1
|
Liu Z, Østerlund I, Ruhnow F, Cao Y, Huang G, Cai W, Zhang J, Liang W, Nikoloski Z, Persson S, Zhang D. Fluorescent cytoskeletal markers reveal associations between the actin and microtubule cytoskeleton in rice cells. Development 2022; 149:275467. [DOI: 10.1242/dev.200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Rice (Oryza sativa) is one of our main food crops, feeding ∼3.5 billion people worldwide. An increasing number of studies note the importance of the cytoskeleton, including actin filaments and microtubules, in rice development and environmental responses. Yet, reliable in vivo cytoskeleton markers are lacking in rice, which limits our knowledge of cytoskeletal functions in living cells. Therefore, we generated bright fluorescent marker lines of the actin and microtubule cytoskeletons in rice, suitable for live-cell imaging in a wide variety of rice tissues. Using these lines, we show that actin bundles and microtubules engage and co-function during pollen grain development, how the cytoskeletal components are coordinated during root cell development, and that the actin cytoskeleton is robust and facilitates microtubule responses during salt stress. Hence, we conclude that our cytoskeletal marker lines, highlighted by our findings of cytoskeletal associations and dynamics, will substantially further future investigations in rice biology.
Collapse
Affiliation(s)
- Zengyu Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Isabella Østerlund
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
- Max Planck Institute of Molecular Plant Physiology 3 Systems Biology and Mathematical Modelling , , Am Mühlenberg 1, 14476 Potsdam-Golm , Germany
| | - Felix Ruhnow
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
| | - Yiran Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology 3 Systems Biology and Mathematical Modelling , , Am Mühlenberg 1, 14476 Potsdam-Golm , Germany
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
- Copenhagen Plant Science Center (CPSC) 4 , , 1870 Frederiksberg , Denmark
- University of Copenhagen 4 , , 1870 Frederiksberg , Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
- School of Agriculture, Food, and Wine 5 , , Waite Campus, Urrbrae, SA 5064 , Australia
- University of Adelaide 5 , , Waite Campus, Urrbrae, SA 5064 , Australia
| |
Collapse
|
2
|
Biel A, Moser M, Meier I. Arabidopsis KASH Proteins SINE1 and SINE2 Are Involved in Microtubule Reorganization During ABA-Induced Stomatal Closure. FRONTIERS IN PLANT SCIENCE 2020; 11:575573. [PMID: 33324432 PMCID: PMC7722481 DOI: 10.3389/fpls.2020.575573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Abscisic acid (ABA) induces stomatal closure by utilizing complex signaling mechanisms, allowing for sessile plants to respond rapidly to ever-changing environmental conditions. ABA regulates the activity of plasma membrane ion channels and calcium-dependent protein kinases, Ca2+ oscillations, and reactive oxygen species (ROS) concentrations. Throughout ABA-induced stomatal closure, the cytoskeleton undergoes dramatic changes that appear important for efficient closure. However, the precise role of this cytoskeletal reorganization in stomatal closure and the nature of its regulation are unknown. We have recently shown that the plant KASH proteins SINE1 and SINE2 are connected to actin organization during ABA-induced stomatal closure but their role in microtubule (MT) organization remains to be investigated. We show here that depolymerizing MTs using oryzalin can restore ABA-induced stomatal closure deficits in sine1-1 and sine2-1 mutants. GFP-MAP4-visualized MT organization is compromised in sine1-1 and sine2-1 mutants during ABA-induced stomatal closure. Loss of SINE1 or SINE2 results in loss of radially organized MT patterning in open guard cells, aberrant MT organization during stomatal closure, and an overall decrease in the number of MT filaments or bundles. Thus, SINE1 and SINE2 are necessary for establishing MT patterning and mediating changes in MT rearrangement, which is required for ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Glanc M, Fendrych M, Friml J. PIN2 Polarity Establishment in Arabidopsis in the Absence of an Intact Cytoskeleton. Biomolecules 2019; 9:biom9060222. [PMID: 31181636 PMCID: PMC6628292 DOI: 10.3390/biom9060222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Cell polarity is crucial for the coordinated development of all multicellular organisms. In plants, this is exemplified by the PIN-FORMED (PIN) efflux carriers of the phytohormone auxin: The polar subcellular localization of the PINs is instructive to the directional intercellular auxin transport, and thus to a plethora of auxin-regulated growth and developmental processes. Despite its importance, the regulation of PIN polar subcellular localization remains poorly understood. Here, we have employed advanced live-cell imaging techniques to study the roles of microtubules and actin microfilaments in the establishment of apical polar localization of PIN2 in the epidermis of the Arabidopsis root meristem. We report that apical PIN2 polarity requires neither intact actin microfilaments nor microtubules, suggesting that the primary spatial cue for polar PIN distribution is likely independent of cytoskeleton-guided endomembrane trafficking.
