1
|
Creed J, Cantillana-Riquelme V, Yan BH, Ma S, Chu D, Wang H, Turner DA, Laskowitz DT, Hoffmann U. Argon Inhalation for 24 h After Closed-Head Injury Does not Improve Recovery, Neuroinflammation, or Neurologic Outcome in Mice. Neurocrit Care 2021; 34:833-843. [PMID: 32959200 DOI: 10.1007/s12028-020-01104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVE In recent years, the noble gas argon (Ar) has been extensively studied for its organ protection properties. While mounting in vitro and in vivo evidence indicates that argon provides neuroprotection in ischemic brain injury, its neuroprotective potential in traumatic brain injury (TBI) has not been evaluated in vivo. We tested the hypothesis that prolonged inhalation of 70% or 79% argon for 24 h after closed-head injury (CHI) improves neurologic outcome and overall recovery at 36 days post-injury. We also compared effects of the 30% or 21% residual oxygen on argon's potential neuroprotective capacity. METHODS Adult male C57/black mice (n = 240) were subjected to closed-head traumatic brain injury, followed by inhalation of 70% argon or nitrogen (30% oxygen), or 79% argon or nitrogen (21% oxygen) for 24 h. Neurologic outcome (rotarod, neuroscore, and Morris water maze) was evaluated for up to 36 days post-injury. Histologic parameters of neurologic degeneration (Fluoro-Jade staining) and inflammation (F4/80 microglia immunostaining) were assessed in subgroups at 24 h and on post-injury day 7. RESULTS Our CHI protocol consistently resulted in significant brain injury. After argon inhalation for 24 h at either concentration, mice did not show significant improvement with regard to neuroscores, rotarod performance, Morris water maze performance, or overall recovery (body weight), compared to nitrogen controls, up to 36 days. At 7 days post-injury, histologic markers of neurodegeneration and inflammation, particularly in the hippocampus, consistently demonstrated significant injury. Notably, recovery was reduced in mice treated with the higher oxygen concentration (30%) after CHI compared to 21%. CONCLUSIONS Prolonged argon treatment did not improve neurologic outcome, overall recovery (weight), nor markers of neurodegeneration or neuroinflammation after significant CHI compared to nitrogen. While neuroprotective in predominately ischemic injury, argon did not provide protection after TBI in this model, highlighting the crucial importance of assessing argon's strengths and weaknesses in preclinical models to fully understand its organ protective potential in different pathologies and gas mixtures.
Collapse
Affiliation(s)
- Jennifer Creed
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | | | - Bai Hui Yan
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an JiaoTong University, Xi'an, ShaanXi Province, China
| | - Shuang Ma
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liao Ning, China
| | - Dongmei Chu
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Pediatrics, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Haichen Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Departments of Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Daniel T Laskowitz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
| | - Ulrike Hoffmann
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Kartha S, Yan L, Ita ME, Amirshaghaghi A, Luo L, Wei Y, Tsourkas A, Winkelstein BA, Cheng Z. Phospholipase A 2 Inhibitor-Loaded Phospholipid Micelles Abolish Neuropathic Pain. ACS NANO 2020; 14:8103-8115. [PMID: 32484651 PMCID: PMC7438274 DOI: 10.1021/acsnano.0c00999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Treating persistent neuropathic pain remains a major clinical challenge. Current conventional treatment approaches carry a substantial risk of toxicity and provide only transient pain relief. In this work, we show that the activity and expression of the inflammatory mediator secretory phospholipase-A2 (sPLA2) enzyme increases in the spinal cord after painful nerve root compression. We then develop phospholipid micelle-based nanoparticles that release their payload in response to sPLA2 activity. Using a rodent model of neuropathic pain, phospholipid micelles loaded with the sPLA2 inhibitor, thioetheramide-PC (TEA-PC), are administered either locally or intravenously at the time of painful injury or 1-2 days afterward. Local micelle administration immediately after compression prevents pain for up to 7 days. Delayed intravenous administration of the micelles attenuates existing pain. These findings suggest that sPLA2 inhibitor-loaded micelles can be a promising anti-inflammatory nanotherapeutic for neuropathic pain treatment.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | - Lesan Yan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | - Lijun Luo
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | - Yulong Wei
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
- Department of Neurosurgery, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, 3 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Kartha S, Yan L, Weisshaar CL, Ita ME, Shuvaev VV, Muzykantov VR, Tsourkas A, Winkelstein BA, Cheng Z. Superoxide Dismutase-Loaded Porous Polymersomes as Highly Efficient Antioxidants for Treating Neuropathic Pain. Adv Healthc Mater 2017; 6:10.1002/adhm.201700500. [PMID: 28671302 PMCID: PMC5591629 DOI: 10.1002/adhm.201700500] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/15/2017] [Indexed: 01/27/2023]
