1
|
Lee HS, Choi I, Jeon Y, Ahn HK, Cho H, Kim J, Kim JH, Lee JM, Lee S, Bünting J, Seo DH, Lee T, Lee DH, Lee I, Oh MH, Kim TW, Belkhadir Y, Pai HS. Chaperone-like protein DAY plays critical roles in photomorphogenesis. Nat Commun 2021; 12:4194. [PMID: 34234144 PMCID: PMC8263706 DOI: 10.1038/s41467-021-24446-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Photomorphogenesis, light-mediated development, is an essential feature of all terrestrial plants. While chloroplast development and brassinosteroid (BR) signaling are known players in photomorphogenesis, proteins that regulate both pathways have yet to be identified. Here we report that DE-ETIOLATION IN THE DARK AND YELLOWING IN THE LIGHT (DAY), a membrane protein containing DnaJ-like domain, plays a dual-role in photomorphogenesis by stabilizing the BR receptor, BRI1, as well as a key enzyme in chlorophyll biosynthesis, POR. DAY localizes to both the endomembrane and chloroplasts via its first transmembrane domain and chloroplast transit peptide, respectively, and interacts with BRI1 and POR in their respective subcellular compartments. Using genetic analysis, we show that DAY acts independently on BR signaling and chlorophyll biogenesis. Collectively, this work uncovers DAY as a factor that simultaneously regulates BR signaling and chloroplast development, revealing a key regulator of photomorphogenesis that acts across cell compartments.
Collapse
Affiliation(s)
- Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Ilyeong Choi
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Young Jeon
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Huikyong Cho
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - JiWoo Kim
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Jae-Hee Kim
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Jung-Min Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - SungHee Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Julian Bünting
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Dong Hye Seo
- Department of Systems biology, Yonsei University, Seoul, South Korea
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Insuk Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Man-Ho Oh
- Plant Developmental Genetics, Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | - Hyun-Sook Pai
- Department of Systems biology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
2
|
Silvestri C, Caceres ME, Ceccarelli M, Pica AL, Rugini E, Cristofori V. Influence of Continuous Spectrum Light on Morphological Traits and Leaf Anatomy of Hazelnut Plantlets. FRONTIERS IN PLANT SCIENCE 2019; 10:1318. [PMID: 31708945 PMCID: PMC6821792 DOI: 10.3389/fpls.2019.01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 05/20/2023]
Abstract
Light spectra influence growth, development, and quality of plants and seedlings, that is one of the main aspects engaging the interests of private and public researchers and nursery industries. Propagation of hazelnut (Corylus avellana L.), which in the past has been held in low consideration because of the widespread use of rooted suckers directly collected in the field, today is taking on increasing interest due to the strong expansion of hazelnut cultivation. In order to improve the quality of plants and seedlings in greenhouse acclimatization, the effects of light emitting diodes (LED) lights during the ex vitro growth of two hazelnut cultivars (Tonda di Giffoni and Tonda Gentile Romana) were investigated. Plantlets were maintained in a growth chamber and exposed to three different continuous spectrum LED systems as a primary source of illumination and to fluorescent lamps used as control. LEDs differed in the percentage of some wavelength ranges in the spectrum, being AP673L rich in green and red wavelengths, NS1 in blue and green light, G2 in red and far red wavelengths. After a 4-week experimental period, morphometric, biochemical, and histological analyses were carried out. Shoot and leaf growths were influenced by LEDs more than by fluorescent lamps in both cultivars. G2 positively affected biomass increment more than the other LEDs, by inducing not only cell elongation (increase in shoot length, new internodes length, leaf area) but also cell proliferation (increase in new node number). G2 exposure had negative effects on total chlorophyll content but positively affected synthesis of flavonoids in both varieties; therefore, plants grown under this LED showed the lowest nitrogen balance index. Leaf morpho-anatomical analyzed traits (thickness, palisade cell height, number of chloroplasts, number of palisade cells), were influenced especially by G2 and, to a less extent, by NS1 light. Significant differences in some parameters were observed between the two cultivars in response to a same light source. The results obtained underline the importance of light modulation for hazelnut, providing useful information for ex vitro growth of hazelnut plantlets.