Collapse
Affiliation(s)
- Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic.
| | - Matyáš Fendrych
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic.
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
4
|
Sampathkumar A, Peaucelle A, Fujita M, Schuster C, Persson S, Wasteneys GO, Meyerowitz EM. Primary wall cellulose synthase regulates shoot apical meristem mechanics and growth. Development 2019; 146:dev.179036. [PMID: 31076488 DOI: 10.1242/dev.179036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
How organisms attain their specific shapes and modify their growth patterns in response to environmental and chemical signals has been the subject of many investigations. Plant cells are at high turgor pressure and are surrounded by a rigid yet flexible cell wall, which is the primary determinant of plant growth and morphogenesis. Cellulose microfibrils, synthesized by plasma membrane-localized cellulose synthase complexes, are major tension-bearing components of the cell wall that mediate directional growth. Despite advances in understanding the genetic and biophysical regulation of morphogenesis, direct studies of cellulose biosynthesis and its impact on morphogenesis of different cell and tissue types are largely lacking. In this study, we took advantage of mutants of three primary cellulose synthase (CESA) genes that are involved in primary wall cellulose synthesis. Using field emission scanning electron microscopy, live cell imaging and biophysical measurements, we aimed to understand how the primary wall CESA complex acts during shoot apical meristem development. Our results indicate that cellulose biosynthesis impacts the mechanics and growth of the shoot apical meristem.
Collapse
Affiliation(s)
- Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Miki Fujita
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver V6T 1Z4, Canada
| | | | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey O Wasteneys
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver V6T 1Z4, Canada
| | - Elliot M Meyerowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Bou Daher F, Chen Y, Bozorg B, Clough J, Jönsson H, Braybrook SA. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. eLife 2018; 7:e38161. [PMID: 30226465 PMCID: PMC6143341 DOI: 10.7554/elife.38161] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/28/2018] [Indexed: 11/13/2022] Open
Abstract
Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive anisotropic information is provided by pectin-based elastic asymmetry in the epidermis. We quantitatively show that hypocotyl elongation is anisotropic starting at germination. We present experimental evidence for pectin biochemical differences and wall mechanics providing important growth regulation in the hypocotyl. Lastly, our in silico modelling experiments indicate an additive collaboration between pectin biochemistry and cellulose orientation in promoting anisotropic growth.