Abstract
A highly efficient antioxidant is developed by encapsulating superoxide dismutase (SOD) within the aqueous interior of porous polymersomes. The porous polymersomes provide a permeable membrane that allows free superoxide radicals to pass into the aqueous interior and interact with the encapsulated antioxidant enzyme SOD. In vivo studies in the rat demonstrate that administration of SOD-encapsulated porous polymersomes can prevent neuropathic pain after nerve root compression more effectively than treatment with free antioxidant enzyme alone.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Lesan Yan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Zhang Q, Rajan SS, Tyner KM, Casey BJ, Dugard CK, Jones Y, Paredes AM, Clingman CS, Howard PC, Goering PL. Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells. J Biomed Mater Res B Appl Biomater 2015; 104:1032-42. [PMID: 26013845 DOI: 10.1002/jbm.b.33450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 01/15/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs, diameters >50 nm) have received great attention due to their promising use as magnetic resonance imaging (MRI) contrast agents. In this study, we evaluated the cellular uptake and biological responses in vitro of ultrasmall SPIONs (USPIONs, diameters < 50 nm). We compared the cellular responses between breast epithelia isolated from healthy and breast cancer donors after exposure to carboxy-terminated USPIONs (10 and 30 nm PEG-coated, 10 and 30 nm non-PEG-coated). The particles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS) and gel electrophoresis. Cellular interactions with USPIONs were assessed by confocal microscopy and TEM. Cellular uptake of USPIONs was quantified using ICP-MS. Cell viability was measured by MTT and neutral red uptake assays. T2* weighted MRI scans were performed using a 7T scanner. Results demonstrated that cell association/internalization of USPIONs was size- and surface coating-dependent (PEG vs. non-PEG), and higher cellular uptake of 10 and 30 nm non-coated particles was observed in both cell types compared with PEG-coated particles. Cell uptake for 10 and 30 nm non-coated particles was higher in cancer cells from two of three tested donors compared to healthy cells from three donors. There was no significant cytotoxicity observed for all tested particles. Significantly enhanced MRI contrast was observed following exposure to 10 and 30 nm non-coated particles compared to PEG-coated particles in both cell types. In comparison, cancer cells showed more enhanced MRI signals when compared to normal cells. The data indicate that cell responses following exposure to USPIONs are dependent on particle properties. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1032-1042, 2016.
Collapse
Affiliation(s)
- Qin Zhang
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Sunder S Rajan
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Katherine M Tyner
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Brendan J Casey
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Christopher K Dugard
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, 72079
| | - Yvonne Jones
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, 72079
| | - Angel M Paredes
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, 72079
| | - Chekesha S Clingman
- Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Paul C Howard
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, 72079
| | - Peter L Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| |
Collapse
|
5
|
Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol 2015; 204:W302-13. [PMID: 25714316 DOI: 10.2214/ajr.14.12733] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE. In this article, we summarize the progress to date on the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for MRI of inflammatory processes. CONCLUSION. Phagocytosis by macrophages of injected SPIONs results in a prolonged shortening of both T2 and T2* leading to hypointensity of macrophage-infiltrated tissues in contrast-enhanced MR images. SPIONs as contrast agents are therefore useful for the in vivo MRI detection of macrophage infiltration, and there is substantial research and clinical interest in the use of SPION-based contrast agents for MRI of infection and inflammation. This technique has been used to identify active infection in patients with septic arthritis and osteomyelitis; importantly, the MRI signal intensity of the tissue has been found to return to its unenhanced value on successful treatment of the infection. In SPION contrast-enhanced MRI of vascular inflammation, animal studies have shown decreased macrophage uptake in atherosclerotic plaques after treatment with statin drugs. Human studies have shown that both coronary and carotid plaques that take up SPIONs are more prone to rupture and that abdominal aneurysms with increased SPION uptake are more likely to grow. Studies of patients with multiple sclerosis suggest that MRI using SPIONs may have increased sensitivity over gadolinium for plaque detection. Finally, SPIONs have enabled the tracking and imaging of transplanted stem cells in a recipient host.