Collapse
Affiliation(s)
- Cristian Silvestri
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
- *Correspondence: Cristian Silvestri,
| | - Maria Eugenia Caceres
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aniello Luca Pica
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Eddo Rugini
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
3
|
Smirnakou S, Ouzounis T, Radoglou KM. Continuous Spectrum LEDs Promote Seedling Quality Traits and Performance of Quercus ithaburensis var. macrolepis. FRONTIERS IN PLANT SCIENCE 2017; 8:188. [PMID: 28261244 PMCID: PMC5306215 DOI: 10.3389/fpls.2017.00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/30/2017] [Indexed: 05/27/2023]
Abstract
Regulation of the growth, development, and quality of plants by the control of light quality has attracted extensive attention worldwide. The aim of this study was to examine the effects of continuous LED spectrum for indoor plant pre-cultivation and to investigate the morphological and physiological responses of a common broadleaved tree species in Mediterranean environment, Quercus ithaburensis var. macrolepis at seedling developmental stage. Thus, the seedlings were pre-cultivated for 28 days, under five different LED light qualities: (1) Fluorescent (FL) as control light (2) L20AP67 (high in green and moderate in far-red), (3) AP673L (high in green and red), (4) G2 (highest in red and far-red), AP67 (high in blue, red, and far-red), and (5) NS1 (highest in blue and green and lowest in far-red) LEDs. Further examination was held at the nursery for 1 year, on several seedling quality traits. Indeed, AP67 and AP673L triggered higher leaf formation, while L20AP67 positively affected seedling shoot development. NS1 and AP67 LED pre-cultivated seedlings showed significantly higher root fibrosity than those of FL light. Furthermore, NS1 and AP673L LEDs induced fourfold increase on seedling root dry weight than FL light. Hence, evaluating the seedling nursery performance attributes, most of those photomorphogenetic responses previously obtained were still detectable. Even more so, LED pre-cultivated seedlings showed higher survival and faster growth indicating better adaptation even under natural light conditions, a fact further reinforced by the significantly higher Dickson's quality index acquired. In conclusion, the goal of each nursery management program is the production of high quality seedlings with those desirable traits, which in turn satisfy the specific needs for a particular reforestation site. Thus, the enhanced oak seedling quality traits formed under continuous LEDs spectrum especially of NS1 and AP673L pre-cultivation may potentially fulfill this goal.
Collapse
Affiliation(s)
- Sonia Smirnakou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of ThraceNea Orestiada, Greece
| | - Theoharis Ouzounis
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Kalliopi M. Radoglou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of ThraceNea Orestiada, Greece
| |
Collapse
|
4
|
Ranade SS, Abrahamsson S, Niemi J, García-Gil MR. <i>Pinus taeda</i> cDNA Microarray as a Tool for Candidate Gene Identification for Local Red/Far-Red Light Adaptive Response in <i>Pinus sylvestris</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.43061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G. Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. PLANT, CELL & ENVIRONMENT 2012; 35:994-1012. [PMID: 22082487 DOI: 10.1111/j.1365-3040.2011.02467.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.
Collapse
Affiliation(s)
- Loredana Lopez
- ENEA, Trisaia Research Center, Rotondella (MT), Italy ENEA, Casaccia Research Center, Rome, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Juntawong P, Bailey-Serres J. Dynamic Light Regulation of Translation Status in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2012; 3:66. [PMID: 22645595 DOI: 10.3389/fpls.2012.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/20/2012] [Indexed: 05/26/2023]
Abstract
Light, a dynamic environmental parameter, is an essential regulator of plant growth and development. Light-regulated transcriptional networks are well documented, whereas light-regulated post-transcriptional regulation has received limited attention. In this study, dynamics in translation of cytosolic mRNAs were evaluated at the genome-level in Arabidopsis thaliana seedlings grown under a typical light/dark diurnal regime, shifted to darkness at midday, and then re-illuminated. One-hour of unanticipated darkness reduced levels of polysomes by 17% in a manner consistent with inhibition of initiation of translation. This down-regulation of translation was reversed within 10 min of re-illumination. Quantitative comparison of the total cellular population of transcripts (the transcriptome) to those associated with one or more 80S ribosome (the translatome) identified over 1600 mRNAs that were differentially translated in response to light availability. Unanticipated darkness limited both transcription and translation of mRNAs encoding components of the photosynthetic machinery. Many mRNAs encoding proteins associated with the energy demanding process of protein synthesis were stable but sequestered in the dark, in a rapidly reversible manner. A meta-analysis determined these same transcripts were similarly and coordinately regulated in response to changes in oxygen availability. The dark and hypoxia translationally repressed mRNAs lack highly supported candidate RNA-regulatory elements but are characterized by G + C-rich 5'-untranslated regions. We propose that modulation of translation of a subset of cellular mRNAs functions as an energy conservation mechanism.
