Leitch AR, Paun O. Recurrent allopolyploidizations diversify ecophysiological traits in marsh orchids (Dactylorhiza majalis s.l.). Mol Ecol 2023; 32:4777-4790. [PMID: 37452724 PMCID: PMC10947288 DOI: 10.1111/mec.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups.
Collapse
Affiliation(s)
- Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Francisco Balao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biologia Vegetal y EcologiaUniversity of SevilleSevillaSpain
| | - Emiliano Trucchi
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Marche Polytechnic UniversityAnconaItaly
| | - Gert Bachmann
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS)University of ViennaViennaAustria
| | - Wenjia Gu
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS)University of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
3
|
Hu Y, Li Q, Chen Z, Xu Z, Li H, Wen C, Duan L, Yang H, Liu L. Axenic in vitro cultivation and genome diploidization of the moss Vesicularia montagnei for horticulture utilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1137214. [PMID: 37021318 PMCID: PMC10067734 DOI: 10.3389/fpls.2023.1137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Mosses are widely used in the establishment of greenery. However, little research has been conducted to choose a suitable species or improve their performance for this application. In our study, we examined Vesicularia montagnei (V. montagnei), a robust moss that is widely distributed in temperate, subtropical, and tropical Asia with varying environmental conditions. Axenic cultivation system of V. montagnei was developed on modified BCD medium, which enabled its propagation and multiplication in vitro. In this axenic cultivation environment, several diploid V. montagnei lines with enhancement of rhizoid system were generated through artificial induction of diploidization. Transcriptomic analysis revealed that several genes responsible for jasmonic acid (JA) biosynthesis and signaling showed significant higher expression levels in the diploid lines compared to the wild type. These results are consistent with the increasement of JA content in the diploid lines. Our establishment of the axenic cultivation method may provide useful information for further study of other Vesicularia species. The diploid V. montagnei lines with improved rhizoid system may hold promising potential for greenery applications. Additionally, our study sheds light on the biosynthesis and functions of JA in the early landed plants.
Collapse
Affiliation(s)
- Yong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zexi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhanwu Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Hongyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Congfa Wen
- Lishui Runsheng Moss Technology Co., Ltd. Green Valley Information Industrial Park, Lishui, Zhejiang, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Li Z, Mao C, Wu X, Zhou H, Zhao K, Jiang J, Chen S, Fang W, Guan Z, Zhang J, Liao Y, Wang Z, Chen F, Wang H. Hybrid weakness and continuous flowering caused by compound expression of FTLs in Chrysanthemum morifolium × Leucanthemum paludosum intergeneric hybridization. FRONTIERS IN PLANT SCIENCE 2023; 14:1120820. [PMID: 36778705 PMCID: PMC9911212 DOI: 10.3389/fpls.2023.1120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 05/03/2023]
Abstract
Hybridization is an important evolutionary mechanism ubiquitous to plants. Previous studies have shown that hybrid polyploidization of cultivated chrysanthemum, 'Zhongshanzigui', and Leucanthemum paludosum exhibit spring-flowering traits. This study explores the function of the LpFTLs gene via the phenotype of A. thaliana after heterologous transformation of the LpFTLs gene, and analyzes the mechanism ofthe continuous flowering phenotype and heterosis of hybrid offspring. The results suggest that the flowering phenotype of hybrid offspring in spring may be related to the expression of the LpFTLs gene. Ectopic expression of Leucanthemum paludosumLpFTLs in Arabidopsis thaliana resulted in earlier flowering, indicating that the LpFTLs gene also affects the flowering time in L. paludosum. Compound expression of FTLs in C. morifolium × L. paludosum intergeneric hybridization directly leads to serious heterosis in the hybrid offspring. Moreover, continuous flowering appears to be accompanied by hybrid weakness under the balance of vegetative and reproductive growth. Therefore, in future studies on chrysanthemum breeding, a suitable balance point must be established to ensure the target flowering time under normal growth.
Collapse
|
5
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
6
|
Eriksson MC, Mandáková T, McCann J, Temsch EM, Chase MW, Hedrén M, Weiss-Schneeweiss H, Paun O. Repeat Dynamics across Timescales: A Perspective from Sibling Allotetraploid Marsh Orchids (Dactylorhiza majalis s.l.). Mol Biol Evol 2022; 39:msac167. [PMID: 35904928 PMCID: PMC9366187 DOI: 10.1093/molbev/msac167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.
