1
|
Van Camp N, Lavisse S, Roost P, Gubinelli F, Hillmer A, Boutin H. TSPO imaging in animal models of brain diseases. Eur J Nucl Med Mol Imaging 2021; 49:77-109. [PMID: 34245328 PMCID: PMC8712305 DOI: 10.1007/s00259-021-05379-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
Over the last 30 years, the 18-kDa TSPO protein has been considered as the PET imaging biomarker of reference to measure increased neuroinflammation. Generally assumed to image activated microglia, TSPO has also been detected in endothelial cells and activated astrocytes. Here, we provide an exhaustive overview of the recent literature on the TSPO-PET imaging (i) in the search and development of new TSPO tracers and (ii) in the understanding of acute and chronic neuroinflammation in animal models of neurological disorders. Generally, studies testing new TSPO radiotracers against the prototypic [11C]-R-PK11195 or more recent competitors use models of acute focal neuroinflammation (e.g. stroke or lipopolysaccharide injection). These studies have led to the development of over 60 new tracers during the last 15 years. These studies highlighted that interpretation of TSPO-PET is easier in acute models of focal lesions, whereas in chronic models with lower or diffuse microglial activation, such as models of Alzheimer's disease or Parkinson's disease, TSPO quantification for detection of neuroinflammation is more challenging, mirroring what is observed in clinic. Moreover, technical limitations of preclinical scanners provide a drawback when studying modest neuroinflammation in small brains (e.g. in mice). Overall, this review underlines the value of TSPO imaging to study the time course or response to treatment of neuroinflammation in acute or chronic models of diseases. As such, TSPO remains the gold standard biomarker reference for neuroinflammation, waiting for new radioligands for other, more specific targets for neuroinflammatory processes and/or immune cells to emerge.
Collapse
Affiliation(s)
- Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Sonia Lavisse
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Roost
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, M20 3LJ, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Zak A, Lemaire L, Chalon S, Chicheri G, Marzag H, Bodard S, Sérrière S, Routier S, Buron F, Vercouillie J. [ 18 F]-labeled positron emission tomography ligand for the histamine H4 receptor. J Labelled Comp Radiopharm 2021; 64:363-372. [PMID: 34089268 DOI: 10.1002/jlcr.3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022]
Abstract
We synthesized 5-[18 F]-fluoro-1H-indol-2-yl)(4-methyl-1-piperazinyl)methanone ([18 F]5) via a Suzuki approach starting from a protected pinacol borane precursor followed by acidic hydrolysis of the t-Boc protecting group. The non-optimized radiochemical yield was 5.7 ± 1.35%, radiochemical purity was over 99%, and molar activity was 100.7 ± 34.5 GBq/μmol (n = 3). [18 F]5 was stable in rat plasma for at least 4 h and was evaluated by μPET imaging and biodistribution using a unilateral quinolinic acid rat model of neuroinflammation. The time-activity curve showed that [18 F]5 entered the brain immediately after intravenous injection and then left it progressively with a very low level reached from 30 min after injection. The biodistribution study showed no difference in the accumulation of [18 F]5 between the lesioned and intact side of the brain and between control rats and animals pretreated with a saturating dose of JNJ-7777120 as a specific H4R antagonist. Hence, despite its in vitro nanomolar affinity for H4R, and its ability to cross the blood-brain barrier in rats, [18 F]5 does not appear suitable to image in vivo the receptor by PET.
Collapse
Affiliation(s)
- Agnieszka Zak
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Lucas Lemaire
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Gabrielle Chicheri
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CERRP, Université de Tours, Tours, France
| | - Hamid Marzag
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Sylvie Bodard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sophie Sérrière
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CERRP, Université de Tours, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| |
Collapse
|
3
|
TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther 2018; 194:44-58. [PMID: 30189290 DOI: 10.1016/j.pharmthera.2018.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.