Collapse
Affiliation(s)
- Firas Bou Daher
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesUnited States
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Yuanjie Chen
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Behruz Bozorg
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Computational Biology and Biological Physics GroupLund UniversityLundSweden
| | - Jack Clough
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Henrik Jönsson
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Computational Biology and Biological Physics GroupLund UniversityLundSweden
- Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUnited Kingdom
| | - Siobhan A Braybrook
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesUnited States
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
6
|
Verger S, Long Y, Boudaoud A, Hamant O. A tension-adhesion feedback loop in plant epidermis. eLife 2018; 7:34460. [PMID: 29683428 PMCID: PMC5963923 DOI: 10.7554/elife.34460] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces have emerged as coordinating signals for most cell functions. Yet, because forces are invisible, mapping tensile stress patterns in tissues remains a major challenge in all kingdoms. Here we take advantage of the adhesion defects in the Arabidopsis mutant quasimodo1 (qua1) to deduce stress patterns in tissues. By reducing the water potential and epidermal tension in planta, we rescued the adhesion defects in qua1, formally associating gaping and tensile stress patterns in the mutant. Using suboptimal water potential conditions, we revealed the relative contributions of shape- and growth-derived stress in prescribing maximal tension directions in aerial tissues. Consistently, the tension patterns deduced from the gaping patterns in qua1 matched the pattern of cortical microtubules, which are thought to align with maximal tension, in wild-type organs. Conversely, loss of epidermis continuity in the qua1 mutant hampered supracellular microtubule alignments, revealing that coordination through tensile stress requires cell-cell adhesion. The parts of a plant that protrude from the ground are constantly shaken by the wind, applying forces to the plant that it must be able to resist. Indeed, mechanical forces are crucial for the development, growth and life of all organisms and can trigger certain behaviours or the production of particular molecules: for example, forces that bend a plant trigger gene activity that ultimately makes the stem more rigid. Mechanical forces can also originate from inside the organism. For example, the epidermal cells that cover the surface of a plant are placed under tension by the cells in the underlying layers of the plant as they grow and expand. The exact pattern of forces in the plant epidermis was not known because they cannot be directly seen, although scientists have tried to map them using theoretical and computational modeling. A mutant form of the Arabidopsis plant is unable to produce some of the molecules that allow epidermal cells to adhere to each other. Verger et al. placed the mutants in different growth conditions that lowered the pressure inside the plant, and consequently reduced the tension on the epidermal cells. This partly restored the ability of epidermal cells to adhere to each other, although gaps remained between cells in regions of the plant that have been predicted to be under high levels of tension. Verger et al. could therefore use the patterns of the gaps to map the forces across the epidermis, opening the path for the study of the role of these forces in plant development. Further experiments showed that cell adhesion defects prevent the epidermal cells from coordinating how they respond to mechanical forces. There is therefore a feedback loop in the plant epidermis: cell-cell connections transmit tension across the epidermis, and, in turn, tension is perceived by the cells to alter the strength of those connections. The results presented by Verger et al. suggest that plants use tension to monitor the adhesion in the cell layer that forms an interface with the environment. Other organisms may use similar processes; this theory is supported by the fact that sheets of animal cells use proteins that are involved in both cell-cell adhesion and the detection of tension. The next challenge is to analyse how tension in the epidermis affects developmental processes and how a plant responds to its environment.
Collapse
Affiliation(s)
- Stéphane Verger
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Yuchen Long
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| |
Collapse
|
7
|
Armezzani A, Abad U, Ali O, Robin AA, Vachez L, Larrieu A, Mellerowicz EJ, Taconnat L, Battu V, Stanislas T, Liu M, Vernoux T, Traas J, Sassi M. Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis. Development 2018; 145:dev.162255. [DOI: 10.1242/dev.162255] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
The shoot apical meristem of higher plants continuously generates new tissues and organs through complex changes in growth rates and directions of its individual cells. Cell growth, driven by turgor pressure, largely depends on the cell walls, which allow cell expansion through synthesis and structural changes. A previous study revealed a major contribution of wall isotropy in organ emergence, through the disorganization of cortical microtubules. We show here that this disorganization is coupled with the transcriptional control of genes involved in wall remodelling. Some of these genes are induced when microtubules are disorganized and cells shift to isotropic growth. Mechanical modelling shows that this coupling has the potential to compensate for reduced cell expansion rates induced by the shift to isotropic growth. Reciprocally, cell wall loosening induced by different treatments or altered cell wall composition promotes a disruption of microtubule alignment. Our data thus indicate the existence of a regulatory module activated during organ outgrowth, linking microtubule arrangements to cell wall remodelling.
