1
|
Tripathi T, Singh DB, Tripathi T. Computational resources and chemoinformatics for translational health research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:27-55. [PMID: 38448138 DOI: 10.1016/bs.apcsb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The integration of computational resources and chemoinformatics has revolutionized translational health research. It has offered a powerful set of tools for accelerating drug discovery. This chapter overviews the computational resources and chemoinformatics methods used in translational health research. The resources and methods can be used to analyze large datasets, identify potential drug candidates, predict drug-target interactions, and optimize treatment regimens. These resources have the potential to transform the drug discovery process and foster personalized medicine research. We discuss insights into their various applications in translational health and emphasize the need for addressing challenges, promoting collaboration, and advancing the field to fully realize the potential of these tools in transforming healthcare.
Collapse
Affiliation(s)
- Tripti Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Siddharth University, Kapilvastu, Siddharth Nagar, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India.
| |
Collapse
|
2
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
3
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: or
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
4
|
Amirmahani F, Ebrahimi N, Molaei F, Faghihkhorasani F, Jamshidi Goharrizi K, Mirtaghi SM, Borjian‐Boroujeni M, Hamblin MR. Approaches for the integration of big data in translational medicine: single‐cell and computational methods. Ann N Y Acad Sci 2021; 1493:3-28. [DOI: 10.1111/nyas.14544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Farzane Amirmahani
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology University of Isfahan Isfahan Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology University of Isfahan Isfahan Iran
| | - Fatemeh Molaei
- Department of Anesthesiology, Faculty of Paramedical Jahrom University of Medical Sciences Jahrom Iran
| | | | | | | | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| |
Collapse
|
5
|
Abstract
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
6
|
Vodovotz Y, An G, Androulakis IP. A Systems Engineering Perspective on Homeostasis and Disease. Front Bioeng Biotechnol 2013; 1:6. [PMID: 25022216 PMCID: PMC4090890 DOI: 10.3389/fbioe.2013.00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/16/2013] [Indexed: 01/06/2023] Open
Abstract
Engineered systems are coupled networks of interacting sub-systems, whose dynamics are constrained to requirements of robustness and flexibility. They have evolved by design to optimize function in a changing environment and maintain responses within ranges. Analysis, synthesis, and design of complex supply chains aim to identify and explore the laws governing optimally integrated systems. Optimality expresses balance between conflicting objectives while resiliency results from dynamic interactions among elements. Our increasing understanding of life’s multi-scale architecture suggests that living systems share similar characteristics with much to be learned about biological complexity from engineered systems. If health reflects a dynamically stable integration of molecules, cell, tissues, and organs; disease indicates displacement compensated for and corrected by activation and combination of feedback mechanisms through interconnected networks. In this article, we draw analogies between concepts in systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Gary An
- Department of Surgery, The University of Chicago , Chicago, IL , USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University , Piscataway, NJ , USA ; Department of Chemical and Biochemical Engineering, Rutgers University , Piscataway, NJ , USA ; Department of Surgery, Rutgers Robert Wood Johnson Medical School , New Brunswick, NJ , USA
| |
Collapse
|
7
|
McGuire MF, Enderling H, Wallace DI, Batra J, Jordan M, Kumar S, Panetta JC, Pasquier E. Formalizing an integrative, multidisciplinary cancer therapy discovery workflow. Cancer Res 2013; 73:6111-7. [PMID: 23955390 DOI: 10.1158/0008-5472.can-13-0310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although many clinicians and researchers work to understand cancer, there has been limited success to effectively combine forces and collaborate over time, distance, data, and budget constraints. Here we present a workflow template for multidisciplinary cancer therapy that was developed during the 2nd Annual Workshop on Cancer Systems Biology sponsored by Tufts University, Boston, Massachusetts, in July 2012. The template was applied to the development of a metronomic therapy backbone for neuroblastoma. Three primary groups were identified: clinicians, biologists, and quantitative scientists (mathematicians, computer scientists, and engineers). The workflow described their integrative interactions; parallel or sequential processes; data sources and computational tools at different stages as well as the iterative nature of therapeutic development from clinical observations to in vitro, in vivo, and clinical trials. We found that theoreticians in dialog with experimentalists could develop calibrated and parameterized predictive models that inform and formalize sets of testable hypotheses, thus speeding up discovery and validation while reducing laboratory resources and costs. The developed template outlines an interdisciplinary collaboration workflow designed to systematically investigate the mechanistic underpinnings of a new therapy and validate that therapy to advance development and clinical acceptance.