Collapse
|
6
|
Su YY, Yang GF, Lu GM, Wu S, Zhang LJ. PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis 2015; 30:31-45. [PMID: 25514861 DOI: 10.1007/s11011-014-9633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Abstract
Neurological or psychiatric abnormalities associated with hepatic encephalopathy (HE) range from subclinical findings to coma. HE is commonly accompanied with the accumulation of toxic substances in bloodstream. The toxicity effect of hyperammonemia on astrocyte, such as the alteration in neurotransmission, oxidative stress, astrocyte swelling, is considered as an important factor in the pathogenesis of HE. Besides, neuroinflammation has captured more attention in the process of HE, but the mechanism of neuroinflammation leading to HE remains unclear. Molecular imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting activated microglia and/ or other mediators appear to be promising noninvasive approaches to assess HE. This review focuses on novel imaging and therapy strategies of neuroinflammation in HE.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nangjing, Jiangsu Province, 210002, China
| | | | | | | | | |
Collapse
|
7
|
Zou J, Wang X, Zhang L, Wang J. Iron Nanoparticles Significantly Affect the In Vitro and In Vivo Expression of Id Genes. Chem Res Toxicol 2015; 28:373-83. [DOI: 10.1021/tx500333q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinglu Zou
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xin Wang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ling Zhang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
McDevitt JL, Mouli SK, Tyler PD, Li W, Nicolai J, Procissi D, Ragin AB, Wang YA, Lewandowski RJ, Salem R, Larson AC, Omary RA. MR imaging enables measurement of therapeutic nanoparticle uptake in rat N1-S1 liver tumors after nanoablation. J Vasc Interv Radiol 2014; 25:1288-94. [PMID: 24854392 DOI: 10.1016/j.jvir.2014.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. MATERIALS AND METHODS SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. RESULTS ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms(-1) increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57). CONCLUSIONS Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.
Collapse
Affiliation(s)
| | - Samdeep K Mouli
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Patrick D Tyler
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Weiguo Li
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Jodi Nicolai
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Daniele Procissi
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Ann B Ragin
- Department of Radiology, Northwestern University, Chicago, Illinois
| | | | - Robert J Lewandowski
- Department of Radiology, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Riad Salem
- Department of Radiology, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Andrew C Larson
- Department of Radiology, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Reed A Omary
- Department of Radiology and Radiological Sciences, Vanderbilt School of Medicine, 1611 21st Avenue South, CCC-1106 MCN, Nashville, TN 37232.