Collapse
Affiliation(s)
- Alessia Armezzani
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ursula Abad
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Ali
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
- INRIA team MOSAIC, Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Amélie Andres Robin
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Laetitia Vachez
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Antoine Larrieu
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology
Swedish University of Agricultural Sciences (Sveriges lantbruksuniversitet) S901-83 Umea, Sweden
| | - Ludivine Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Virginie Battu
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Massimiliano Sassi
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
8
|
Czymmek KJ, Bourett TM, Sweigard JA, Carroll A, Howard RJ. Utility of cytoplasmic fluorescent proteins for live-cell imaging ofMagnaporthe griseain planta. Mycologia 2017. [DOI: 10.1080/15572536.2003.11833234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kirk J. Czymmek
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | | | | | - Anne Carroll
- DuPont Crop Genetics, Delaware Technology Park, Newark, Delaware 19713
| | | |
Collapse
|
9
|
Vyplelová P, Ovečka M, Šamaj J. Alfalfa Root Growth Rate Correlates with Progression of Microtubules during Mitosis and Cytokinesis as Revealed by Environmental Light-Sheet Microscopy. FRONTIERS IN PLANT SCIENCE 2017; 8:1870. [PMID: 29163595 PMCID: PMC5670501 DOI: 10.3389/fpls.2017.01870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/13/2017] [Indexed: 05/04/2023]
Abstract
Cell division and expansion are two fundamental biological processes supporting indeterminate root growth and development of plants. Quantitative evaluations of cell divisions related to root growth analyses have been performed in several model crop and non-crop plant species, but not in important legume plant Medicago sativa. Light-sheet fluorescence microscopy (LSFM) is an advanced imaging technique widely used in animal developmental biology, providing efficient fast optical sectioning under physiological conditions with considerably reduced phototoxicity and photobleaching. Long-term 4D imaging of living plants offers advantages for developmental cell biology not available in other microscopy approaches. Recently, LSFM was implemented in plant developmental biology studies, however, it is largely restricted to the model plant Arabidopsis thaliana. Cellular and subcellular events in crop species and robust plant samples have not been studied by this method yet. Therefore we performed LSFM long-term live imaging of growing root tips of transgenic alfalfa plants expressing the fluorescent molecular marker for the microtubule-binding domain (GFP-MBD), in order to study dynamic patterns of microtubule arrays during mitotic cell division. Quantitative evaluations of cell division progress in the two root tissues (epidermis and cortex) clearly indicate that root growth rate is correlated with duration of cell division in alfalfa roots. Our results favor non-invasive environmental LSFM as one of the most suitable methods for qualitative and quantitative cellular and developmental imaging of living transgenic legume crops.
Collapse
|
10
|
Liu AA, Zhang Z, Sun EZ, Zheng Z, Zhang ZL, Hu Q, Wang H, Pang DW. Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy. ACS NANO 2016; 10:1147-1155. [PMID: 26720596 DOI: 10.1021/acsnano.5b06438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Real-time, long-term, single-particle tracking (SPT) provides us an opportunity to explore the fate of individual viruses toward understanding the mechanisms underlying virus infection, which in turn could lead to the development of therapeutics against viral diseases. However, the research focusing on the virus assembly and egress by SPT remains a challenge because established labeling strategies could neither specifically label progeny viruses nor make them distinguishable from the parental viruses. Herein, we have established a temporally controllable capsid-specific HaloTag labeling strategy based on reverse genetic technology. VP26, the smallest pseudorabies virus (PrV) capsid protein, was fused with HaloTag protein and labeled with the HaloTag ligand during virus replication. The labeled replication-competent recombinant PrV harvested from medium can be applied directly in SPT experiments without further modification. Thus, virus infectivity, which is critical for the visualization and analysis of viral motion, is retained to the largest extent. Moreover, progeny viruses can be distinguished from parental viruses using diverse HaloTag ligands. Consequently, the entire course of virus infection and replication can be visualized continuously, including virus attachment and capsid entry, transportation of capsids to the nucleus along microtubules, docking of capsids on the nucleus, endonuclear assembly of progeny capsids, and the egress of progeny viruses. In combination with SPT, the established strategy represents a versatile means to reveal the mechanisms and dynamic global picture of the life cycle of a virus.
