1
|
D'Abrantes S, Gratton S, Reynolds P, Kriechbaumer V, McKenna J, Barnard S, Clarke DT, Botchway SW. Super-Resolution Nanoscopy Imaging Applied to DNA Double-Strand Breaks. Radiat Res 2017; 189:19-31. [PMID: 29053406 DOI: 10.1667/rr14594.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genomic deoxyribonucleic acid (DNA) is continuously being damaged by endogenous processes such as metabolism or by exogenous events such as radiation. The specific phosphorylation of histone H2AX on serine residue 139, described as γ-H2AX, is an excellent indicator or marker of DNA double-strand breaks (DSBs). The yield of γ-H2AX (foci) is shown to have some correlation with the dose of radiation or other DSB-causing agents. However, there is some discrepancy in the DNA DSB foci yield among imaging and other methods such as gel electrophoresis. Super-resolution imaging techniques are now becoming widely used as essential tools in biology and medicine, after a slow uptake of their development almost two decades ago. Here we compare several super-resolution techniques used to image and determine the amount and spatial distribution of γ-H2AX foci formation after X-ray irradiation: stimulated emission depletion (STED), ground-state depletion microscopy followed by individual molecule return (GSDIM), structured illumination microscopy (SIM), as well as an improved confocal, Airyscan and HyVolution 2. We show that by using these super-resolution imaging techniques with as low as 30-nm resolution, each focus may be further resolved, thus increasing the number of foci per radiation dose compared to standard microscopy. Furthermore, the DNA repair proteins 53BP1 (after low-LET irradiations) and Ku70/Ku80 (from laser microbeam irradiation) do not always yield a significantly increased number of foci when imaged by the super-resolution techniques, suggesting that γ-H2AX, 53PB1 and Ku70/80 repair proteins do not fully co-localize on the units of higher order chromatin structure.
Collapse
Affiliation(s)
- Sofia D'Abrantes
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Sarah Gratton
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Pamela Reynolds
- b Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Verena Kriechbaumer
- c Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Joseph McKenna
- c Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Stephen Barnard
- d Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot OX11 0RQ, United Kingdom
| | - Dave T Clarke
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Stanley W Botchway
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
2
|
Nakano T, Xu X, Salem AMH, Shoulkamy MI, Ide H. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance. Free Radic Biol Med 2017; 107:136-145. [PMID: 27894771 DOI: 10.1016/j.freeradbiomed.2016.11.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Xu Xu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Amir M H Salem
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311, Egypt
| | - Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
3
|
Nakano T, Mitsusada Y, Salem AMH, Shoulkamy MI, Sugimoto T, Hirayama R, Uzawa A, Furusawa Y, Ide H. Induction of DNA-protein cross-links by ionizing radiation and their elimination from the genome. Mutat Res 2015; 771:45-50. [PMID: 25771979 DOI: 10.1016/j.mrfmmm.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Ionizing radiation produces various types of DNA lesions, such as base damage, single-strand breaks, double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, DSBs are the most critical lesions underlying the lethal effects of ionizing radiation. With DPCs, proteins covalently trapped in DNA constitute strong roadblocks to replication and transcription machineries, and hence can be lethal to cells. The formation of DPCs by ionizing radiation is promoted in the absence of oxygen, whereas that of DSBs is retarded. Accordingly, the contribution of DPCs to the lethal events in irradiated cells may not be negligible for hypoxic cells, such as those present in tumors. However, the role of DPCs in the lethal effects of ionizing radiation remains largely equivocal. In the present study, normoxic and hypoxic mouse tumors were irradiated with X-rays [low linear energy transfer (LET) radiation] and carbon (C)-ion beams (high LET radiation), and the resulting induction of DPCs and DSBs and their removal from the genome were analyzed. X-rays and C-ion beams produced more DPCs in hypoxic tumors than in normoxic tumors. Interestingly, the yield of DPCs was slightly but statistically significantly greater (1.3- to 1.5-fold) for C-ion beams than for X-rays. Both X-rays and C-ion beams generated two types of DPC that differed according to their rate of removal from the genome. This was also the case for DSBs. The half-lives of the rapidly removed components of DPCs and DSBs were similar (<1 h), but those of the slowly removed components of DPCs and DSBs were markedly different (3.9-5 h for DSBs versus 63-70 h for DPCs). The long half-life and abundance of the slowly removed DPCs render them persistent in DNA, which may impede DNA transactions and confer deleterious effects on cells in conjunction with DSBs.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yusuke Mitsusada
