1
|
Díaz-Navarrete P, Dantagnan P, Henriquez D, Soto R, Correa-Galeote D, Sáez-Arteaga A. Selenized non-Saccharomyces yeasts and their potential use in fish feed. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1879-1894. [PMID: 38630161 DOI: 10.1007/s10695-024-01340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/26/2024] [Indexed: 07/30/2024]
Abstract
Selenium (Se) is a vital trace element, essential for growth and other biological functions in fish. Its significance lies in its role as a fundamental component of selenoproteins, which are crucial for optimal functioning of the organism. The inclusion of Se in the diets of farmed animals, including fish, has proved invaluable in mitigating the challenges arising from elemental deficiencies experienced in captivity conditions due to limitations in the content of fishmeal. Supplementing diets with Se enhances physiological responses, particularly mitigates the effects of the continuous presence of environmental stress factors. Organic Se has been shown to have higher absorption rates and a greater impact on bioavailability and overall health than inorganic forms. A characteristic feature of yeasts is their rapid proliferation and growth, marked by efficient mineral assimilation. Most of the selenized yeasts currently available in the market, and used predominantly in animal production and aquaculture, are based on Saccharomyces cerevisiae, which contains selenomethionine (Se-Met). The object of this review is to highlight the importance of selenized yeasts. In addition, it presents metabolic and productive aspects of other yeast genera that are important potential sources of organic selenium. Some yeast strains discussed produce metabolites of interest such as lipids, pigments, and amino acids, which could have applications in aquaculture and further enrich their usefulness.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile.
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile.
| | - Patricio Dantagnan
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Daniela Henriquez
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
| | - Robinson Soto
- Departamento de Procesos industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, Granada, España
| | - Alberto Sáez-Arteaga
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile.
- Centro de Investigación, Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco, Chile.
| |
Collapse
|
2
|
Ohtsuka H, Shimasaki T, Aiba H. Response to sulfur in Schizosaccharomyces pombe. FEMS Yeast Res 2021; 21:6324000. [PMID: 34279603 PMCID: PMC8310684 DOI: 10.1093/femsyr/foab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfur is an essential component of various biologically important molecules, including methionine, cysteine and glutathione, and it is also involved in coping with oxidative and heavy metal stress. Studies using model organisms, including budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), have contributed not only to understanding various cellular processes but also to understanding the utilization and response mechanisms of each nutrient, including sulfur. Although fission yeast can use sulfate as a sulfur source, its sulfur metabolism pathway is slightly different from that of budding yeast because it does not have a trans-sulfuration pathway. In recent years, it has been found that sulfur starvation causes various cellular responses in S. pombe, including sporulation, cell cycle arrest at G2, chronological lifespan extension, autophagy induction and reduced translation. This MiniReview identifies two sulfate transporters in S. pombe, Sul1 (encoded by SPBC3H7.02) and Sul2 (encoded by SPAC869.05c), and summarizes the metabolic pathways of sulfur assimilation and cellular response to sulfur starvation. Understanding these responses, including metabolism and adaptation, will contribute to a better understanding of the various stress and nutrient starvation responses and chronological lifespan regulation caused by sulfur starvation.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Designing selenium functional foods and beverages: A review. Food Res Int 2019; 120:708-725. [DOI: 10.1016/j.foodres.2018.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
|
4
|
Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A. Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol 2015; 99:5373-82. [PMID: 26003453 PMCID: PMC4464373 DOI: 10.1007/s00253-015-6650-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/30/2022]
Abstract
This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland,
| | | | | | | |
Collapse
|
5
|
Chen G, Wu J, Li C. Effect of different selenium sources on production performance and biochemical parameters of broilers. J Anim Physiol Anim Nutr (Berl) 2013; 98:747-54. [DOI: 10.1111/jpn.12136] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
Affiliation(s)
- G. Chen
- College of Animal Science and Technology; Gansu Agricultural University; Lanzhou China
| | - J. Wu
- Gansu Zhengsheng Biotech Co., Ltd; Baiyin China
| | - C. Li
- College of Animal Science and Technology; Gansu Agricultural University; Lanzhou China
| |
Collapse
|
6
|
Uncommon Heavy Metals, Metalloids and Their Plant Toxicity: A Review. SUSTAINABLE AGRICULTURE REVIEWS 2009. [DOI: 10.1007/978-1-4020-9654-9_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Gremel G, Dorrer M, Schmoll M. Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei). BMC Microbiol 2008; 8:174. [PMID: 18842142 PMCID: PMC2584116 DOI: 10.1186/1471-2180-8-174] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/08/2008] [Indexed: 02/02/2023] Open
Abstract
Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
Collapse
Affiliation(s)
- Gabriela Gremel
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria.
