1
|
Gonzales J, Fraidenburg DR. Pharmacology and Emerging Therapies for Group 3 Pulmonary Hypertension Due to Chronic Lung Disease. Pharmaceuticals (Basel) 2023; 16:418. [PMID: 36986517 PMCID: PMC10058846 DOI: 10.3390/ph16030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Pulmonary hypertension (PH) frequently complicates chronic lung disease and is associated with high morbidity and poor outcomes. Individuals with interstitial lung disease and chronic obstructive pulmonary disease develop PH due to structural changes associated with the destruction of lung parenchyma and vasculature with concurrent vasoconstriction and pulmonary vascular remodeling similar to what is observed in idiopathic pulmonary arterial hypertension (PAH). Treatment for PH due to chronic lung disease is largely supportive and therapies specific to PAH have had minimal success in this population with exception of the recently FDA-approved inhaled prostacyclin analogue treprostinil. Given the significant disease burden of PH due to chronic lung diseases and its associated mortality, a great need exists for improved understanding of molecular mechanisms leading to vascular remodeling in this population. This review will discuss the current understanding of pathophysiology and emerging therapeutic targets and potential pharmaceuticals.
Collapse
|
2
|
Zhang S, Lu X, Fang X, Wang Z, Cheng S, Song J. Cigarette smoke extract combined with LPS reduces ABCA3 expression in chronic pulmonary inflammation may be related to PPARγ/ P38 MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114086. [PMID: 36115154 DOI: 10.1016/j.ecoenv.2022.114086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
ABCA3 (ATP-binding cassette class A3) is a transmembrane transporter that plays a positive role in chronic pulmonary inflammation by regulating lipid metabolism. However, it is not completely clear whether ABCA3 and its signaling factors are involved in chronic pulmonary inflammation induced by the combination of CSE (cigarette smoke extract) and LPS (lipopolysaccharide). In this study, we used the method of combining CSE and LPS which was widely used to study lung inflammation-related diseases and has been proven effective in our group's studies to create in vivo and in vitro pulmonary inflammation models. The result showed that, after CSE in combination with LPS treatment, ABCA3 expression was downregulated in rat lung in vivo and in a human alveolar cell line in vitro. ABCA3 expression was upregulated, and related inflammatory factors were downregulated in the state of overexpression of PPARγ or inhibition of the p38 MAPK pathway, while PPARγ deletion or MAPK14 overexpression showed the opposite results. The level of PPARγ remained unchanged, and the expression of ABCA3 was upregulated in the state of the p38 MAPK pathway was inhibited under overexpression of PPARγ. These results indicate that CSE combined with LPS can result in downregulation of ABCA3 under conditions of inflammation, and that the p38 MAPK signaling pathway mediated by PPARγ can regulate the expression changes of ABCA3, thus providing new targets for treating chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xianwang Lu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Shihao Cheng
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China.