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Amir M H Salem
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311, Egypt
| | - Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Tatsuya Sugimoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ryoichi Hirayama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Akiko Uzawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Development and Support Center, National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
4
|
Ballarini F, Altieri S, Bortolussi S, Giroletti E, Protti N. A model of radiation-induced cell killing: insights into mechanisms and applications for hadron therapy. Radiat Res 2013; 180:307-15. [PMID: 23944606 DOI: 10.1667/rr3285.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A mechanism-based, two-parameter biophysical model of cell killing was developed with the aim of elucidating the mechanisms underlying radiation-induced cell death and predicting cell killing by different radiation types, including protons and carbon ions at energies and doses of interest for cancer therapy. The model assumed that certain chromosome aberrations (dicentrics, rings and large deletions, called "lethal aberrations") lead to clonogenic inactivation, and that aberrations derive from μm-scale misrejoining of chromatin fragments, which in turn are produced by "dirty" double-strand breaks called "cluster lesions" (CLs). The average numbers of CLs per Gy per cell were left as a semi-free parameter and the threshold distance for chromatin-fragment rejoining was defined the second parameter. The model was "translated" into Monte Carlo code and provided simulated survival curves, which were compared with survival data on V79 cells exposed to protons, carbon ions and X rays. The agreement was good between simulations and survival data and supported the assumptions of the model at least for doses up to a few Gy. Dicentrics, rings and large deletions were found to be lethal not only for AG1522 cells exposed to X rays, as already reported by others, but also for V79 cells exposed to protons and carbon ions of different energies. Furthermore, the derived CL yields suggest that the critical DNA lesions leading to clonogenic inactivation are more complex than "clean" DSBs. After initial validation, the model was applied to characterize the particle and LET dependence of proton and carbon cell killing. Consistent with the proton data, the predicted fraction of inactivated cells after 2 Gy protons was 40-50% below 7.7 keV/μm, increased by a factor ∼1.6 between 7.7-30.5 keV/μm, and decreased by a factor ∼1.1 between 30.5-34.6 keV/μm. These LET values correspond to proton energies below a few MeV, which are always present in the distal region of hadron therapy spread-out Bragg peaks (SOBP). Consistent with the carbon data, the predicted fraction of inactivated cells after 2 Gy carbon was 40-50% between 13.7-32.4 keV/μm, it increased by a factor ∼1.7 between 32.4-153.5 keV/μm, and decreased by a factor ∼1.1 between 153.5-339.1 keV/μm. Finally, we applied the model to predict cell death at different depths along a carbon SOBP used for preclinical experiments at HIMAC in Chiba, Japan. The predicted fraction of inactivated cells was found to be roughly constant (less than 10%) along the SOBP, suggesting that this approach may be applied to predict cell killing of therapeutic carbon beams and that, more generally, dicentrics, rings and deletions at the first mitosis may be regarded as a biological dose for these beams. This study advanced our understanding of the mechanisms of radiation-induced cell death and characterized the particle and LET dependence of proton and carbon cell killing along a carbon SOBP. The model does not use RBE values, which can be a source of uncertainty. More generally, this model is a mechanism-based tool that in minutes can predict cell inactivation by protons or carbon ions of a given energy and dose, based on an experimental photon curve and in principle, a single (experimental) survival point for the considered ion type and energy.
Collapse
Affiliation(s)
- Francesca Ballarini
- University of Pavia, Physics Department, and INFN - Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
5
|
Shoulkamy MI, Nakano T, Ohshima M, Hirayama R, Uzawa A, Furusawa Y, Ide H. Detection of DNA-protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs. Nucleic Acids Res 2012; 40:e143. [PMID: 22730301 PMCID: PMC3467041 DOI: 10.1093/nar/gks601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins are covalently trapped on DNA to form DNA-protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3 μg of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles.
