1
|
Zou JH, Chen F, Li YL, Chen H, Sun TK, Du SM, Zhang J. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on orthodontic tooth movement and root resorption in rats. Arch Oral Biol 2023; 150:105691. [PMID: 37043987 DOI: 10.1016/j.archoralbio.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To study the effect of EGCG on tooth movement and root resorption during orthodontic treatment in rats. METHODS A total of thirty six male Wistar rats were randomly and equally divided into three groups: control, 50 mg/kg EGCG, and 100 mg/kg EGCG. During the experiment, the subjects were submitted to an orthodontic tooth movement (OTM) model, rats in the experimental groups were given the corresponding dose of EGCG, while rats in the control group were administrated with an equal volume of normal saline solution by gavage. After 14 days of OTM, the rats were sacrificed by transcardial perfusion. Micro-CT of rat maxillaes was taken to analyze OTM distance and root resorption. The maxillary samples were prepared as histological sections for H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical (IHC) staining to be observed and analyzed. RESULTS The OTM distance and root resorption of rats in the dosed group decreased, and the number of TRAP positive cells in their periodontium decreased significantly. The expression level of RANKL was decreased in the EGCG group compared to the control group, while that of OPG, OCN and Runx2 was increased. Effects were more pronounced in 100 mg/kg group than in 50 mg/kg group. CONCLUSION EGCG reduces OTM and orthodontic induced root resorption (OIRR) in rats, and is able to attenuate osteoclastogenesis on the pressure side and promote osteogenesis on the tension side.
Collapse
Affiliation(s)
- Jing-Hua Zou
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fei Chen
- Department of Stomatology, Rizhao Traditional Chinese Medicine Hospital, Rizhao, China
| | - Yi-Lin Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tong-Ke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Si-Meng Du
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
2
|
Influence of E-Cigarette and Cannabis Vaping on Orthodontically Induced Tooth Movement and Periodontal Health in Patients Undergoing Orthodontic Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116518. [PMID: 35682101 PMCID: PMC9180231 DOI: 10.3390/ijerph19116518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023]
|
3
|
Jyothish S, Athanasiou AE, Makrygiannakis MA, Kaklamanos EG. Effect of nicotine exposure on the rate of orthodontic tooth movement: A meta-analysis based on animal studies. PLoS One 2021; 16:e0247011. [PMID: 33596270 PMCID: PMC7888643 DOI: 10.1371/journal.pone.0247011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/09/2022] Open
Abstract
Background Nicotine exposure has been reported to modify bone cell function and the osseous metabolism with potential effects on the rate of orthodontic tooth movement. Objectives To systematically investigate and quantitively synthesize the most recent available evidence from animal studies regarding the effect of nicotine exposure on the rate of orthodontic tooth movement. Search methods Unrestricted searches in 7 databases and hand searching were performed until July 2020 (PubMed, Central, Cochrane Database of Systematic Reviews, SCOPUS, Web of Science, Arab World Research Source, ProQuest Dissertations and Theses Global). Selection criteria We searched for controlled studies on healthy animals investigating the effect of nicotine on the rate of orthodontic tooth movement. Data collection and analysis Following study retrieval and selection, relevant data was extracted and the risk of bias was assessed using the SYRCLE’s Risk of Bias Tool. Exploratory synthesis and meta-regression were carried out using the random effects model. Results From the initially identified records, 5 articles meeting the inclusion criteria were selected and no specific concerns regarding bias were identified. Quantitative data synthesis showed that the rate of orthodontic tooth movement in the nicotine exposed rats was higher than in the control group animals (2 weeks of force application; 0.317 mm more movement in nicotine exposed rats; 95% Confidence Interval: 0.179–0.454; p = 0.000). No effect of the concentration or the duration force application was demonstrated following exploratory meta-regression. Conclusion Rats administered with nicotine showed accelerated rates of orthodontic tooth movement. Although, information from animal studies cannot be fully translated to human clinical scenarios, safe practice would suggest that the orthodontist should be able to identify patients exposed to nicotine and consider the possible implications for everyday clinical practice.