| | | | | |
Collapse
|
8
|
Simonics T, Maráz A. Cloning of the ATP sulphurylase gene of Schizosaccharomyces pombe by functional complementation. Can J Microbiol 2008; 54:71-4. [PMID: 18388974 DOI: 10.1139/w07-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATP sulphurylase gene of Schizosaccharomyces pombe has been cloned by complementation of cysteine auxotrophy of a selenate-resistant mutant, which supposedly had a defect in ATP sulphurylase. A sulphate nonutilizing (cysteine auxotrophic) and selenate-resistant mutant of S. pombe was transformed with a wild-type S. pombe genomic library and sulphate-utilizing clones were isolated. The open reading frame encoding the ATP sulphurylase enzyme was found to be responsible for the restoration of sulphate assimilation. Transformants became as sensitive for selenate as the wild-type strain and produced a comparable amount of ATP sulphurylase as the prototrophic strains. The cloned ATP sulphurylase gene (sua1) proved to be an efficient selection marker in an ARS vector, when different isogenic or nonisogenic S. pombe selenate-resistant mutants were used as cloning hosts. Complementation of sua1- mutations by sua1-bearing multicopy vectors functions as a useful dual positive and negative selection marker. The cloned sua1 gene also complemented the met3 (ATP sulphurylase deficient) mutation in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Tibor Simonics
- Department of Microbiology and Biotechnology, Faculty of Food Science, Corvinus University of Budapest, Somloi ut 14-16, Budapest H-1118, Hungary
| | | |
Collapse
|
9
|
Rezanka T, Sigler K. Biologically active compounds of semi-metals. PHYTOCHEMISTRY 2008; 69:585-606. [PMID: 17991498 DOI: 10.1016/j.phytochem.2007.09.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 05/25/2023]
Abstract
Semi-metals (boron, silicon, arsenic and selenium) form organo-metal compounds, some of which are found in nature and affect the physiology of living organisms. They include, e.g., the boron-containing antibiotics aplasmomycin, borophycin, boromycin, and tartrolon or the silicon compounds present in "silicate" bacteria, relatives of the genus Bacillus, which release silicon from aluminosilicates through the secretion of organic acids. Arsenic is incorporated into arsenosugars and arsenobetaines by marine algae and invertebrates, and fungi and bacteria can produce volatile methylated arsenic compounds. Some prokaryotes can use arsenate as a terminal electron acceptor while others can utilize arsenite as an electron donor to generate energy. Selenium is incorporated into selenocysteine that is found in some proteins. Biomethylation of selenide produces methylselenide and dimethylselenide. Selenium analogues of amino acids, antitumor, antibacterial, antifungal, antiviral, anti-infective drugs are often used as analogues of important pharmacological sulfur compounds. Other metalloids, i.e. the rare and toxic tellurium and the radioactive short-lived astatine, have no biological significance.
Collapse
Affiliation(s)
- Tomás Rezanka
- Institute of Microbiology, Vídenská 1083, Prague 142 20, Czech Republic.
| | | |
Collapse
|
10
|
Řezanka T, Sigler K. Biologically Active Compounds Of Semi-Metals. BIOACTIVE NATURAL PRODUCTS (PART O) 2008. [DOI: 10.1016/s1572-5995(08)80018-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ma Y, Sugiura R, Saito M, Koike A, Sio SO, Fujita Y, Takegawa K, Kuno T. Six new amino acid-auxotrophic markers for targeted gene integration and disruption in fission yeast. Curr Genet 2007; 52:97-105. [PMID: 17622533 DOI: 10.1007/s00294-007-0142-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 06/30/2007] [Accepted: 07/01/2007] [Indexed: 10/23/2022]
Abstract
Fission yeast Schizosaccharomyces pombe is amenable to genetics and is an excellent model system for studying eukaryotic cell biology. However, auxotrophic markers that can be used for both targeted gene integration and disruption are very limited. Here we performed a forward genetic screen in an effort to develop a new set of selectable markers for use in this yeast. Mutants that were auxotrophic for arginine, asparagine, cysteine, lysine, methionine and phenylalanine were isolated. Six genes were analyzed in detail and the mutations in the genes were identified. Among these six are three new genes: asn1 (+), cys2 (+) and pha2 (+) were required for biosynthesis of asparagine, cysteine and phenylalanine, respectively. New alleles of arg1 (+), lys3 (+) and met6 (+) were also identified. All of these genes proved to be suitable as selectable markers for targeted gene integration and disruption. We also showed that in Schizosaccharomyces pombe there are two apparent homologues of Saccharomyces cerevisiae MET2: the previously known met6 (+), and SPBC106.17c (named cys2 (+)). The cys2 mutation required cysteine rather than methionine. These new tools, specifically, new selectable markers, will be useful in further genetic and biological studies in fission yeast.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. PHOTOSYNTHESIS RESEARCH 2005; 86:373-89. [PMID: 16307305 DOI: 10.1007/s11120-005-5222-9] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/10/2005] [Indexed: 05/02/2023]
Abstract
The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.
Collapse
Affiliation(s)
- T G Sors
- Horticulture and Landscape Architecture, Center for Plant Environmental Stress Physiology, Purdue University, 1165 Horticulture Building, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
13
|
Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:785-97. [PMID: 15941393 DOI: 10.1111/j.1365-313x.2005.02413.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.
Collapse
Affiliation(s)
- Thomas G Sors
- Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|