Collapse
Affiliation(s)
- Mimmi C Eriksson
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC−Central−European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Jamie McCann
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- Royal Botanic Gardens Kew, London TW9 3AE, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
7
|
Noronha RCR, Almeida BRR, Chagas MCS, Tavares FS, Cardoso AL, Bastos CEMC, Silva NKN, Klautau AGCM, Luna FO, Attademo FLN, Lima DS, Sabioni LA, Sampaio MIC, Oliveira JM, do Nascimento LAS, Martins C, Vicari MR, Nagamachi CY, Pieczarka JC. Karyotypes of Manatees: New Insights into Hybrid Formation ( Trichechus inunguis × Trichechus m. manatus) in the Amazon Estuary. Genes (Basel) 2022; 13:1263. [PMID: 35886048 PMCID: PMC9323068 DOI: 10.3390/genes13071263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Great efforts have been made to preserve manatees. Recently, a hybrid zone was described between Trichechus inunguis (TIN) and the Trichechus manatus manatus (TMM) in the Amazon estuary. Cytogenetic data on these sirenians are limited, despite being fundamental to understanding the hybridization/introgression dynamics and genomic organization in Trichechus. We analyzed the karyotype of TMM, TIN, and two hybrid specimens ("Poque" and "Vitor") by classical and molecular cytogenetics. G-band analysis revealed that TMM (2n = 48) and TIN (2n = 56) diverge by at least six Robertsonian translocations and a pericentric inversion. Hybrids had 2n = 50, however, with Autosomal Fundamental Number (FNA) = 88 in "Poque" and FNA = 74 in "Vitor", and chromosomal distinct pairs in heterozygous; additionally, "Vitor" exhibited heteromorphisms and chromosomes whose pairs could not be determined. The U2 snDNA and Histone H3 multi genes are distributed in small clusters along TIN and TMM chromosomes and have transposable Keno and Helitron elements (TEs) in their sequences. The different karyotypes observed among manatee hybrids may indicate that they represent different generations formed by crossing between fertile hybrids and TIN. On the other hand, it is also possible that all hybrids recorded represent F1 and the observed karyotype differences must result from mechanisms of elimination.
Collapse
Affiliation(s)
- Renata C. R. Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Bruno R. R. Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
- Campus Itaituba, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Itaituba 68183-300, PA, Brazil
| | - Monique C. S. Chagas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Flávia S. Tavares
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Adauto L. Cardoso
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brazil; (A.L.C.); (C.M.)
| | - Carlos E. M. C. Bastos
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Natalia K. N. Silva
- Campus Tucuruí, Universidade do Estado do Pará, Tucuruí 68455-210, PA, Brazil;
| | - Alex G. C. M. Klautau
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Norte, Instituto Chico Mendes de Conservação da Biodiversidade, Belém 66635-110, PA, Brazil;
| | - Fábia O. Luna
- Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Instituto Chico Mendes de Conservação de Biodiversidade, Santos 11050-031, SP, Brazil; (F.O.L.); (F.L.N.A.)
| | - Fernanda L. N. Attademo
- Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Instituto Chico Mendes de Conservação de Biodiversidade, Santos 11050-031, SP, Brazil; (F.O.L.); (F.L.N.A.)
- Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal/PPBA, Laboratório de Ecologia Comportamento e Conservação/LECC, Universidade Federal de Pernambuco/UFPE, Recife 50670-901, PE, Brazil
| | - Danielle S. Lima
- Grupo de Pesquisa em Mamíferos Aquáticos Amazônicos, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, Tefé 69553-225, AM, Brazil; (D.S.L.); (L.A.S.)
- Rede de Pesquisa e Conservação de Sirênios no Estuário Amazônico, Macapá 68903-197, AP, Brazil
| | - Luiz A. Sabioni
- Grupo de Pesquisa em Mamíferos Aquáticos Amazônicos, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, Tefé 69553-225, AM, Brazil; (D.S.L.); (L.A.S.)
- Rede de Pesquisa e Conservação de Sirênios no Estuário Amazônico, Macapá 68903-197, AP, Brazil
- Campus Porto Grande, Instituto Federal de Educação Ciência e Tecnologia do Amapá, Rodovia BR 210, Km 103, s/n, Zona Rural, Porto Grande 68997-000, AP, Brazil
| | - Maria I. C. Sampaio
- Instituto de Estudos Costeiros, Campus Bragança, Universidade Federal do Pará, Bragança 68600-000, PA, Brazil;
| | - Jairo Moura Oliveira
- Zoological Park of Santarém, ZOOUNAMA, Universidade da Amazônia, Santarém 68030-150, PA, Brazil;
| | | | - Cesar Martins
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brazil; (A.L.C.); (C.M.)
| | - Marcelo R. Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Cleusa Y. Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| | - Julio C. Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (B.R.R.A.); (M.C.S.C.); (F.S.T.); (C.E.M.C.B.); (C.Y.N.); (J.C.P.)
