1
|
Takahashi Y. ACL5 acquired strict thermospermine synthesis activity during the emergence of vascular plants. THE NEW PHYTOLOGIST 2024; 242:2669-2681. [PMID: 38587066 DOI: 10.1111/nph.19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
Norspermine (Nspm), one of the uncommon polyamines (PAs), was detected in bryophytes and lycophytes; therefore, the aminopropyltransferases involved in the synthesis of Nspm were investigated. The enzymatic activity was evaluated by the transient high expression of various aminopropyltransferase genes in Nicotiana benthamiana, followed by quantification of PA distribution in the leaves using gas chromatography-mass spectrometry. The bryophyte orthologues of ACL5, which is known to synthesise thermospermine (Tspm) in flowering plants, were found to have strong Nspm synthesis activity. In addition, two ACL5 orthologous with different substrate specificities were conserved in Selaginella moellendorffii, one of which was involved in Tspm synthesis and the other in Nspm synthesis. Therefore, further detailed analysis using these two factors revealed that the β-hairpin structural region consisting of β-strands 1 and 2 at the N-terminus of ACL5 is involved in substrate specificity. Through functional analysis of a total of 40 ACL5 genes in 33 organisms, including algae, it was shown that ACL5 has changed its substrate specificity several times during plant evolution and diversification. Furthermore, it was strongly suggested that ACL5 acquired strict Tspm synthesis activity during the emergence of vascular plants, especially through major changes around the β-hairpin structural region.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| |
Collapse
|
2
|
Kuhlisch C, Althammer J, Sazhin AF, Jakobsen HH, Nejstgaard JC, Pohnert G. Metabolomics-derived marker metabolites to characterize Phaeocystis pouchetii physiology in natural plankton communities. Sci Rep 2020; 10:20444. [PMID: 33235278 PMCID: PMC7686483 DOI: 10.1038/s41598-020-77169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in higher latitudes spanning from the English Channel to the Arctic. Through zooplankton grazing and microbial activity, it is considered to be a key resource for the entire marine food web, but the actual relevance of biomass transfer to higher trophic levels is still under discussion. Cell physiology and algal nutritional state are suggested to be major factors controlling the observed variability in zooplankton grazing. However, no data have so far yielded insights into the metabolic state of Phaeocystis populations that would allow testing this hypothesis. Therefore, endometabolic markers of different growth phases were determined in laboratory batch cultures using comparative metabolomics and quantified in different phytoplankton blooms in the field. Metabolites, produced during exponential, early and late stationary growth of P. pouchetii, were profiled using gas chromatography-mass spectrometry. Then, metabolites were characterized that correlate with the growth phases using multivariate statistical analysis. Free amino acids characterized the exponential growth, whereas the early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late stationary phase, free fatty acids, sterols and terpenes increased. These marker metabolites were then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton communities. Mannitol, scyllo-inositol, 24-methylcholesta-5,22-dien-3β-ol, and several free fatty acids were characteristic for Phaeocystis-dominated blooms but showed variability between them. Distinct metabolic profiles were detected in the nutrient-depleted community in the inner Porsangerfjord (< 0.5 µM NO3-, < 0.1 µM PO 4 3- ), with high relative amounts of free mono- and disaccharides indicative for a limited culture. This study thereby shows how the variable physiology of phytoplankton can alter the metabolic landscape of entire plankton communities.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.,Department of Plant and Environmental Sciences, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel
| | - Julia Althammer
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.,JenaBios GmbH, Löbstedter Straße 80, 07749, Jena, Germany
| | - Andrey F Sazhin
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Prospect 36, Moscow, Russia
| | - Hans H Jakobsen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jens C Nejstgaard
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Dep. 3, Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.
| |
Collapse
|
3
|
Hamana K, Furuchi T, Nakamura T, Hayashi H, Niitsu M. Occurrence of penta-amines, hexa-amines and N-methylated polyamines in unicellular eukaryotic organisms belonging to the phyla Heterokontophyta and Labyrinthulomycota of the subdomain Stramenopiles. J GEN APPL MICROBIOL 2016; 62:320-325. [PMID: 27773915 DOI: 10.2323/jgam.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Faculty of Engineering, Maebashi Institute of Technology
| | | | | | | | | |
Collapse
|
4
|
Abstract
Polyamines are primordial polycations found in most cells and perform different functions in different organisms. Although polyamines are mainly known for their essential roles in cell growth and proliferation, their functions range from a critical role in cellular translation in eukaryotes and archaea, to bacterial biofilm formation and specialized roles in natural product biosynthesis. At first glance, the diversity of polyamine structures in different organisms appears chaotic; however, biosynthetic flexibility and evolutionary and ecological processes largely explain this heterogeneity. In this review, I discuss the biosynthetic, evolutionary, and physiological processes that constrain or expand polyamine structural and functional diversity.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
5
|
Hamana K, Niitsu M, Hayashi H. Occurrence of homospermidine and thermospermine as a cellular polyamine in unicellular chlorophyte and multicellular charophyte green algae. J GEN APPL MICROBIOL 2014; 59:313-9. [PMID: 24005181 DOI: 10.2323/jgam.59.313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan.
| | | | | |
Collapse
|
6
|
Hamana K. Cellular polyamines of phototrophs and heterotrophs belonging to the lower eukaryotic phyla Cercozoa, Euglenozoa, Heterokonta and Metamonada. J GEN APPL MICROBIOL 2008; 54:135-40. [PMID: 18497488 DOI: 10.2323/jgam.54.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|