Collapse
Affiliation(s)
- Mary F McGuire
- Authors' Affiliations: University of Texas Medical School at Houston, Houston, Texas; Center of Cancer Systems Biology, Steward Research & Specialty Projects Corp., St. Elizabeth's Medical Center, Tufts University School of Medicine; Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts; Department of Mathematics, Dartmouth College, Hanover, New Hampshire; St. Jude Children's Research Hospital, Memphis, Tennessee; Hospital for Sick Children, Toronto, Ontario, Canada; Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick, NSW, Australia; and Metronomics Global Health Initiative, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Aslakson E, Szekely S, Vernon SD, Bateman L, Baumbach J, Setty Y. Live sequence charts to model medical information. Theor Biol Med Model 2012; 9:22. [PMID: 22703558 PMCID: PMC3536704 DOI: 10.1186/1742-4682-9-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/31/2012] [Indexed: 11/12/2022] Open
Abstract
Background Medical records accumulate data concerning patient health and the natural history of disease progression. However, methods to mine information systematically in a form other than an electronic health record are not yet available. The purpose of this study was to develop an object modeling technique as a first step towards a formal database of medical records. Method Live Sequence Charts (LSC) were used to formalize the narrative text obtained during a patient interview. LSCs utilize a visual scenario-based programming language to build object models. LSC extends the classical language of UML message sequence charts (MSC), predominantly through addition of modalities and providing executable semantics. Inter-object scenarios were defined to specify natural history event interactions and different scenarios in the narrative text. Result A simulated medical record was specified into LSC formalism by translating the text into an object model that comprised a set of entities and events. The entities described the participating components (i.e., doctor, patient and record) and the events described the interactions between elements. A conceptual model is presented to illustrate the approach. An object model was generated from data extracted from an actual new patient interview, where the individual was eventually diagnosed as suffering from Chronic Fatigue Syndrome (CFS). This yielded a preliminary formal designated vocabulary for CFS development that provided a basis for future formalism of these records. Conclusions Translation of medical records into object models created the basis for a formal database of the patient narrative that temporally depicts the events preceding disease, the diagnosis and treatment approach. The LSCs object model of the medical narrative provided an intuitive, visual representation of the natural history of the patient’s disease.
Collapse
Affiliation(s)
- Eric Aslakson
- Poiema, LLC, 375 Chelsea Cir NE, Atlanta, GA 30307, USA
| | | | | | | | | | | |
Collapse
|
9
|
McGuire MF, Sriram Iyengar M, Mercer DW. Data driven linear algebraic methods for analysis of molecular pathways: application to disease progression in shock/trauma. J Biomed Inform 2012; 45:372-87. [PMID: 22200681 PMCID: PMC3346262 DOI: 10.1016/j.jbi.2011.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 12/24/2022]
Abstract
MOTIVATION Although trauma is the leading cause of death for those below 45years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. RESULTS In the node/molecular analysis of the first 24h from trauma, PSA uncovered seven molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which three molecules had not been previously associated with any shock/trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships--activation, expression, inhibition, and transcription--and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction mechanisms may be most effective within a certain time period and for a specific functional relationship.
Collapse
Affiliation(s)
- Mary F McGuire
- Department of Pathology and Laboratory Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | | | | |
Collapse
|