| |
Collapse
|
8
|
Wong ELY, Hiscock SJ, Filatov DA. The Role of Interspecific Hybridisation in Adaptation and Speciation: Insights From Studies in Senecio. FRONTIERS IN PLANT SCIENCE 2022; 13:907363. [PMID: 35812981 PMCID: PMC9260247 DOI: 10.3389/fpls.2022.907363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 05/08/2023]
Abstract
Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Edgar L. Y. Wong,
| | - Simon J. Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Botanic Garden and Arboretum, Oxford, United Kingdom
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Wang C, Zhou Y, Qin H, Zhao C, Yang L, Yu T, Zhang Y, Xu T, Qin Q, Liu S. Genetic and Epigenetic Changes Are Rapid Responses of the Genome to the Newly Synthesized Autotetraploid Carassius auratus. Front Genet 2021; 11:576260. [PMID: 33488668 PMCID: PMC7817996 DOI: 10.3389/fgene.2020.576260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/07/2020] [Indexed: 01/15/2023] Open
Abstract
Whole genome duplication events have occurred frequently during the course of vertebrate evolution. To better understand the influence of polyploidization on the fish genome, we herein used the autotetraploid Carassius auratus (4n = 200, RRRR) (4nRR) resulting from the whole genome duplication of Carassius auratus (2n = 100, RR) (RCC) to explore the genomic and epigenetic alterations after polyploidization. We subsequently performed analyses of full-length transcriptome dataset, amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) on 4nRR and RCC. By matching the results of 4nRR and RCC isoforms with reference genome in full-length transcriptome dataset, 649 and 1,971 novel genes were found in the RCC and 4nRR full-length geneset, respectively. Compared to Carassius auratus and Megalobrama amblycephala, 4nRR presented 3,661 unexpressed genes and 2,743 expressed genes. Furthermore, GO enrichment analysis of expressed genes in 4nRR revealed that they were enriched in meiosis I, whereas KEGG enrichment analysis displayed that they were mainly enriched in proteasome. Using AFLP analysis, we noted that 32.61% of RCC fragments had disappeared, while 32.79% of new bands were uncovered in 4nRR. Concerning DNA methylation, 4nRR exhibited a lower level of global DNA methylation than RCC. Additionally, 60.31% of methylation patterns in 4nRR were altered compared to RCC. These observations indicated that transcriptome alterations, genomic changes and regulation of DNA methylation levels and patterns had occurred in the newly established autotetraploid genomes, suggesting that genetic and epigenetic alterations were influenced by autotetraploidization. In summary, this study provides valuable novel insights into vertebrate genome evolution and generates relevant information for fish breeding.
Collapse
Affiliation(s)
- Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuwei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | | | - Tao Xu
- Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Zou Z, Bisht V, Fernando WGD. Identification and Characterization of Verticillium longisporum Lineage A1/D1 from Brassica Crops in Manitoba, Canada. Int J Mol Sci 2020; 21:E3499. [PMID: 32429108 PMCID: PMC7278989 DOI: 10.3390/ijms21103499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022] Open
Abstract
Verticillium stripe in canola (Brassica napus L.) caused by Verticillium longisporum was first reported in Manitoba in 2014. In this study, Brassica crops including canola, mustard (Brassica juncea) and radish (Raphanus sativus) with visible symptoms of Verticillium stripe were collected from Portage La Prairie, Manitoba, and the pathogens were isolated. Isolates from canola and radish were identified to V. longisporum, which produced longer conidia (7.92-12.00 µm) than Verticillium dahliae (4.32-7.04 µm). An isolate derived from mustard was characterized as V. dahliae. Molecular diagnostics with 18S rDNA, 5.8S rDNA and mating-type marker primers were used to confirm the identification of Verticillium isolates. PCR-RFLP of the mitochondrial small subunit rDNA and the cytochrome b gene were also employed to distinguish V. longisporum isolates from V. dahliae. The multi-gene characterization approach allowed for lineage determination, and V. longisporum isolates from canola and radish were in the A1/D1 group. Isolates of Verticillium longisporum from canola inoculated onto the canola cultivar 'Westar' caused symptoms of stem striping, stunting and short plants. Re-isolated fungal strains from infected stems were again inoculated onto canola plants, in order to confirm that V. longisporum was the causal agent of Verticillium stripe disease in the pathogenicity test.
Collapse
Affiliation(s)
- Zhongwei Zou
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada;
| | - Vikram Bisht
- Primary Agriculture Branch, Manitoba Agriculture, Carman, MB R0G 0J0, Canada;
| | - W. G. Dilantha Fernando
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
11
|
Syngelaki E, Schinkel CCF, Klatt S, Hörandl E. Effects of Temperature Treatments on Cytosine-Methylation Profiles of Diploid and Autotetraploid Plants of the Alpine Species Ranunculus kuepferi (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:435. [PMID: 32322263 PMCID: PMC7158262 DOI: 10.3389/fpls.2020.00435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/25/2020] [Indexed: 05/23/2023]
Abstract
The exposure to environmental stress can trigger epigenetic variation, which may have several evolutionary consequences. Polyploidy seems to affect the DNA methylation profiles. Nevertheless, it abides unclear whether temperature stress can induce methylations changes in different cytotypes and to what extent a treatment shift is translated to an epigenetic response. A suitable model system for studying these questions is Ranunculus kuepferi, an alpine perennial herb. Diploid and autotetraploid individuals of R. kuepferi were exposed to cold (+7°C day/+2°C night; frost treatment -1°C cold shocks for 3 nights per week) and warm (+15° day/+10°C night) conditions in climate growth chambers for two consecutive flowering periods and shifted from one condition to the other after the first flowering period. Methylation-sensitive amplified fragment-length polymorphism markers were applied for both years, to track down possible alterations induced by the stress treatments. Patterns of methylation suggested that cytotypes differed significantly in their profiles, independent from year of treatment. Likewise, the treatment shift had an impact on both cytotypes, resulting in significantly less epiloci, regardless the shift's direction. The AMOVAs revealed higher variation within than among treatments in diploids. In tetraploids, internally-methylated loci had a higher variation among than within treatments, as a response to temperature's change in both directions, and support the hypothesis of temperature stress affecting the epigenetic variation. Results suggest that the temperature-sensitivity of DNA methylation patterns shows a highly dynamic phenotypic plasticity in R. kuepferi, as both cytotypes responded to temperature shifts. Furthermore, ploidy level, even without effects of hybridization, has an important effect on epigenetic background variation, which may be correlated with the DNA methylation dynamics during cold acclimation.