Collapse
Affiliation(s)
- Sanjay Jyothish
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Miltiadis A. Makrygiannakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios G. Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- * E-mail: ,
| |
Collapse
|
4
|
Yang F, Wang XX, Li J, Nie FJ, Cui Q, Fu YJ, Zhang J. The effects of binge alcohol exposure on tooth movement and associated root resorption in rats. Alcohol 2020; 88:1-9. [PMID: 32574660 DOI: 10.1016/j.alcohol.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Considering the increasing prevalence of alcohol use and the growing number of orthodontic patients, some orthodontic patients might engage in binge drinking during treatment. Nevertheless, little is known about the effect of alcohol use on orthodontic treatment. METHODS Male Wistar rats were divided into ethanol and control groups (n = 32). The rats received a single daily intraperitoneal injection of 20% (vol/vol) ethanol/saline solution at a dose of 3 g/kg of ethanol or saline for three consecutive days, and no injection was given during the remaining four days each week. All rats received orthodontic appliances to draw the maxillary first molar mesially. The rats were sacrificed at days 14 and 28, respectively. The amount of tooth movement was measured. Root resorption area was evaluated by scanning electron microscope. Hematoxylin and eosin (H&E) staining and tartrate-resistant acid phosphatase (TRAP) staining were conducted. Immunohistochemistry staining was performed to evaluate the expressions of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and inducible nitric oxide synthase (iNOS). RESULTS There were no significant differences in tooth movement and root resorption between ethanol and control groups. The number of TRAP-positive cells was significantly higher in the ethanol group. The expression of RANKL was statistically increased in the ethanol group. In contrast, the expression of OPG was remarkably decreased in rats injected with ethanol. Moreover, the iNOS level was significantly up-regulated in the ethanol group. CONCLUSION The tooth movement and root resorption in rats were not affected by binge alcohol exposure.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xu Xia Wang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Li
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fu Jiao Nie
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Qun Cui
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ya Jing Fu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jun Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
5
|
Ebersole J, Samburova V, Son Y, Cappelli D, Demopoulos C, Capurro A, Pinto A, Chrzan B, Kingsley K, Howard K, Clark N, Khlystov A. Harmful chemicals emitted from electronic cigarettes and potential deleterious effects in the oral cavity. Tob Induc Dis 2020; 18:41. [PMID: 32435175 PMCID: PMC7233525 DOI: 10.18332/tid/116988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigs), is increasing across the US population and is particularly troubling due to their adoption by adolescents, teens, and young adults. The industry’s marketing approach for these instruments of addiction has been to promote them as a safer alternative to tobacco, a behavioral choice supporting smoking cessation, and as the ‘cool’ appearance of vaping with flavored products (e.g. tutti frutti, bubble gum, and buttered popcorn etc.). Thus, there is a clear need to better document the health outcomes of e-cig use in the oral cavity of the addicted chronic user. There appears to be an array of environmental toxins in the vapors, including reactive aldehydes and carbonyls resulting from the heating elements action on fluid components, as well as from the composition of chemical flavoring agents. The chemistry of these systems shows that the released vapors from the e-cigs frequently contain levels of environmental toxins that considerably exceed federal occupational exposure limits. Additionally, the toxicants in the vapors appear to be retained in the host fluids/tissues at levels often approximating 90% of the levels in the e-cig vapors. These water-soluble reactive toxins can challenge the oral cavity constituents, potentially contributing to alterations in the autochthonous microbiome and host cells critical for maintaining oral homeostasis. This review updates the existing chemistry/environmental aspects of e-cigs, as well as providing an overview of the somewhat limited data on potential oral health effects that could occur across the lifetime of daily e-cig users.
Collapse
Affiliation(s)
- Jeffrey Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Vera Samburova
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, United States
| | - Yeongkwon Son
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, United States
| | - David Cappelli
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Christina Demopoulos
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Antonina Capurro
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Andres Pinto
- Oral and Maxillofacial Medicine and Diagnostic Sciences, School of Dental Medicine, Case Western University, Cleveland, United States
| | - Brian Chrzan
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Katherine Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Nathaniel Clark
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Andrey Khlystov
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| |
Collapse
|
6
|
Yang F, Wang XX, Ma D, Cui Q, Zheng DH, Liu XC, Zhang J. Effects Of Triptolide On Tooth Movement And Root Resorption In Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3963-3975. [PMID: 31819370 PMCID: PMC6883940 DOI: 10.2147/dddt.s217936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Purpose The aim of this study was to investigate the effects of triptolide on the tooth movement and root resorption in rats during orthodontic treatment. Material and methods A total of 48 male Wistar rats were divided into three groups of 16 each. The right maxillary first molars of rats were drawn mesially by closed coil nickel-titanium spring with a force of 50 g. The two experimental groups received intraperitoneal injections of triptolide for 14 days at a dose of 15 µg/kg/day and 30 µg/kg/day, respectively. The control group received vehicle injections. After 14 days, the rats were humanely killed. The amount of tooth movement was measured. Eight rats from each group were randomly chosen for analysis of the percentage of root resorption area by scanning electron microscopy. For the remaining eight rats in each group, the H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemistry analysis were performed. Results The amount of tooth movement and the ratio of root resorption area were significantly decreased in the triptolide-treated rats. The number of TRAP-positive cells was significantly lower in triptolide-treated groups. Moreover, the expression of nuclear factor kappa B ligand (RANKL) was reduced. In contrast, the expression of osteoprotegerin was significantly up-regulated. In the tension side, the expressions of runt-related transcription factor 2 and osteocalcin were significantly enhanced by triptolide injection. Conclusion Triptolide injection could arrest orthodontic tooth movement and reduce root resorption in rats via inhibition of osteoclastogenesis. In addition, triptolide may exert a positive effect on osteoblastogenesis.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xu Xia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Dan Ma