| |
Collapse
|
3
|
Wang J, Zhao X, Feng W, Li Y, Peng C. Inhibiting TGF-[Formula: see text] 1-Mediated Cellular Processes as an Effective Strategy for the Treatment of Pulmonary Fibrosis with Chinese Herbal Medicines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1965-1999. [PMID: 34961416 DOI: 10.1142/s0192415x21500932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xingtao Zhao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wuwen Feng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yunxia Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
4
|
朱 涛, 施 婵, 李 鹤, 何 婧, 杨 艳, 王 勤, 邓 欣, 吴 砚, 王 静, 赵 燕, 邓 火. [Curcumin suppresses cigarette smoke extract-induced oxidative stress through PPARγ/ NF-κB pathway in human bronchial epithelial cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1209-1214. [PMID: 30377131 PMCID: PMC6744059 DOI: 10.3969/j.issn.1673-4254.2018.10.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate the effect of curcumin against cigarette smoke extract (CSE)- induced oxidative stress in human bronchial epithelial cells and explore the underlying mechanism. METHODS Human bronchial epithelial cell line 16HBE was treated for 24 h with curcumin, CSE, CSE + curcumin, and CSE + curcumin with transfection by a short hairpin RNA targeting PPARγ (shPPARγ). MTT assay was used to observe the changes in the cell viability after the treatments. Quantitative real-time PCR was performed to detect the mRNA expressions of tumor necrosis factor-α (TNF-α), iNOS and PPARγ in the cells, and the protein expressions of iNOS, PPARγ and the phosphorylation of NF-κB p65 were detected using Western blotting. RESULTS The treatments did not cause significant changes in the cell viability. Exposure to CSE for 24 h significantly lowered PPARγ expression and increased TNF-α and iNOS expressions and phosphorylation of NF-κB p65 in the cells. The effects of CSE were significantly suppressed by curcumin, but transfection of the cells with shRNA-PPARγ obviously abrogated the suppressive effects of curcumin. CONCLUSIONS Curcumin suppresses CSE-induced oxidative stress and inflammation via the PPARγ/NF-κB signaling pathway in 16HBE cells, suggesting the potential of curcumin in the treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- 涛 朱
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 婵妹 施
- 南方医科大学珠江医院呼吸内科,广东 广州 510280Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 鹤 李
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 婧 何
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 艳丽 杨
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 勤 王
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 欣雨 邓
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 砚樵 吴
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 静 王
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 燕 赵
- 重庆医科大学附属第二医院呼吸内科,重庆 400010Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 火金 邓
- 南方医科大学珠江医院呼吸内科,广东 广州 510280Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
5
|
Avouac J, Konstantinova I, Guignabert C, Pezet S, Sadoine J, Guilbert T, Cauvet A, Tu L, Luccarini JM, Junien JL, Broqua P, Allanore Y. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann Rheum Dis 2017; 76:1931-1940. [DOI: 10.1136/annrheumdis-2016-210821] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
ObjectiveTo evaluate the antifibrotic effects of the pan-peroxisome proliferator-activated receptor (PPAR) agonist IVA337 in preclinical mouse models of pulmonary fibrosis and related pulmonary hypertension (PH).MethodsIVA337 has been evaluated in the mouse model of bleomycin-induced pulmonary fibrosis and in Fra-2 transgenic mice, this latter being characterised by non-specific interstitial pneumonia and severe vascular remodelling of pulmonary arteries leading to PH. Mice received two doses of IVA337 (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks.ResultsIVA337 demonstrated at a dose of 100 mg/kg a marked protection from the development of lung fibrosis in both mouse models compared with mice receiving 30 mg/kg of IVA337 or vehicle. Histological score was markedly reduced by 61% in the bleomycin model and by 50% in Fra-2 transgenic mice, and total lung hydroxyproline concentrations decreased by 28% and 48%, respectively, as compared with vehicle-treated mice. IVA337 at 100 mg/kg also significantly decreased levels of fibrogenic markers in lesional lungs of both mouse models. In addition, IVA337 substantially alleviated PH in Fra-2 transgenic mice by improving haemodynamic measurements and vascular remodelling. In primary human lung fibroblasts, IVA337 inhibited in a dose-dependent manner fibroblast to myofibroblasts transition induced by TGF-β and fibroblast proliferation mediated by PDGF.ConclusionWe demonstrate that treatment with 100 mg/kg IVA337 prevents lung fibrosis in two complementary animal models and substantially attenuates PH in the Fra-2 mouse model. These findings confirm that the pan-PPAR agonist IVA337 is an appealing therapeutic candidate for these cardiopulmonary involvements.