Collapse
Affiliation(s)
- Piyada Juntawong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA, USA
| | | |
Collapse
|
7
|
Juntawong P, Bailey-Serres J. Dynamic Light Regulation of Translation Status in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2012; 3:66. [PMID: 22645595 PMCID: PMC3355768 DOI: 10.3389/fpls.2012.00066] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/20/2012] [Indexed: 05/18/2023]
Abstract
Light, a dynamic environmental parameter, is an essential regulator of plant growth and development. Light-regulated transcriptional networks are well documented, whereas light-regulated post-transcriptional regulation has received limited attention. In this study, dynamics in translation of cytosolic mRNAs were evaluated at the genome-level in Arabidopsis thaliana seedlings grown under a typical light/dark diurnal regime, shifted to darkness at midday, and then re-illuminated. One-hour of unanticipated darkness reduced levels of polysomes by 17% in a manner consistent with inhibition of initiation of translation. This down-regulation of translation was reversed within 10 min of re-illumination. Quantitative comparison of the total cellular population of transcripts (the transcriptome) to those associated with one or more 80S ribosome (the translatome) identified over 1600 mRNAs that were differentially translated in response to light availability. Unanticipated darkness limited both transcription and translation of mRNAs encoding components of the photosynthetic machinery. Many mRNAs encoding proteins associated with the energy demanding process of protein synthesis were stable but sequestered in the dark, in a rapidly reversible manner. A meta-analysis determined these same transcripts were similarly and coordinately regulated in response to changes in oxygen availability. The dark and hypoxia translationally repressed mRNAs lack highly supported candidate RNA-regulatory elements but are characterized by G + C-rich 5'-untranslated regions. We propose that modulation of translation of a subset of cellular mRNAs functions as an energy conservation mechanism.
Collapse
Affiliation(s)
- Piyada Juntawong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of CaliforniaRiverside, CA, USA
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of CaliforniaRiverside, CA, USA
- *Correspondence: Julia Bailey-Serres, Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA. e-mail:
| |
Collapse
|
8
|
Lehmann P, Nöthen J, von Braun SS, Bohnsack MT, Mirus O, Schleiff E. Transitions of gene expression induced by short-term blue light. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:349-61. [PMID: 21309982 DOI: 10.1111/j.1438-8677.2010.00377.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blue light modulates many processes in plants and plant cells. It influences global and long-term responses, such as seedling development and phototropism, and induces short-term adaptations like stomatal opening and chloroplast movement. Three genes were identified as important for the latter process, namely PHOT1, PHOT2 and CHUP1. The former two phototropin blue light receptors act in perception of the blue light signal. The protein CHUP1 is localised to the outer envelope membrane of chloroplasts and is involved in chloroplast movement. To explore whether short-term reactions required for chloroplast movement are under transcriptional control, we analysed the transcriptome in wild-type Arabidopsis thaliana, phot1, phot2 and chup1 with different blue light treatments for 5 or 30 min. Blue light-induced changes in transcription depended on illumination time and intensity. Illumination with 100 μmol·m(-2) · s(-1) blue light induced down-regulation of several genes and might point to cascades that could be important for sensing low levels of blue light. Analysis of the transcriptome of the mutants in response to the different light regimes suggests that the transcriptional response to blue light in the wild-type can be attributed to phot1 rather than phot2, suggesting that blue light-induced alteration of expression is a function of phot1. In contrast, the blue light response at the transcriptional level of chup1 plants was unique, and confirmed the higher light sensitivity of this mutant.
Collapse
Affiliation(s)
- P Lehmann
- JWGU Frankfurt am Main, CEF Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 96:30-7. [PMID: 19410482 DOI: 10.1016/j.jphotobiol.2009.03.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/20/2022]
Abstract
Light quality is thought to affect many plant physiological processes during growth and development, particularly photosynthesis. We examined how light quality influences plant photosynthesis by analyzing changes in photosynthetic parameters and expression levels of some photosynthesis related genes of cucumber (Cucumis sativus L. cv. Jinyou No. 1) plants. The plants were grown under different light qualities: purple (P), blue (B), green (G), yellow (Y), red (R) and white light (W) of the same photosynthetic photon flux density (PFD) about 350 micromol m(-2)s(-1) for 5 days. The results show that all plants grown under monochromatic light had reduced growth, CO(2) assimilation rate (Pn) and quantum yield of PSII electron transport (Phi(PSII)) as compared with plants grown under W, and these reductions were more significant in the plants under G, Y and R. The decrease in Phi(PSII) is mostly due to the reduction in photochemical quenching (qP). Interestingly, P- and B-grown plants had higher stomatal conductance (Gs), total and initial Rubisco activities and higher transcriptional levels of 10 genes which encode key enzymes in the Calvin cycle together with higher total soluble sugars, sucrose and starch contents as compared with W-grown plants, whereas in G-, Y-, and R-grown plants these parameters declined. Therefore, the reduction in Pn under P and B is likely the result of inactivation of photosystems, whilst under Y, G and R it is caused by, in addition to photosystem inactivation, the closure of stomata and the transcriptional down-regulation of genes for the Calvin cycle enzymes such as rbc L and rca. In conclusion, light quality alters plant photosynthesis by the effects on the activity of photosynthetic apparatus in leaves and the effects on the expression and/or activity of the Calvin cycle enzymes.
Collapse
|
10
|
Abstract
Multiple receptors connect environmental cues to developmental genes via shortcuts and more tortuous pathways, creating a network of interactive signals in which negative regulators play a key role. The elements of the circuitry, their connections, and their functional significance are being uncovered thanks to the analysis of genetic interactions, protein-protein interactions, sub-cellular localisation and transcriptome patterns.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina.
| |
Collapse
|