| |
Collapse
|
9
|
Wu HY, Chung MC, Wang CC, Huang CH, Liang HJ, Jan TR. Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part Fibre Toxicol 2013; 10:46. [PMID: 24047432 PMCID: PMC3851143 DOI: 10.1186/1743-8977-10-46] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
Background Superparamagnetic iron oxide nanoparticles (IONPs) have been used as magnetic resonance imaging contrast agents for various research and diagnostic purposes, such as the detection of neuroinflammation and blood-brain-barrier integrity. As the central resident macrophage-like cells, microglia are responsible for managing foreign agents invading the CNS. The present study investigated the direct effect of IONPs on the production of pro-inflammatory cytokines by murine microglia stimulated with lipopolysaccharide (LPS). Methods Primary murine microglial cells were pretreated with IONPs (1–50 μg Fe/mL) for 30 min and then stimulated with LPS (100 ng/mL) for 24 h. Confocal microscopy is used to visualize the intracellular IONP distribution and secretory lysosomes after staining with LysoTracker and Rab27a, respectively. The production of interleukin (IL)-1β and tumor necrosis factor (TNF)-α was quantified by ELISA. The activity of IL-1β converting enzyme (ICE) and TNF-α converting enzyme (TACE) was measured by fluorescent microplate assay using specific substrates. The lysosomal number, alkalinity, permeability and cathepsin B activity were determined by flow cytometry with ectodermal dysplasia-1, lysosensor and acridine orange staining, and using cathepsin B specific substrate, respectively. Results Confocal imaging revealed that IONPs were markedly engulfed by microglia. Exposure to IONPs attenuated the production of IL-1β, but not TNF-α. Concordantly, the activity of ICE, but not the TACE, was suppressed in IONP-treated cells. Mechanistic studies showed that IONPs accumulated in lysosomes and the number of lysosomes was increased in IONP-treated cells. In addition, exposure to IONPs increased lysosomal permeability and alkalinity, but decreased the activity of cathepsin B, a secretory lysosomal enzyme involved in the activation of ICE. Conclusions Our results demonstrated a contrasting effect of IONPs on the production of IL-1β and TNF-α by LPS-stimulated microglia, in which the attenuation of IL-1β by IONPs was mediated by inhibiting the secretory lysosomal pathway of cytokine processing.
Collapse
Affiliation(s)
- Hsin-Ying Wu
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No,1, Sec, 4, Roosevelt Road, Taipei 10617, Taiwan.
| | | | | | | | | | | |
Collapse
|
10
|
Cooper MS, Clark VP. Neuroinflammation, neuroautoimmunity, and the co-morbidities of complex regional pain syndrome. J Neuroimmune Pharmacol 2013; 8:452-69. [PMID: 22923151 PMCID: PMC3661922 DOI: 10.1007/s11481-012-9392-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023]
Abstract
Complex Regional Pain Syndrome (CRPS) is associated with non-dermatomal patterns of pain, unusual movement disorders, and somatovisceral dysfunctions. These symptoms are viewed by some neurologists and psychiatrists as being psychogenic in origin. Recent evidence, however, suggests that an autoimmune attack on self-antigens found in the peripheral and central nervous system may underlie a number of CRPS symptoms. From both animal and human studies, evidence is accumulating that neuroinflammation can spread, either anterograde or retrograde, via axonal projections in the CNS, thereby establishing neuroinflammatory tracks and secondary neuroinflammatory foci within the neuraxis. These findings suggest that neuroinflammatory lesions, as well as their associated functional consequences, should be evaluated during the differential diagnosis of non-dermatomal pain presentations, atypical movement disorders, as well as other "medically unexplained symptoms", which are often attributed to psychogenic illness.
Collapse
Affiliation(s)
- Mark S Cooper
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | |
Collapse
|
11
|
Seyfer P, Pagenstecher A, Mandic R, Klose KJ, Heverhagen JT. Cancer and inflammation: differentiation by USPIO-enhanced MR imaging. J Magn Reson Imaging 2013; 39:665-72. [PMID: 23723131 DOI: 10.1002/jmri.24200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/09/2013] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To assess ultrasmall superparamagnetic iron oxide particles (USPIO) -enhanced MR imaging for the differentiation of malignant from benign, inflammatory lesions. MATERIALS AND METHODS In this study, approved by the local animal care committee, VX2 carcinoma and intramuscular abscesses were implanted into the hind thighs of New Zealand White rabbits. MR imaging was performed pre contrast and serially for 24 h after the injection of USPIO. MR findings were compared with histopathologic results based on Prussian blue stains for the presence of iron. RESULTS Twenty-four hours after the Ferumoxtran-injection, no changes were observed in VX2 carcinomas, whereas a mean reduction of the contrast-to-noise ratio (CNR) of approximately 90% was noticed in abscesses as well as in necrotic tumors. On histopathologic examination, abscess and necrotic parts of the tumor were found to include iron-containing monocytes demonstrating that the reduction in CNR was caused by USPIO-tagged monocytes. CONCLUSION Our results prove the ability of USPIO-enhanced MRI to differentiate benign, inflammatory from malignant lesions.