Collapse
Affiliation(s)
- An-An Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Zhenfeng Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - En-Ze Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|
11
|
Wang S, Kurepa J, Smalle JA. Ultra-small TiO(2) nanoparticles disrupt microtubular networks in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2011; 34:811-20. [PMID: 21276012 DOI: 10.1111/j.1365-3040.2011.02284.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In spite of the mounting concerns, current understanding of the extent and mechanisms of phytotoxicity of manufactured nanomaterials remains limited. Here we show that in Arabidopsis thaliana, ultra-small anatase TiO(2) nanoparticles cause reorganization and elimination of microtubules followed by the accelerated and 26S proteasome-dependent degradation of tubulin monomers. Similar to other microtubule-disrupting agents, TiO(2) nanoparticles induce isotropic growth of root cells. Because microtubules are essential for the normal function of all eukaryotic cells, these results reveal a potentially important consequence of environmental pollution by this widely used nanomaterial.
Collapse
Affiliation(s)
- Songhu Wang
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | |
Collapse
|
12
|
Andreeva Z, Ho AYY, Barthet MM, Potocký M, Bezvoda R, Žárský V, Marc J. Phospholipase D family interactions with the cytoskeleton: isoform delta promotes plasma membrane anchoring of cortical microtubules. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:600-612. [PMID: 32688673 DOI: 10.1071/fp09024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/25/2009] [Indexed: 05/06/2023]
Abstract
Phospholipase D (PLD) is a key enzyme in signal transduction - mediating plant responses to various environmental stresses including drought and salinity. Isotype PLDδ interacts with the microtubule cytoskeleton, although it is unclear if, or how, each of the 12 PLD isotypes in Arabidopsis may be involved mechanistically. We employed RNA interference in epidermal cells of Allium porrum L. (leek) leaves, in which the developmental reorientation of cortical microtubule arrays to a longitudinal direction is highly sensitive to experimental manipulation. Using particle bombardment and transient transformation with synthetic siRNAs targeting AtPLDα, β, γ, δ, ॉ and ζ, we examined the effect of 'cross-target' silencing orthologous A. porrum genes on microtubule reorientation dynamics during cell elongation. Co-transformation of individual siRNAs together with a GFP-MBD microtubule-reporter gene revealed that siRNAs targeting AtPLDδ promoted, whereas siRNAs targeting AtPLDβ and γ reduced, longitudinal microtubule orientation in A. porrum. These PLD isotypes, therefore, interact, directly or indirectly, with the cytoskeleton and the microtubule-plasma membrane interface. The unique response of PLDδ to silencing, along with its exclusive localisation to the plasma membrane, indicates that this isotype is specifically involved in promoting microtubule-membrane anchorage.
Collapse
Affiliation(s)
- Zornitza Andreeva
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Angela Y Y Ho
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Michelle M Barthet
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Radek Bezvoda
- Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jan Marc
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Dubrovsky JG, Guttenberger M, Saralegui A, Napsucialy-Mendivil S, Voigt B, Baluska F, Menzel D. Neutral red as a probe for confocal laser scanning microscopy studies of plant roots. ANNALS OF BOTANY 2006; 97:1127-38. [PMID: 16520341 PMCID: PMC2803381 DOI: 10.1093/aob/mcl045] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/03/2005] [Accepted: 01/19/2006] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Neutral red (NR), a lipophilic phenazine dye, has been widely used in various biological systems as a vital stain for bright-field microscopy. In its unprotonated form it penetrates the plasma membrane and tonoplast of viable plant cells, then due to protonation it becomes trapped in acidic compartments. The possible applications of NR for confocal laser scanning microscopy (CLSM) studies were examined in various aspects of plant root biology. METHODS NR was used as a fluorochrome for living roots of Phaseolus vulgaris, Allium cepa, A. porrum and Arabidopsis thaliana (wild-type and transgenic GFP-carrying lines). The tissues were visualized using CLSM. The effect of NR on the integrity of the cytoskeleton and the growth rate of arabidopsis primary roots was analysed to judge potential toxic effects of the dye. KEY RESULTS The main advantages of the use of NR are related to the fact that NR rapidly penetrates root tissues, has affinity to suberin and lignin, and accumulates in the vacuoles. It is shown that NR is a suitable probe for visualization of proto- and metaxylem elements, Casparian bands in the endodermis, and vacuoles in cells of living roots. The actin cytoskeleton and the microtubule system of the cells, as well as the dynamics of root growth, remain unchanged after short-term application of NR, indicating a relatively low toxicity of this chemical. It was also found that NR is a useful probe for the observation of the internal structures of root nodules and of fungal hyphae in vesicular-arbuscular mycorrhizas. CONCLUSIONS Ease, low cost and absence of tissue processing make NR a useful probe for structural, developmental and vacuole-biogenetic studies of plant roots with CLSM.