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Qun Cui
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - De Hua Zheng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xiao Can Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
7
|
Xie XY, Jia SM, Sun ZH, Zhang ZY. [Diagnostic accuracy of cone beam computed tomography with different resolution settings for external root resorption]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:75-79. [PMID: 30773548 DOI: 10.19723/j.issn.1671-167x.2019.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of cone beam computed tomography (CBCT) with different resolution settings in detecting the simulated external root resorption defects. METHODS External root resorption defects were simulated in 51 human single rooted premolar teeth. Cavities simulating root resorption defects of 1 mm in diameter and 0.1 mm, 0.2 mm, and 0.3 mm in depth were drilled in the cervical, middle and apical thirds of lingual surfaces of the teeth. In addition to the 51 locations as controls, a total of 102 cavities were obtained in the present study. Specimens were placed in a human dry mandible and scanned by ProMax 3D and DCT PRO CBCT with different resolution settings, respectively. The three-dimensional CBCT images were evaluated by two experienced observers. The data were analyzed with receiver operating characteristics (ROC) analysis. ROC curves were generated and the area under ROC curve (Az) was employed to express the diagnostic accuracy. RESULTS The diagnostic accuracy (Az value) of ProMax 3D CBCT with high, normal and low resolution settings were 0.867, 0.703 and 0.665 (P < 0.05), respectively. Defects with depths of 0.2 mm and 0.3 mm were easier to be detected than those with depths of 0.1 mm (P < 0.05). The images obtained by high resolution mode scanning had obvious advantages in detecting smaller defects (depth 0.1 mm and 0.2 mm). The DCT PRO CBCT provided 4 resolution settings including normal quality + normal resolution, normal quality + high resolution, high quality + normal resolution and high quality + high resolution. The Az values for those 4 resolution settings were 0.527, 0.725, 0.743, and 0.794 (P < 0.05), respectively. Similar to ProMax 3D CBCT, the scanning mode with high resolution played a better role in detecting the defects with depth of 0.1 mm. Except for the scanning setting mode with normal quality + normal resolution, the other three modes could well be evaluated for the defects with depth of 0.2 mm and 0.3 mm. CONCLUSION It is concluded that the diagnostic ability for external root resorption of CBCT could be affected by resolution settings. Computer-aid imaging method can improve the CBCT diagnostic accuracy for external root resorption without increasing the radiation dose level during CBCT scanning.
Collapse
Affiliation(s)
- X Y Xie
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - S M Jia
- Department of Engineering Physics, Tsinghua University & Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Beijing 100084, China
| | - Z H Sun
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Z Y Zhang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
8
|
Deliga Schröder ÂG, Westphalen FH, Schröder JC, Fernandes Â, Westphalen VPD. Accuracy of Digital Periapical Radiography and Cone-beam Computed Tomography for Diagnosis of Natural and Simulated External Root Resorption. J Endod 2018; 44:1151-1158. [DOI: 10.1016/j.joen.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/03/2018] [Accepted: 03/18/2018] [Indexed: 10/14/2022]
|
9
|
Michelogiannakis D, Rossouw PE, Al-Shammery D, Akram Z, Khan J, Romanos GE, Javed F. Influence of nicotine on orthodontic tooth movement: A systematic review of experimental studies in rats. Arch Oral Biol 2018; 93:66-73. [PMID: 29843070 DOI: 10.1016/j.archoralbio.2018.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/06/2018] [Accepted: 05/21/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The objective of this systematic review was to assess the impact of nicotine administration on orthodontic tooth movement (OTM). METHODS A systematic search was conducted in PubMed, Scopus, EMBASE, MEDLINE (OVID) and Web of Knowledge databases and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Studies evaluating the influence of nicotine on OTM, and with the presence of a control group (OTM without nicotine administration), were included. Quality assessment of the selected studies was performed following the Animal Research Reporting in Vivo Experiment (ARRIVE) guidelines. RESULTS Six of the initially identified 108 articles fulfilled the inclusion criteria and were selected. All included studies were performed in male rats, which underwent OTM with or without nicotine administration. Since there was a variation among the included studies regarding nicotine dosage and the duration and magnitude of force application during OTM only a qualitative analysis could be performed. The studies reported that nicotine administration accelerated OTM by inducing alveolar bone resorption around the moving teeth. It was also found that nicotine increased root resorption during experimental OTM. More standardized animal research or clinical studies are warranted to further evaluate the impact of nicotine on OTM. CONCLUSIONS On an experimental level, nicotine exposure in rats jeopardizes OTM by increasing alveolar bone loss and root resorption. From a clinical perspective, further studies are needed to assess the impact of habitual use of tobacco products on OTM.
Collapse
Affiliation(s)
- Dimitrios Michelogiannakis
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, NY, USA
| | - P Emile Rossouw
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, NY, USA
| | - Deema Al-Shammery
- Department of Orthodontics, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Zohaib Akram
- Department of Periodontology, Ziauddin University, Karachi, Pakistan
| | - Junad Khan
- Department of Orofacial Pain and Temporomandibular Joint Disorders, Eastman Institute for Oral Health, University of Rochester, NY, USA
| | | | - Fawad Javed
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, NY, USA.
| |
Collapse
|