Collapse
|
4
|
Miyajima N, Ito M, Rokugawa T, Iimori H, Momosaki S, Omachi S, Shimosegawa E, Hatazawa J, Abe K. Detection of neuroinflammation before selective neuronal loss appearance after mild focal ischemia using [ 18F]DPA-714 imaging. EJNMMI Res 2018; 8:43. [PMID: 29884977 PMCID: PMC5993708 DOI: 10.1186/s13550-018-0400-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background Translocator protein (TSPO) imaging can be used to detect neuroinflammation (including microglial activation) after acute cerebral infarction. However, longitudinal changes of TSPO binding after mild ischemia that induces selective neuronal loss (SNL) without acute infarction are not well understood. Here, we performed TSPO imaging with [18F]DPA-714 to determine the time course of neuroinflammation and SNL after mild focal ischemia. Results Mild focal ischemia was induced by middle cerebral artery occlusion (MCAO) for 20 min. In MCAO rats without acute infarction investigated by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, in vitro ARG revealed a significant increase of [18F]DPA-714 binding in the ipsilateral striatum compared with that in the contralateral side at 1, 2, 3, and 7 days after MCAO. Increased [18F]DPA-714 binding was observed in the cerebral cortex penumbra, reaching maximal values at 7 days after MCAO. Activation of striatal microglia and astrocytes was observed with immunohistochemistry of ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) at 2, 3, and 7 days after MCAO. SNL was investigated with Nissl staining and neuronal nuclei (NeuN) immunostaining and observed in the ischemic core region of the striatum on days 3 and 7 after MCAO. We confirmed that total distribution volume of [18F]DPA-714 in the ipsilateral striatum was significantly increased at 2 and 7 days after MCAO using positron emission tomography (PET). Conclusions [18F]DPA-714 binding measured with in vitro ARG was increased before SNL appeared, and this change was detected by in vivo PET. These findings suggest that TSPO PET imaging might be useful for detection of neuroinflammation leading to SNL after focal ischemia.
Collapse
Affiliation(s)
- Natsumi Miyajima
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan.
| | - Miwa Ito
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| | - Takemi Rokugawa
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| | - Hitoshi Iimori
- Department of Applied Chemistry and Analysis, Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Sotaro Momosaki
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| | - Shigeki Omachi
- Department of medical affairs, Shionogi & Co., Ltd., Osaka, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Abe
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| |
Collapse
|
5
|
Nguyen DL, Wimberley C, Truillet C, Jego B, Caillé F, Pottier G, Boisgard R, Buvat I, Bouilleret V. Longitudinal positron emission tomography imaging of glial cell activation in a mouse model of mesial temporal lobe epilepsy: Toward identification of optimal treatment windows. Epilepsia 2018; 59:1234-1244. [PMID: 29672844 DOI: 10.1111/epi.14083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Mesiotemporal lobe epilepsy is the most common type of drug-resistant partial epilepsy, with a specific history that often begins with status epilepticus due to various neurological insults followed by a silent period. During this period, before the first seizure occurs, a specific lesion develops, described as unilateral hippocampal sclerosis (HS). It is still challenging to determine which drugs, administered at which time point, will be most effective during the formation of this epileptic process. Neuroinflammation plays an important role in pathophysiological mechanisms in epilepsy, and therefore brain inflammation biomarkers such as translocator protein 18 kDa (TSPO) can be potent epilepsy biomarkers. TSPO is associated with reactive astrocytes and microglia. A unilateral intrahippocampal kainate injection mouse model can reproduce the defining features of human temporal lobe epilepsy with unilateral HS and the pattern of chronic pharmacoresistant temporal seizures. We hypothesized that longitudinal imaging using TSPO positron emission tomography (PET) with 18 F-DPA-714 could identify optimal treatment windows in a mouse model during the formation of HS. METHODS The model was induced into the right dorsal hippocampus of male C57/Bl6 mice. Micro-PET/computed tomographic scanning was performed before model induction and along the development of the HS at 7 days, 14 days, 1 month, and 6 months. In vitro autoradiography and immunohistofluorescence were performed on additional mice at each time point. RESULTS TSPO PET uptake reached peak at 7 days and mostly related to microglial activation, whereas after 14 days, reactive astrocytes were shown to be the main cells expressing TSPO, reflected by a continuing increased PET uptake. SIGNIFICANCE TSPO-targeted PET is a highly potent longitudinal biomarker of epilepsy and could be of interest to determine the therapeutic windows in epilepsy and to monitor response to treatment.
Collapse
Affiliation(s)
- Duc-Loc Nguyen
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Catriona Wimberley
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Charles Truillet
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Benoit Jego
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Fabien Caillé
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Géraldine Pottier
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Raphaël Boisgard
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Irène Buvat
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Viviane Bouilleret
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France.,Neurophysiology and Epilepsy Unit, Bicêtre Hospital, Public Hospitals of Paris (AP-HP), France
| |
Collapse
|
6
|
Letter to the Editor re: Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration. Mol Imaging Biol 2018; 20:352-353. [PMID: 29427254 DOI: 10.1007/s11307-018-1172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 2018; 23:36-47. [PMID: 29203847 DOI: 10.1038/mp.2017.232] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
A great deal of interest in psychiatric research is currently centered upon the pathogenic role of inflammatory processes. Positron emission tomography (PET) using radiolabeled ligands selective for the 18 kDa translocator protein (TSPO) has become the most widely used technique to assess putative neuroimmune abnormalities in vivo. Originally used to detect discrete neurotoxic damages, TSPO has generally turned into a biomarker of 'neuroinflammation' or 'microglial activation'. Psychiatric research has mostly accepted these denotations of TSPO, even if they may be inadequate and misleading under many pathological conditions. A reliable and neurobiologically meaningful diagnosis of 'neuroinflammation' or 'microglial activation' is unlikely to be achieved by the sole use of TSPO PET imaging. It is also very likely that the pathological meanings of altered TSPO binding or expression are disease-specific, and therefore, not easily generalizable across different neuropathologies or inflammatory conditions. This difficulty is intricately linked to the varying (and still ill-defined) physiological functions and cellular expression patterns of TSPO in health and disease. While altered TSPO binding or expression may indeed mirror ongoing neuroinflammatory processes in some cases, it may reflect other pathophysiological processes such as abnormalities in cell metabolism, energy production and oxidative stress in others. Hence, the increasing popularity of TSPO PET imaging has paradoxically introduced substantial uncertainty regarding the nature and meaning of neuroinflammatory processes and microglial activation in psychiatry, and likely in other neuropathological conditions as well. The ambiguity of conceiving TSPO simply as a biomarker of 'neuroinflammation' or 'microglial activation' calls for alternative interpretations and complimentary approaches. Without the latter, the ongoing scientific efforts and excitement surrounding the role of the neuroimmune system in psychiatry may not turn into therapeutic hope for affected individuals.