Collapse
Affiliation(s)
- Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu JZ, Blancaflor EB, Nelson RS. The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. PLANT PHYSIOLOGY 2005; 138:1853-65. [PMID: 16040646 PMCID: PMC1183377 DOI: 10.1104/pp.105.065722] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/13/2005] [Accepted: 05/16/2005] [Indexed: 05/03/2023]
Abstract
Virus-induced cytoplasmic inclusion bodies (referred to as virus replication complexes [VRCs]) consisting of virus and host components are observed in plant cells infected with tobacco mosaic virus, but the components that modulate their form and function are not fully understood. Here, we show that the tobacco mosaic virus 126-kD protein fused with green fluorescent protein formed cytoplasmic bodies (126-bodies) in the absence of other viral components. Using mutant 126-kD:green fluorescent fusion proteins and viral constructs expressing the corresponding mutant 126-kD proteins, it was determined that the size of the 126-bodies and the corresponding VRCs changed in synchrony for each 126-kD protein mutation tested. Through colabeling experiments, we observed the coalignment and intracellular trafficking of 126-bodies and, regardless of size, VRCs, along microfilaments (MFs). Disruption of MFs with MF-depolymerizing agents or through virus-induced gene silencing compromised the intracellular trafficking of the 126-bodies and VRCs and virus cell-to-cell movement, but did not decrease virus accumulation to levels that would affect virus movement or prevent VRC formation. Our results indicate that (1) the 126-kD protein modulates VRC size and traffics along MFs in cells; (2) VRCs traffic along MFs in cells, possibly through an interaction with the 126-kD protein, and the negative effect of MF antagonists on 126-body and VRC intracellular movement and virus cell-to-cell movement correlates with the disruption of this association; and (3) virus movement was not correlated with VRC size.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | |
Collapse
|
15
|
Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hülskamp M, Mathur J. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. PLANT & CELL PHYSIOLOGY 2004; 45:813-22. [PMID: 15295064 DOI: 10.1093/pcp/pch103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis, based on the randomly misshapen phenotype of leaf epidermal trichomes, eight genes have been grouped into a 'DISTORTED' class. Three of the DIS genes, WURM, DISTORTED1 and CROOKED have been cloned recently and encode the ARP2, ARP3 and ARPC5 subunits respectively, of a conserved actin modulating ARP2/3 complex. Here we identify a fourth gene, DISTORTED2 as the Arabidopsis homolog of the ARPC2 subunit of the ARP2/3 complex. Like other mutants in the complex dis2 trichomes also display supernumerary, randomly localized cortical actin patches. In addition dis2 trichomes possess abnormally clustered endoplasmic microtubules near sites of actin aggregation. Since microtubules are strongly implicated in the establishment and maintenance of growth directionality in higher plants our observations of aberrant microtubule clustering in dis2 trichomes suggests a convincing explanation for the randomly distorted trichome phenotype in dis mutants. In addition, the close proximity of microtubule clusters to the arbitrarily dispersed cortical actin patches in the dis mutants provides fresh insights into cytoskeletal interactions leading us to suggest that in higher plants microtubule arrangements directed towards the establishment and maintenance of polar growth-directionality are guided by cortical actin behavior and organization.