Collapse
Affiliation(s)
- Eleni Syngelaki
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Simone Klatt
- Section Safety and Environmental Protection, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
de Los Reyes BG. Genomic and epigenomic bases of transgressive segregation - New breeding paradigm for novel plant phenotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110213. [PMID: 31521221 DOI: 10.1016/j.plantsci.2019.110213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
For a holistic approach in developing the stress-resilient crops of the 21st century, modern genomic biology will need to re-envision the underappreciated phenomena in classical genetics, and incorporate them into the new plant breeding paradigm. Advances in evolutionary genomics support a theory that genetic recombination under genome shock during hybridization of widely divergent parents is an important driver of adaptive speciation, by virtue of the novelties of rare hybrids and recombinants. The enormous potential of genetic network rewiring to generate developmental or physiological novelties with adaptive advantage to special ecological niches has been appreciated. Developmental and physiological reconfiguration through network rewiring involves intricate molecular synergies controlled both at the genetic and epigenetic levels, as typified by the phenomenon of transgressive segregation, observed in both natural and breeding populations. This paper presents modern views on the possible molecular underpinnings of transgressive phenotypes as they are created in plant breeding, expanded from classical explanations through the Omnigenic Theory for quantitative traits and modern paradigms of epigenetics. Perspectives on how genomic biology can fully exploit this phenomenon to create novel phenotypes beyond what could be achieved through the more reductionist approach of functional genomics are presented in context of genomic modeling.
Collapse
Affiliation(s)
- Benildo G de Los Reyes
- Department of Plant and Soil Science Texas Tech University 215 Experimental Sciences Building, Lubbock, TX 806-834-6421, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate University Okinawa Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Hidetoshi Saze
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate University Okinawa Japan
| |
Collapse
|
14
|
Bomfleur B, Grimm GW, McLoughlin S. The fossil Osmundales (Royal Ferns)-a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes. PeerJ 2017; 5:e3433. [PMID: 28713650 PMCID: PMC5508817 DOI: 10.7717/peerj.3433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/17/2017] [Indexed: 12/03/2022] Open
Abstract
The Osmundales (Royal Fern order) originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera), it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens) is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (sub)genus. We introduce several nomenclatural novelties: (1) a new subfamily Itopsidemoideae (Guaireaceae) is established to contain Itopsidema, Donwelliacaulis, and Tiania; (2) the thamnopteroid genera Zalesskya, Iegosigopteris, and Petcheropteris are all considered synonymous with Thamnopteris; (3) 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae); (4) the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium; and (5) the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis. In addition, we consider Millerocaulis stipabonettiorum a possible member of Palaeosmunda and Millerocaulis estipularis as probably constituting the earliest representative of the (Todea-)Leptopteris lineage (subtribe Todeinae) of modern Osmundoideae.
Collapse
Affiliation(s)
- Benjamin Bomfleur
- Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Guido W. Grimm
- Department für Paläontologie, Universität Wien, Wien, Austria
- Orléans, France
| | - Stephen McLoughlin
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
15
|
Alonso C, Balao F, Bazaga P, Pérez R. Epigenetic contribution to successful polyploidizations: variation in global cytosine methylation along an extensive ploidy series in Dianthus broteri (Caryophyllaceae). THE NEW PHYTOLOGIST 2016; 212:571-576. [PMID: 27483440 DOI: 10.1111/nph.14138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/11/2016] [Indexed: 05/27/2023]
Abstract
Polyploidization is a significant evolutionary force in plants which involves major genomic and genetic changes, frequently regulated by epigenetic factors. We explored whether natural polyploidization in Dianthus broteri complex resulted in substantial changes in global DNA cytosine methylation associated to ploidy. Global cytosine methylation was estimated by high-performance liquid chromatography (HPLC) in 12 monocytotypic populations with different ploidies (2×, 4×, 6×, 12×) broadly distributed within D. broteri distribution range. The effects of ploidy level and local variation on methylation were assessed by generalized linear mixed models (GLMMs). Dianthus broteri exhibited a higher methylation percent (˜33%) than expected by its monoploid genome size and a large variation among study populations (range: 29.3-35.3%). Global methylation tended to increase with ploidy but did not significantly differ across levels due to increased variation within the highest-order polyploidy categories. Methylation varied more among hexaploid and dodecaploid populations, despite such cytotypes showing more restricted geographic location and increased genetic relatedness than diploids and tetraploids. In this study, we demonstrate the usefulness of an HPLC method in providing precise and genome reference-free global measure of DNA cytosine methylation, suitable to advance current knowledge of the roles of this epigenetic mechanism in polyploidization processes.