Collapse
Affiliation(s)
- T Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - J M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
|
9
|
Foucault-Fruchard L, Doméné A, Page G, Windsor M, Emond P, Rodrigues N, Dollé F, Damont A, Buron F, Routier S, Chalon S, Antier D. Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in vivo excitotoxic adult rat model. Neuroscience 2017; 356:52-63. [PMID: 28527955 DOI: 10.1016/j.neuroscience.2017.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/03/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is a key component of the pathophysiology of neurodegenerative diseases. The link between nicotine intake and positive outcome has been established, suggesting a role played by nicotinic receptors (nAChRs), especially α7nAChRs. The objective of this study was to evaluate the potential dose effects of PHA 543613 on neuron survival and striatal microglial activation in a rat model of brain excitotoxicity. A preliminary study was performed in vitro to confirm PHA 543613 agonist properties on α7nAChRs. Rats were lesioned in the right striatum with quinolinic acid (QA) and received either vehicle or PHA 543613 at 6 or 12mg/kg twice a day until sacrifice at Day 4 post-lesion. We first compared the translocator protein quantitative autoradiography in QA-lesioned brains with [3H]DPA-714 and [3H]PK-11195. The effects of PHA 543613 on microglial activation and neuronal survival were then evaluated through [3H]DPA-714 binding and immunofluorescence staining (Ox-42, NeuN) on adjacent brain sections. We demonstrated that [3H]DPA-714 provides a better signal-to-noise ratio than [3H]PK-11195. Furthermore, we showed that repeated PHA 543613 administration at a dose of 12mg/kg to QA-lesioned rats significantly protected neurons and reduced the intensity of microglial activation. This study reinforces the hypothesis that α7nAChR agonists can provide beneficial effects in the treatment of neurodegenerative diseases through potential modulation of microglial activation.
Collapse
Affiliation(s)
- Laura Foucault-Fruchard
- UMR INSERM U930, Université François Rabelais, Tours, France; CHRU de Tours, Hôpital Bretonneau, Tours, France.
| | - Aurélie Doméné
- UMR INSERM U930, Université François Rabelais, Tours, France.
| | - Guylène Page
- EA3808 - CiMoTheMA, Université de Poitiers, Poitiers, France.
| | | | - Patrick Emond
- UMR INSERM U930, Université François Rabelais, Tours, France.
| | - Nuno Rodrigues
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d'Orléans, Orléans, France.
| | - Frédéric Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.
| | | | - Frédéric Buron
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d'Orléans, Orléans, France.
| | - Sylvain Routier
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d'Orléans, Orléans, France.
| | - Sylvie Chalon
- UMR INSERM U930, Université François Rabelais, Tours, France.
| | - Daniel Antier
- UMR INSERM U930, Université François Rabelais, Tours, France; CHRU de Tours, Hôpital Bretonneau, Tours, France.
| |
Collapse
|
10
|
Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3001-3014. [PMID: 27663072 DOI: 10.1016/j.bbamcr.2016.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/24/2022]
Abstract
QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.
Collapse
|
11
|
Multifactorial Effects on Different Types of Brain Cells Contribute to Ammonia Toxicity. Neurochem Res 2016; 42:721-736. [PMID: 27286679 DOI: 10.1007/s11064-016-1966-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate-aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4+ and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl- and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.