Collapse
Affiliation(s)
- Rainer Saedler
- Botanical Institute III, University of Köln, Gyrhofstrasse 13, D-50931 Köln, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Sivaguru M, Pike S, Gassmann W, Baskin TI. Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. PLANT & CELL PHYSIOLOGY 2003; 44:667-75. [PMID: 12881494 DOI: 10.1093/pcp/pcg094] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Efforts to understand how plants respond to aluminum have focused on describing the symptoms of toxicity and elucidating mechanisms of tolerance; however, little is known about the signal transduction steps that initiate the plant's response. Here, we image cortical microtubules and quantify plasma-membrane potential in living, root cells of intact Arabidopsis seedlings. We show that aluminum depolymerizes microtubules and depolarizes the membrane, and that these responses are prevented by calcium channel blockade. Calcium influx might involve glutamate receptors, which in animals are ligand-gated cation channels and are present in the Arabidopsis genome. We show that glutamate depolymerizes microtubules and depolarizes the plasma membrane. These responses, and also the inhibition of root elongation, occur within the first few min of treatment, but are evoked more rapidly by glutamate than by aluminum. Microtubule depolymerization and membrane depolarization, induced by either glutamate or aluminum, are blocked by a specific antagonist of ionotropic glutamate receptors, 2-amino-5-phosphonopentanoate; whereas an antagonist of an aluminum-gated anion channel blocks the two responses to aluminum but not to glutamate. For growth, microtubule integrity, and membrane potential, responses to combined glutamate and aluminum were not greater than to glutamate alone. We propose that signaling in response to aluminum is initiated by efflux of a glutamate-like ligand through an anion channel and the binding of this ligand to a glutamate receptor.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | | | | | | |
Collapse
|
17
|
Jedd G, Chua NH. Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. PLANT & CELL PHYSIOLOGY 2002; 43:384-92. [PMID: 11978866 DOI: 10.1093/pcp/pcf045] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we examine peroxisomes in living plant cells using transgenic Arabidopsis thaliana plants expressing the green fluorescent protein (GFP) fused to the peroxisome targeting signal 1 (PTS1). Using time-lapse laser scanning confocal microscopy we find that plant peroxisomes exhibit fast directional movement with peak velocities approaching 10 microm s(-1). Unlike mammalian peroxisomes which move on microtubules, plant peroxisome movement is dependent on actin microfilaments and myosin motors, since it is blocked by treatment with latrunculin B and butanedione monoxime, respectively. In contrast, microtubule-disrupting drugs have no effect on peroxisome streaming. Peroxisomes were further shown to associate with the actin cytoskeleton by the simultaneous visualization of actin filaments and peroxisomes in living cells using GFP-talin and GFP-PTS1 fusion proteins, respectively. In addition, peroxisome budding was observed, suggesting a possible mechanism of plant peroxisome proliferation. The strong signal associated with the GFP-PTS1 marker also allowed us to survey cytoplasmic streaming in different cell types. Peroxisome movement is most intense in elongated cells and those involved in long distance transport, suggesting that higher plants use cytoplasmic streaming to help transport vesicles and organelles over long distances.
Collapse
Affiliation(s)
- Gregory Jedd
- Laboratory of Plant Molecular biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA.
| | | |
Collapse
|
18
|
Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S. Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. PLANT & CELL PHYSIOLOGY 2001; 42:723-32. [PMID: 11479379 DOI: 10.1093/pcp/pce091] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Transgenic BY-2 cells stably expressing a GFP (green fluorescent protein)-tubulin fusion protein (BY-GT16) were subcultured in a modified Linsmaier and Skoog medium. The BY-GT16 cells could be synchronized by aphidicolin and the dynamics of their microtubules (MTs) were monitored by the confocal laser scanning microscopy (CLSM). We have succeeded in investigating the mode of reorganization of cortical MTs at the M/G1 interface. The cortical MTs were initially organized in the perinuclear regions and then they elongated to reach the cell cortex, forming the bright spots there. Subsequently, the first cortical MTs rapidly elongated from the spots and they were oriented parallel to the long axis towards the distal end of the cells. Around the time when the tips of the parallel MTs reached the distal end, the formation of transverse cortical MTs followed in the cortex near the division site, as we had previously suggested [Hasezawa and Nagata (1991) Bot. Acta 104: 206, Nagata et al. (1994) Planta 193: 567]. It was confirmed in independent observations that the appearance of the parallel MTs was followed by the appearance of the transverse MTs in each cell. We found that the transverse MTs spread through the whole cell cortex within about 20-30 min, while the parallel MTs disappeared. The significance of these observations on the mode of cortical MT organization is discussed.
Collapse
Affiliation(s)
- F Kumagai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | | | | | | | | | | |
Collapse
|