Collapse
Affiliation(s)
- Conchita Alonso
- Estación Biológica de Doñana, CSIC, Avenida Américo Vespucio s/n, 41092, Sevilla, Spain.
| | - Francisco Balao
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apdo. 1095, 41080, Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, CSIC, Avenida Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Ricardo Pérez
- Centro de Investigaciones Científicas Isla de La Cartuja, Instituto de Investigaciones Químicas, CSIC-US, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
16
|
Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O. Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity (Edinb) 2016; 116:351-61. [PMID: 26604189 PMCID: PMC4787024 DOI: 10.1038/hdy.2015.98] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/24/2022] Open
Abstract
Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.
Collapse
Affiliation(s)
- F Balao
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M Tannhäuser
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M T Lorenzo
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M Hedrén
- Department of Biology, Lund University, Lund, Sweden
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Wang H, Chen S, Jiang J, Zhang F, Chen F. Reference gene selection for cross-species and cross-ploidy level comparisons in Chrysanthemum spp. Sci Rep 2015; 5:8094. [PMID: 25627791 PMCID: PMC4308696 DOI: 10.1038/srep08094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/05/2015] [Indexed: 01/06/2023] Open
Abstract
The establishment of a (set of) stably expressed reference gene(s) is required to normalize transcription data. Polyploidy is very common in the plant kingdom, but it is not necessarily the case that a reference gene which works well at the diploid level will also work well at the polyploid level. Here, ten candidate reference genes are compared in the context of gene transcription in the genus Chrysanthemum. The robustness of some, but not all, of these was shown to be high across ploidy levels. MTP (metalloprotease) and ACTIN (actin) were the most stable in diploid and tetraploid C. nankingense, while PSAA (photosynthesis-related plastid gene representing photosystem I) and EF-1α (elongation factor-1α) were the most stable in tetraploid and hexaploid C. zawadskii.EF-1α and PGK (phosphoglycerate kinase) was the best combination for the complete set of four taxa. These results suggest that when making cross-species comparison of transcript abundance involving different ploidy levels, care needs to be taken in the selection of reference gene(s).
Collapse
Affiliation(s)
- Haibin Wang
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| |
Collapse
|
18
|
Wang H, Wang J, Jiang J, Chen S, Guan Z, Liao Y, Chen F. Reference genes for normalizing transcription in diploid and tetraploid Arabidopsis. Sci Rep 2014; 4:6781. [PMID: 25345678 PMCID: PMC4209459 DOI: 10.1038/srep06781] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/07/2014] [Indexed: 12/30/2022] Open
Abstract
Published transcription data from a set of 19 diploid Arabidopsis thaliana and 5 tetraploid (3 allo- and 2 auto- tetraploid) Arabidopsis accessions were re-analysed to identify reliable reference genes for normalization purposes. Five conventional and 16 novel reference genes previously derived from microarray data covering a wide range of abundance in absolute expression levels in diploid A. thaliana Col-0 were employed. Transcript abundance was well conserved for all 21 potential reference genes in the diploid A. thaliana accessions, with geNorm and NormFinder analysis indicating that AT5G46630, AT1G13320, AT4G26410, AT5G60390 and AT5G08290 were the most stable. However, conservation was less good among the tetraploid accessions, with the transcription of seven of the 21 genes being undetectable in all allotetraploids. The most stable gene was AT5G46630, while AT1G13440 was the unstable one. Hence, the choice of reference gene(s) for A. thaliana is quite wide, but with respect to the analysis of transcriptomic data derived from the tetraploids, it is probably necessary to select more than one reference gene.