Collapse
|
12
|
Changes in Binding of [(123)I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury. Neuromolecular Med 2016; 18:158-69. [PMID: 26969181 DOI: 10.1007/s12017-016-8385-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 01/01/2023]
Abstract
After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [(123)I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [(123)I]CLINDE has been employed in human studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague-Dawley rats were subjected to moderate controlled cortical impact injury and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [(123)I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [(123)I]CLINDE binding in the ipsilateral motor, somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [(123)I]CLINDE binding, restricted to the ipsilateral hemisphere. Radioligand binding was consistent with an increase in TSPO mRNA expression and CD11b immunoreactivity at the contusion site. This study demonstrates the applicability of [(123)I]CLINDE for detailed regional and quantitative assessment of glial activity in experimental models of TBI.
Collapse
|
13
|
Di Grigoli G, Monterisi C, Belloli S, Masiello V, Politi LS, Valenti S, Paolino M, Anzini M, Matarrese M, Cappelli A, Moresco RM. Radiosynthesis and Preliminary Biological Evaluation of [18F]VC701, a Radioligand for Translocator Protein. Mol Imaging 2016; 14. [PMID: 26044669 DOI: 10.2310/7290.2015.00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Positron emission tomography (PET) can be used to monitor in vivo translocator protein (TSPO) expression by using specific radioligands. Recently, several [11C]PK11195 analogues have been synthesized to improve binding stability and brain availability. [18F]VC701 was synthesized and validated in CD healthy rats by biodistribution and inhibition analysis. Imaging studies were also conducted on animals injected unilaterally in the striatum with quinolinic acid (QA) to evaluate the TSPO ligand uptake in a neuroinflammation/neurodegenerative model. [18F]VC701 was synthesized with a good chemical and radiochemical purity and specific activity higher than 37 GBq/μmol. Kinetic studies performed on healthy animals showed the highest tracer biodistribution in TSPO-rich organs, and preadministration of cold PK11195 caused an overall radioactivity reduction. Metabolism studies showed the absence of radiometabolites in the rat brain of QA lesioned rats, and biodistribution analysis revealed a progressive increase in radioactivity ratios (lesioned to nonlesioned striatum) during time, reaching an approximate value of 5 4 hours after tracer injection. These results encourage further evaluation of this TSPO radioligand in other models of central and peripheral diseases.
Collapse
|
14
|
Radiopharmaceuticals for PET imaging of neuroinflammation. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Amhaoul H, Hamaide J, Bertoglio D, Reichel SN, Verhaeghe J, Geerts E, Van Dam D, De Deyn PP, Kumar-Singh S, Katsifis A, Van Der Linden A, Staelens S, Dedeurwaerdere S. Brain inflammation in a chronic epilepsy model: Evolving pattern of the translocator protein during epileptogenesis. Neurobiol Dis 2015; 82:526-539. [PMID: 26388398 DOI: 10.1016/j.nbd.2015.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/24/2015] [Accepted: 09/16/2015] [Indexed: 11/27/2022] Open
Abstract
AIMS A hallmark in the neuropathology of temporal lobe epilepsy is brain inflammation which has been suggested as both a biomarker and a new mechanistic target for treatments. The translocator protein (TSPO), due to its high upregulation under neuroinflammatory conditions and the availability of selective PET tracers, is a candidate target. An important step to exploit this target is a thorough characterisation of the spatiotemporal profile of TSPO during epileptogenesis. METHODS TSPO expression, microglial activation, astrocyte reactivity and cell loss in several brain regions were evaluated at five time points during epileptogenesis, including the chronic epilepsy phase in the kainic acid-induced status epilepticus (KASE) model (n = 52) and control Wistar Han rats (n = 33). Seizure burden was also determined in the chronic phase. Furthermore, ¹⁸F-PBR111 PET/MRI scans were acquired longitudinally in an additional four KASE animals. RESULTS TSPO expression measured with in vitro and in vivo techniques was significantly increased at each time point and peaked two weeks post-SE in the limbic system. A prominent association between TSPO expression and activated microglia (p < 0.001; r = 0.7), as well as cell loss (p < 0.001; r = -0.8) could be demonstrated. There was a significant positive correlation between spontaneous seizures and TSPO upregulation in several brain regions with increased TSPO expression. CONCLUSIONS TSPO expression was dynamically upregulated during epileptogenesis, persisted in the chronic phase and correlated with microglia activation rather than reactive astrocytes. TSPO expression was correlating with spontaneous seizures and its high expression during the latent phase might possibly suggest being an important switching point in disease ontogenesis which could be further investigated by PET imaging.
Collapse
Affiliation(s)
- Halima Amhaoul
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | - Julie Hamaide
- Department of Translational Neurosciences, University of Antwerp, Belgium; Bio-Imaging Lab, University of Antwerp, Belgium
| | - Daniele Bertoglio
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | | | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - Elly Geerts
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, Belgium
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), The Netherlands
| | - Samir Kumar-Singh
- Laboratory of Cell Biology & Histology, University of Antwerp, Belgium
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Australia
| | | | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | | |
Collapse
|
16
|
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128:46-63. [DOI: 10.1016/j.pneurobio.2015.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023]
|