Collapse
|
6
|
Gao S, Zhao Z, Wu R, Zeng Y, Zhang Z, Miao J, Yuan Z. Bone marrow mesenchymal stem cell transplantation improves radiation-induced heart injury through DNA damage repair in rat model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:63-77. [PMID: 28025714 DOI: 10.1007/s00411-016-0675-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Radiotherapy is an effective form of therapy for most thoracic malignant tumors. However, myocardial injury resulting from the high doses of radiation is a severe complication. Here we aimed to study the possibility of reducing radiation-induced myocardial injury with mesenchymal stem cell (MSC) transplantation. We used MSCs extracted from bone marrow (BMSCs) to transplant via the tail vein into a radiation-induced heart injury (RIHI) rat model. The rats were divided into six groups: a Sham group, an IRR (irradiation) group, and four IRR + BMSCs transplantation groups obtained at different time points. After irradiation, BMSC transplantation significantly enhanced the cardiac function in rats. By analyzing the expression of PPAR-α, PPAR-γ, TGF-β, IL-6, and IL-8, we found that BMSC transplantation alleviated radiation-induced myocardial fibrosis and decreased the inflammatory reaction. Furthermore, we found that expression of γ-H2AX, XRCC4, DNA ligase4, and TP53BP1, which are associated with DNA repair, was up-regulated, along with increased secretion of growth factors SDF-1, CXCR4, VEGF, and IGF in rat myocardium in the IRR + BMSCs transplantation groups compared with the IRR group. Thus, BMSC transplantation has the potential to improve RIHI via DNA repair and be a new therapeutic approach for patients with myocardial injury.
Collapse
Affiliation(s)
- Song Gao
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Zhiying Zhao
- School of Computer Science and Engineering, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang, 110004, China
| | - Rong Wu
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Yuecan Zeng
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Zhenyong Zhang
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Jianing Miao
- Key Laboratory of Shengjing Hospital, China Medical University, No. 7, Economic Development Zone, Benxi, Shenyang, 117004, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 7, Economic Development Zone, Benxi, 117004, China.
| |
Collapse
|
7
|
Implications of the endogenous PPAR-gamma ligand, 15-deoxy-delta-12, 14-prostaglandin J2, in diabetic retinopathy. Life Sci 2016; 153:93-9. [PMID: 27060220 DOI: 10.1016/j.lfs.2016.03.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023]
Abstract
Diabetic retinopathy, a common secondary complication of diabetes mellitus, involves extensive damage to the retinal microvasculature. Retina, being a susceptible target, is highly prone to hyperglycemia-induced molecular damages. PPAR receptor, chiefly gamma subtype, mediates numerous responses related to glucose metabolism and hence is utilized, through its agonism, for the restoration of normal insulin sensitivity and glucose homeostasis in the body. Although a number of synthetic PPAR-gamma receptor agonists have been developed and are being employed for treatment purposes, the role of its endogenous ligand in the prevention of diabetic retinopathy is poorly acknowledged. Activation of PPAR-gamma receptor, via endogenous agents, provides a natural defensive shield against various hyperglycemia-induced pathological conditions. Although the biological levels of 15d-PGJ2 (an endogenous agonist of PPAR-gamma receptor) are found to be below the concentration required to trigger PPAR-gamma-mediated actions, employment of several advanced methods for the exogenous administration of this ligand might provide a beneficial option. Besides, 15d-PGJ2-induced defense is better than any of the newly developed alternative therapies, such as anti-inflammatory, anti-angiogenic or anti-apoptotic agents, of diabetic retinopathy, since it singularly provides, virtually, a complete protection package against all these pathological eventualities. Therefore, the physiology of this endogenous PPAR-gamma ligand might, possibly, be exploited to a great extent for the development of prophylactic agents, in order to restrict the progression of diabetic retinopathy.
Collapse
|
8
|
Sharma S, Sun X, Rafikov R, Kumar S, Hou Y, Oishi PE, Datar SA, Raff G, Fineman JR, Black SM. PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow. PLoS One 2012; 7:e41555. [PMID: 22962578 PMCID: PMC3433474 DOI: 10.1371/journal.pone.0041555] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/27/2012] [Indexed: 12/11/2022] Open
Abstract
Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.