Collapse
Affiliation(s)
- Haibin Wang
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Jingjing Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| |
Collapse
|
19
|
Yoo MJ, Szadkowski E, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity (Edinb) 2012; 110:171-80. [PMID: 23169565 DOI: 10.1038/hdy.2012.94] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Allopolyploidy is an evolutionary and mechanistically intriguing process, in that it entails the reconciliation of two or more sets of diverged genomes and regulatory interactions. In this study, we explored gene expression patterns in interspecific hybrid F(1), and synthetic and natural allopolyploid cotton using RNA-Seq reads from leaf transcriptomes. We determined how the extent and direction of expression level dominance (total level of expression for both homoeologs) and homoeolog expression bias (relative contribution of homoeologs to the transcriptome) changed from hybridization through evolution at the polyploid level and following cotton domestication. Genome-wide expression level dominance was biased toward the A-genome in the diploid hybrid and natural allopolyploids, whereas the direction was reversed in the synthetic allopolyploid. This biased expression level dominance was mainly caused by up- or downregulation of the homoeolog from the 'non-dominant' parent. Extensive alterations in homoeolog expression bias and expression level dominance accompany the initial merger of two diverged diploid genomes, suggesting a combination of regulatory (cis or trans) and epigenetic interactions that may arise and propagate through the transcriptome network. The extent of homoeolog expression bias and expression level dominance increases over time, from genome merger through evolution at the polyploid level. Higher rates of transgressive and novel gene expression patterns as well as homoeolog silencing were observed in natural allopolyploids than in F(1) hybrid and synthetic allopolyploid cottons. These observations suggest that natural selection reconciles the regulatory mismatches caused by initial genomic merger, while new gene expression conditions are generated for evaluation by selection.
Collapse
Affiliation(s)
- M-J Yoo
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
20
|
Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation? GENETICS RESEARCH INTERNATIONAL 2012; 2012:698421. [PMID: 22567398 PMCID: PMC3335561 DOI: 10.1155/2012/698421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 01/09/2023]
Abstract
The dualism of genetic predisposition and environmental influences, their interactions, and respective roles in shaping the phenotype have been a hot topic in biological sciences for more than two centuries. Heritable epigenetic variation mediates between relatively slowly accumulating mutations in the DNA sequence and ephemeral adaptive responses to stress, thereby providing mechanisms for achieving stable, but potentially rapidly evolving phenotypic diversity as a response to environmental stimuli. This suggests that heritable epigenetic signals can play an important role in evolutionary processes, but so far this hypothesis has not been rigorously tested. A promising new area of research focuses on the interaction between the different molecular levels that produce phenotypic variation in wild, closely-related taxa that lack genome-wide genetic differentiation. By pinpointing specific adaptive traits and investigating the mechanisms responsible for phenotypic differentiation, such study systems could allow profound insights into the role of epigenetics in the evolution and stabilization of phenotypic discontinuities, and could add to our understanding of adaptive strategies to diverse environmental conditions and their dynamics.
Collapse
|
21
|
Bendiksby M, Tribsch A, Borgen L, Trávníček P, Brysting AK. Allopolyploid origins of the Galeopsis tetraploids--revisiting Müntzing's classical textbook example using molecular tools. THE NEW PHYTOLOGIST 2011; 191:1150-1167. [PMID: 21599670 DOI: 10.1111/j.1469-8137.2011.03753.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Whole-genome duplication coupled with hybridization is of prime importance in plant evolution. Here we reinvestigate Müntzing's classical example of allopolyploid speciation; the first report of experimental synthesis of a naturally occurring allopolyploid species, Galeopsis tetrahit. Various molecular markers (cpDNA, NRPA2, amplified fragment length polymorphisms (AFLPs)) and flow cytometry were surveyed in population samples of subgenus Galeopsis, including two allopolyploid species and their potential diploid parents. The presence of two divergent copies of single-copy NRPA2 confirms the allopolyploid origins of G. tetrahit and Galeopsis bifida. However, the two allopolyploids do not share the same maternal genome, as originally suggested by Müntzing. The results support independent origins, but not recurrent formation, of the two allotetraploids. Data further indicate frequent gene flow and introgression within ploidy levels, but less so between ploidy levels. Our results confirm and elaborate on Müntzing's classical conclusion about allopolyploid origins of G. tetrahit and G. bifida. We address questions of general interest within polyploidy research, such as recurrent formation, gene flow and introgression within and between ploidy levels.
Collapse
Affiliation(s)
- Mika Bendiksby
- National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Andreas Tribsch
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5010 Salzburg, Austria
| | - Liv Borgen
- National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Pavel Trávníček
- Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic
| | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
22
|
Schmidt-Lebuhn AN. Fallacies and false premises-a critical assessment of the arguments for the recognition of paraphyletic taxa in botany. Cladistics 2011; 28:174-187. [DOI: 10.1111/j.1096-0031.2011.00367.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00829.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Flagel LE, Wendel JF. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. THE NEW PHYTOLOGIST 2010; 186:184-93. [PMID: 20002320 DOI: 10.1111/j.1469-8137.2009.03107.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we describe the evolution of gene expression among a diversified cohort of five allopolyploid species in the cotton genus (Gossypium). Using this phylogenetic framework and comparisons with expression changes accompanying F(1) hybridization, we provide a temporal perspective on expression diversification following a shared genome duplication. Global patterns of gene expression were studied by the hybridization of petal RNAs to a custom microarray. This platform measures total expression for c. 42 000 duplicated genes, and genome-specific expression for c. 1400 homoeologs (genes duplicated by polyploidy). We report homoeolog expression bias favoring the allopolyploid D genome over the A genome in all species (among five polyploid species, D biases ranging from c. 54 to 60%), in addition to conservation of biases among genes. Furthermore, we find surprising levels of transgressive up- and down-regulation in the allopolyploids, a diminution of the level of bias in genomic expression dominance but not in its magnitude, and high levels of rate variation among allotetraploid species. We illustrate how phylogenetic and temporal components of expression evolution may be partitioned and revealed following allopolyploidy. Overall patterns of expression evolution are similar among the Gossypium allotetraploids, notwithstanding a high level of interspecific rate variation, but differ strikingly from the direction of genomic expression dominance patterns in the synthetic F(1) hybrid.