Collapse
Affiliation(s)
- Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Botchway SW, Reynolds P, Parker AW, O'Neill P. Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells. Methods Enzymol 2012; 504:3-28. [PMID: 22264527 DOI: 10.1016/b978-0-12-391857-4.00001-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of nano- and microbeam techniques to induce and identify subcellular localized energy deposition within a region of a living cell provides a means to investigate the effects of low radiation doses. Particularly within the nucleus where the propagation and processing of deoxyribonucleic acid (DNA) damage (and repair) in both targeted and nontargeted cells, the latter being able to study cell-cell (bystander) effects. We have pioneered a near infrared (NIR) femtosecond laser microbeam to mimic ionizing radiation through multiphoton absorption within a 3D femtoliter volume of a highly focused Gaussian laser beam. The novel optical microbeam mimics both complex ionizing and UV-radiation-type cell damage including double strand breaks (DSBs). Using the microbeam technology, we have been able to investigate the formation of DNA DSB and subsequent recruitment of repair proteins to the submicrometer size site of damage introduced in viable cells. The use of a phosphorylated H2AX (γ-H2AX a marker for DSBs, visualized by immunofluorescent staining) and real-time imaging of fluorescently labeling proteins, the dynamics of recruitment of repair proteins in viable mammalian cells can be observed. Here we show the recruitment of ATM, p53 binding protein 1 (53BP1), and RAD51, an integral protein of the homologous recombination process in the DNA repair pathway and Ku-80-GFP involved in the nonhomologous end joining (NHEJ) pathway as exemplar repair process to show differences in the repair kinetics of DNA DSBs. The laser NIR multiphoton microbeam technology shows persistent DSBs at later times post laser irradiation which are indicative of DSBs arising at replication presumably from UV photoproducts or clustered damage containing single strand breaks (SSBs) that are also observed. Effects of the cell cycle may also be investigated in real time. Postirradiation and fixed cells studies show that in G1 cells a fraction of multiphoton laser-induced DSBs is persistent for >6h in addition to those induced at replication demonstrating the broad range of timescales taken to repair DNA damage.
Collapse
Affiliation(s)
- Stanley W Botchway
- Research Complex at Harwell, Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxford, Oxfordshire, United Kingdom
| | | | | | | |
Collapse
|
7
|
Manti L, Bowen ID, Stevens DL, Court JB. Probing lethal damage expression in cytochalasin B-induced polykaryons by radiation quality. Radiat Res 2006; 165:293-8. [PMID: 16494517 DOI: 10.1667/rr3511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The polykaryon-forming unit (PFU) cell survival assay is based on the postirradiation flow cytometric analysis of the DNA content accumulated in high-ploidy cells (polykaryons) induced by the cytokinesis inhibitor cytochalasin B and can provide a meaningful measure of cell radiosensitivity. In this assay, cell survival is defined as the ability to form a polykaryon of a given ploidy after irradiation. The slope of the polykaryon dose response has been shown to be highly correlated with the initial slope of the clonogenic survival curves after gamma irradiation, which implies a common subset of lethal lesions. We reported previously on an apoptotic mode of cell death in the polykaryon system and on the heritability of small variations in polykaryon radioresponse. We now show that exposure of PFUs to a given dose of alpha particles results in a greater reduction in the proportion of cells able to reach at least 16C when compared to the same dose of low-LET radiation. This reduction is less than that observed in the low-dose (alpha term) region of the clonogenic curve. On the basis of published LET-dependent spectra of radiation-induced DNA damage, we suggest that this behavior reflects a differential expression of lethal damage that can be probed by varying the LET of the radiation and that base damages contributing additional complexity to clustered DNA lesions may be more deleterious in PFUs than in clonogens.
Collapse
Affiliation(s)
- Lorenzo Manti
- Department of Physical Sciences, Radiation Biophysics Laboratory, University of Naples Federico II, Italy.
| | | | | | | |
Collapse
|
8
|
Effects of Ion Radiation on Cells and Tissues. RADIATION EFFECTS ON POLYMERS FOR BIOLOGICAL USE 2003. [DOI: 10.1007/3-540-45668-6_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
|