Collapse
Affiliation(s)
- Shruti Sharma
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Emerging PPARγ-Independent Role of PPARγ Ligands in Lung Diseases. PPAR Res 2012; 2012:705352. [PMID: 22778711 PMCID: PMC3385049 DOI: 10.1155/2012/705352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator activated receptor (PPAR)-γ is a nuclear hormone receptor that is activated by multiple agonists including thiazolidinediones, prostaglandins, and synthetic oleanolic acids. Many PPARγ ligands are under investigation as potential therapies for human diseases. These ligands modulate multiple cellular pathways via both PPARγ-dependent and PPARγ-independent mechanisms. Here, we review the role of PPARγ and PPARγ ligands in lung disease, with emphasis on PPARγ-independent effects. PPARγ ligands show great promise in moderating lung inflammation, as antiproliferative agents in combination to enhance standard chemotherapy in lung cancer and as treatments for pulmonary fibrosis, a progressive fatal disease with no effective therapy. Some of these effects occur when PPARγ is pharmaceutically antagonized or genetically PPARγ and are thus independent of classical PPARγ-dependent transcriptional control. Many PPARγ ligands demonstrate direct binding to transcription factors and other proteins, altering their function and contributing to PPARγ-independent inhibition of disease phenotypes. These PPARγ-independent mechanisms are of significant interest because they suggest new therapeutic uses for currently approved drugs and because they can be used as probes to identify novel proteins and pathways involved in the pathogenesis or treatment of disease, which can then be targeted for further investigation and drug development.
Collapse
|
10
|
Gao S, Wu R, Zeng Y. Up-regulation of peroxisome proliferator-activated receptor gamma in radiation-induced heart injury in rats. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:53-59. [PMID: 21997460 DOI: 10.1007/s00411-011-0390-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
To explore the expression level and the role of peroxisome proliferator-activated receptor gamma (PPAR-γ) in radiation-induced heart injury in a rat model, thirty-two Sprague-Dawley rats were divided into three groups (the control group, the 15-Gy irradiation group and the 18-Gy irradiation group). Experimental animals were exposed to radiation generated by a linear accelerator at the chest and killed after 3 months. Heart tissues from these animals were removed for Masson staining, PPAR-γ immunohistochemical staining, Western blot analysis and real-time polymerase chain reaction assay (RT-PCR). In addition, the protein expression of matrix metalloprotein-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and transforming growth factor type beta1 (TGF-β1), all of which are associated with fibrosis, was measured. Masson staining revealed significant myocardial fibrosis, degeneration and necrosis in rats exposed to radiation. The results of immunohistochemical staining and Western blot analysis showed that PPAR-γ protein expression in hearts of the irradiation groups was significantly higher than in the control group, especially in myocardium and vascular endothelial (p < 0.05). RT-PCR results also showed a parallel increase in PPAR-γ mRNA expression in the heart of the irradiation groups compared with the control group (p < 0.05). The expression of MMP-1 protein was not significantly different in three groups (p > 0.05). The expression of TIMP-1 and TGF-β1 proteins was, however, higher in two irradiation groups than in the control group (p < 0.05). These data demonstrate that PPAR-γ expression is up-regulated on both mRNA and protein levels in heart injured by radiation. PPAR-γ may play an important role in radiation-induced heart injury.
Collapse
Affiliation(s)
- Song Gao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China.
| | | | | |
Collapse
|
11
|
Reynolds HY. Bronchoalveolar lavage and other methods to define the human respiratory tract milieu in health and disease. Lung 2011; 189:87-99. [PMID: 21350888 DOI: 10.1007/s00408-011-9284-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/01/2011] [Indexed: 01/19/2023]
Abstract
During fiber-optic bronchoscopy (FOB), surface sampling of the human respiratory airways and alveolar unit can be done with bronchoalveolar lavage (BAL), plus selective sites can be brushed for cells and transbronchial biopsies made in adjacent tissue. This permits analysis of the respiratory tract's milieu in healthy normals, in those with disease, and in control subjects. These combined procedures have been an established approach for obtaining specimens for research and for clinical assessment for over four decades. However, now new less invasive sampling methods are emerging. This review emphasizes BAL and the cellular and noncellular components recovered in fluid that have contributed to improving knowledge of how the respiratory tree's innate immunity can protect, and how airway structures can become deranged and manifest disease. After a discussion of training for FOB and procedural issues, a spectrum of respiratory diseases studied with BAL is presented, including airway illness (asthma and chronic obstructive pulmonary disease), diffuse interstitial lung diseases [idiopathic pulmonary fibrosis, rheumatoid interstitial lung disease (ILD), granulomatous ILDs], lung infections, lung malignancy, and upper and lower tract airway problems. Some recent studies with exhaled breath condensate analyses are given.