Collapse
Affiliation(s)
- Lex E Flagel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
25
|
WU LILI, CUI XIEKUI, MILNE RICHARDI, SUN YONGSHUAI, LIU JIANQUAN. Multiple autopolyploidizations and range expansion ofAllium przewalskianumRegel. (Alliaceae) in the Qinghai-Tibetan Plateau. Mol Ecol 2010; 19:1691-704. [DOI: 10.1111/j.1365-294x.2010.04613.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. THE NEW PHYTOLOGIST 2010; 185:1108-18. [PMID: 20003072 DOI: 10.1111/j.1469-8137.2009.03121.x] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
*DNA methylation can cause heritable phenotypic modifications in the absence of changes in DNA sequence. Environmental stresses can trigger methylation changes and this may have evolutionary consequences, even in the absence of sequence variation. However, it remains largely unknown to what extent environmentally induced methylation changes are transmitted to offspring, and whether observed methylation variation is truly independent or a downstream consequence of genetic variation between individuals. *Genetically identical apomictic dandelion (Taraxacum officinale) plants were exposed to different ecological stresses, and apomictic offspring were raised in a common unstressed environment. We used methylation-sensitive amplified fragment length polymorphism markers to screen genome-wide methylation alterations triggered by stress treatments and to assess the heritability of induced changes. *Various stresses, most notably chemical induction of herbivore and pathogen defenses, triggered considerable methylation variation throughout the genome. Many modifications were faithfully transmitted to offspring. Stresses caused some epigenetic divergence between treatment and controls, but also increased epigenetic variation among plants within treatments. *These results show the following. First, stress-induced methylation changes are common and are mostly heritable. Second, sequence-independent, autonomous methylation variation is readily generated. This highlights the potential of epigenetic inheritance to play an independent role in evolutionary processes, which is superimposed on the system of genetic inheritance.
Collapse
Affiliation(s)
- Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands.
| | | | | | | |
Collapse
|
27
|
Triplett JK, Oltrogge KA, Clark LG. Phylogenetic relationships and natural hybridization among the North American woody bamboos (Poaceae: Bambusoideae: Arundinaria). AMERICAN JOURNAL OF BOTANY 2010; 97:471-92. [PMID: 21622410 DOI: 10.3732/ajb.0900244] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In spite of the ecological and economic importance of temperate bamboos, relatively little is known about their population biology or evolutionary history. Recently, hybridization has emerged as a potential source of diversity in this group, as well as an underlying cause of taxonomic problems. As part of a broader phylogenetic study of the temperate bamboos, we report the results of an analysis of the North American Arundinaria gigantea species complex, including estimates of genetic variation and molecular evidence of natural hybridization among A. gigantea, A. tecta, and A. appalachiana. The study involved a comparative analysis of amplified fragment length polymorphisms (AFLPs) and chloroplast DNA sequences representing diversity within and among all three species plus individuals with intermediate or unusual morphological characteristics (putative hybrids). Molecular results support the recognition of three species previously defined on the basis of morphology, anatomy, and ecology, with most of the molecular variance accounted for by among-species variation. Molecular evidence also demonstrates that A. tecta and A. appalachiana are sister species, forming a clade that is significantly divergent from A. gigantea. The role of hybridization in the phylogenetic history of Arundinaria is discussed along with implications for the evolution and taxonomy of the temperate woody bamboos.
Collapse
Affiliation(s)
- Jimmy K Triplett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020 USA
| | | | | |
Collapse
|
28
|
Verhoeven KJF, Van Dijk PJ, Biere A. Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Mol Ecol 2009; 19:315-24. [PMID: 20015141 DOI: 10.1111/j.1365-294x.2009.04460.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Koen J F Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Boterhoeksestraat 48, 6666 GA, Heteren, The Netherlands.
| | | | | |
Collapse
|
29
|
Ozkan H, Feldman M. Rapid cytological diploidization in newly formed allopolyploids of the wheat (Aegilops-Triticum) group. Genome 2009; 52:926-34. [DOI: 10.1139/g09-067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies in the genera Aegilops and Triticum showed that allopolyploid formation triggers rapid genetic and epigenetic changes that lead to cytological and genetic diploidization. To better understand the consequences of cytological diploidization, chromosome pairing and seed fertility were studied in S1, S2, and S3generations of 18 newly formed allopolyploids at different ploidy levels. Results showed that bivalent pairing at first meiotic metaphase was enhanced and seed fertility was improved during each successive generation. A positive linear relationship was found between increased bivalent pairing, improved fertility, and elimination of low-copy noncoding DNA sequences. These findings support the conclusion that rapid elimination of low-copy noncoding DNA sequences from one genome of a newly formed allopolyploid, different sequences from different genomes, is an efficient way to quickly augment the divergence between homoeologous chromosomes and thus bring about cytological diploidization. This facilitates the rapid establishment of the raw allopolyploids as successful, competitive species in nature.