Collapse
Affiliation(s)
- Perla Seyfer
- Department of Radiology, Philipps-University, Marburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Santiesteban OJ, Kaittanis C, Perez JM. Assessment of Molecular Interactions through Magnetic Relaxation. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Santiesteban OJ, Kaittanis C, Perez JM. Assessment of molecular interactions through magnetic relaxation. Angew Chem Int Ed Engl 2012; 51:6728-32. [PMID: 22628204 PMCID: PMC3461998 DOI: 10.1002/anie.201202077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Oscar J Santiesteban
- Nanoscience Technology Center, Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | | | | |
Collapse
|
14
|
Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, Jonsson Fagerlund M, Charo IF, Akassoglou K, Maze M. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 2012; 70:986-995. [PMID: 22190370 DOI: 10.1002/ana.22664] [Citation(s) in RCA: 435] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cognitive decline accompanies acute illness and surgery, especially in the elderly. Surgery engages the innate immune system that launches a systemic inflammatory response that, if unchecked, can cause multiple organ dysfunction. We sought to understand the mechanisms whereby the brain is targeted by the inflammatory response and how this can be resolved. METHODS C57BL/6J, Ccr2(RFP/+)Cx3cr1(GFP/+), Ikk(F/F) mice and LysM-Cre/Ikk(F/F) mice underwent stabilized tibial fracture operation under analgesia and general anesthesia. Separate cohorts of mice were tested for systemic and hippocampal inflammation, integrity of the blood-brain barrier (BBB), and cognition. The putative resolving effects of the cholinergic pathway on these postoperative responses were also studied. RESULTS Peripheral surgery disrupts the BBB via release of tumor necrosis factor-alpha (TNFα), which facilitates the migration of macrophages into the hippocampus. Macrophage-specific deletion of Ikappa B kinase (IKK)β, a central coordinator of TNFα signaling through activation of nuclear factor (NF) κB, prevents BBB disruption and macrophage infiltration in the hippocampus following surgery. Activation of the α7 subtype of nicotinic acetylcholine receptors, an endogenous inflammation-resolving pathway, prevents TNFα-induced NF-κB activation, macrophage migration into the hippocampus, and cognitive decline following surgery. INTERPRETATION These data reveal the mechanisms for bidirectional communication between the brain and immune system following aseptic trauma. Pivotal molecular mechanisms can be targeted to prevent and/or resolve postoperative neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Niccolò Terrando
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0648
| | - Lars I Eriksson
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0648.,Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
| | - Ting Yang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0648
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, United Kingdom
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, United Kingdom
| | - Malin Jonsson Fagerlund
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Israel F Charo
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0648
| |
Collapse
|
15
|
Weisshaar CL, Winer JP, Guarino BB, Janmey PA, Winkelstein BA. The potential for salmon fibrin and thrombin to mitigate pain subsequent to cervical nerve root injury. Biomaterials 2011; 32:9738-46. [PMID: 21944723 DOI: 10.1016/j.biomaterials.2011.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/07/2011] [Indexed: 01/23/2023]
Abstract
Nerve root compression is a common cause of radiculopathy and induces persistent pain. Mammalian fibrin is used clinically as a coagulant but presents a variety of risks. Fish fibrin is a potential biomaterial for neural injury treatment because it promotes neurite outgrowth, is non-toxic, and clots readily at lower temperatures. This study administered salmon fibrin and thrombin following nerve root compression and measured behavioral sensitivity and glial activation in a rat pain model. Fibrin and thrombin each significantly reduced mechanical allodynia compared to injury alone (p < 0.02). Painful compression with fibrin exhibited allodynia that was not different from sham for any day using stimulation by a 2 g filament; allodynia was only significantly different (p < 0.043) from sham using the 4 g filament on days 1 and 3. By day 5, responses for fibrin treatment decreased to sham levels. Allodynia following compression with thrombin treatment were unchanged from sham at any time point. Macrophage infiltration at the nerve root and spinal microglial activation were only mildly modified by salmon treatments. Spinal astrocytic expression decreased significantly with fibrin (p < 0.0001) but was unchanged from injury responses for thrombin treatment. Results suggest that salmon fibrin and thrombin may be suitable biomaterials to mitigate pain.
Collapse
Affiliation(s)
- Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA.
| | | | | | | | | |
Collapse
|