Collapse
Affiliation(s)
- Herbert Y Reynolds
- Lung Biology and Disease Branch, Division of Lung Diseases, National Heart, Lung & Blood Institute, 6701 Rockledge Drive, Suite 10042, Two Rockledge Center, MSC 7952, Bethesda, MD 20892-7952, USA.
| |
Collapse
|
12
|
Kulkarni AA, Thatcher TH, Olsen KC, Maggirwar SB, Phipps RP, Sime PJ. PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PLoS One 2011; 6:e15909. [PMID: 21253589 PMCID: PMC3017065 DOI: 10.1371/journal.pone.0015909] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/26/2010] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor beta (TGFβ) induced differentiation of human lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. Although the typical TGFβ signaling pathway involves the Smad family of transcription factors, we have previously reported that peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands inhibit TGFβ-mediated differentiation of human lung fibroblasts to myofibroblasts via a Smad-independent pathway. TGFβ also activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway leading to phosphorylation of AktS473. Here, we report that PPAR-γ ligands, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and 15-deoxy-(12,14)-15d-prostaglandin J2 (15d-PGJ2), inhibit human myofibroblast differentiation of normal and idiopathic pulmonary fibrotic (IPF) fibroblasts, by blocking Akt phosphorylation at Ser473 by a PPAR-γ-independent mechanism. The PI3K inhibitor LY294002 and a dominant-negative inactive kinase-domain mutant of Akt both inhibited TGFβ-stimulated myofibroblast differentiation, as determined by Western blotting for α-smooth muscle actin and calponin. Prostaglandin A1 (PGA1), a structural analogue of 15d-PGJ2 with an electrophilic center, also reduced TGFβ-driven phosphorylation of Akt, while CAY10410, another analogue that lacks an electrophilic center, did not; implying that the activity of 15d-PGJ2 and CDDO is dependent on their electrophilic properties. PPAR-γ ligands inhibited TGFβ-induced Akt phosphorylation via both post-translational and post-transcriptional mechanisms. This inhibition is independent of MAPK-p38 and PTEN but is dependent on TGFβ-induced phosphorylation of FAK, a kinase that acts upstream of Akt. Thus, PPAR-γ ligands inhibit TGFβ signaling by affecting two pro-survival pathways that culminate in myofibroblast differentiation. Further studies of PPAR-γ ligands and small electrophilic molecules may lead to a new generation of anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Ajit A. Kulkarni
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas H. Thatcher
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Keith C. Olsen
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sanjay B. Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Richard P. Phipps
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Patricia J. Sime
- The Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Sampling the detachable cells and acellular lining secretions of the human respiratory tract by bronchoalveolar lavage (BAL) is a means of obtaining relevant components from the airways and alveolar areas for research use and clinical analysis in normals (controls) and patients with a wide spectrum of interstitial lung diseases (ILDs). This review attempts to discuss recent findings from BAL studies that provide insight into pathogenic mechanisms of ILDs and/or assist in diagnosing disease activity. RECENT FINDINGS BAL analysis and usefulness are reviewed for the major forms of ILDs. In addition, some perspective about this sampling method is given and the context for BAL is provided for the respective disease, either for diagnosis or research use. SUMMARY Whereas BAL findings continue to impact on understanding disease pathogenesis and this may be its major use now, BAL fluid components, cells in particular, are not correlated well with activity of disease nor for monitoring disease progress or response to treatment. For a few rarer ILDs, BAL fluid characteristics may strongly support a diagnosis.
Collapse
|
14
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:189-202. [PMID: 19300094 DOI: 10.1097/med.0b013e328329fcc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|