Collapse
Affiliation(s)
- Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, 01330 Adana, Turkey
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Feldman
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, 01330 Adana, Turkey
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Abstract
The genetic make-up of an organism, established at fertilization, is not conventionally expected to change during development unless mutation occurs. However, there is actually evidence that considerable variation can arise. Some of these changes may occur in response to the environment. This article reviews such variations in genome size or DNA content (excluding ploidy-level changes). The variation can be generated by processes, including high-frequency chromosomal recombination, transposition, cis-element-enhanced gene amplification and repetitive-sequence-based changes in nuclear DNA content. Environmentally induced and developmentally regulated genomic variation (ED-genomic variation or ED-genetic variation) can be found in both coding and non-coding sequences, and is often non-Mendelian in its inheritance pattern. Changes can depend on development (for example, propagation method, seed/fruit position on plants, embryo stage, etc.) and occur in response to the environment (for example, light, temperature, herbicide, salinity, fertilizer, land slope direction, pathogen infection, etc.). Some plants have meiotic (or rejuvenation) corrections, which restore their genome sizes to a certain degree. However, Mendelian inheritance and acquired inheritance of the variants occur, and both inheritance types may be different expressions evolved for the same adaptive responses. With this perspective, the terms 'pure-breeding line' or 'stable cultivar' may only be appropriate for a given mode of reproduction or propagation, and for a given environment. ED-genomic variation appears to be an essential component of differentiation, development and adaptation. Consequently, modern molecular biology tools, such as microarray hybridization and new sequencing technology, should be directed towards a more comprehensive evaluation of ED-genomic variation.
Collapse
|
31
|
Paun O, Forest F, Fay MF, Chase MW. Hybrid speciation in angiosperms: parental divergence drives ploidy. THE NEW PHYTOLOGIST 2009; 182:507-518. [PMID: 19220761 PMCID: PMC2988484 DOI: 10.1111/j.1469-8137.2009.02767.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hybridization and polyploidy are now hypothesized to have regularly stimulated speciation in angiosperms, but individual or combined involvement of these two processes seems to involve significant differences in pathways of formation, establishment and evolutionary consequences of resulting lineages. We evaluate here the classical cytological hypothesis that ploidy in hybrid speciation is governed by the extent of chromosomal rearrangements among parental species. Within a phylogenetic framework, we calculate genetic divergence indices for 50 parental species pairs and use these indices as surrogates for the overall degree of genomic divergence (that is, as proxy for assessments of dissimilarity of the parental chromosomes). The results confirm that genomic differentiation between progenitor taxa influences the likelihood of diploid (homoploid) versus polyploid hybrid speciation because genetic divergence between parents of polyploids is found to be significantly greater than in the case of homoploid hybrid species. We argue that this asymmetric relationship may be reinforced immediately after hybrid formation, during stabilization and establishment. Underlying mechanisms potentially producing this pattern are discussed.
Collapse
Affiliation(s)
- Ovidiu Paun
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Félix Forest
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Michael F Fay
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
32
|
Gajan EB, Abashov R, Aghazadeh M, Eslami H, Oskouei SG, Mohammadnejad D. Vancomycin-resistant Enterococcus faecalis from a wastewater treatment plant in Tabriz, Iran. Pak J Biol Sci 2008; 11:2443-2446. [PMID: 19137857 DOI: 10.3923/pjbs.2008.2443.2446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of this study was to determine the resistance pattern and the type of resistance genes of vancomycin-resistant Enterococcus faecalis from Gharamalek wastewater treatment plant in Tabriz, Iran. Following filtering of sewage samples, approximately 300 colonies grew on specific media, of which 53 were randomly selected and purified using 0.45 microm membranes. The membranes were placed on culture media containing antibiotics to isolate the vancomycin-resistant Enterococcus. Biochemical tests, antibiogram and determining minimum inhibitory concentration of antibiotics with E-test including vancomycin were performed. Polymerase Chain Reaction (PCR) was carried out to determine the type of resistance genes. All tested samples were found to be E. faecalis. Antimicrobial susceptibility tests indicated multidrug resistance in the samples, with 98% of them highly resistant to vancomycin. The highest frequency was of vanA (96%), followed by vanB (4%); vanC was not seen among the tested samples. The results confirmed that the risk of exposure to antibiotic-resistant pathogens from the evaluated urban wastewater is considerable.
Collapse
Affiliation(s)
- E B Gajan
- Department of Community Dentistry, Tabriz University of Medical Science, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|