1
|
Mock MB, Summers RM. Microbial metabolism of caffeine and potential applications in bioremediation. J Appl Microbiol 2024; 135:lxae080. [PMID: 38549434 DOI: 10.1093/jambio/lxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| |
Collapse
|
2
|
Tan W, Wu H, Huang C, Lv J, Yu H. Utilization of nickel-graphite electrode as an electron donor for high-efficient microbial removal of solved U(VI) mediated by Leifsonia sp. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 273:107398. [PMID: 38346378 DOI: 10.1016/j.jenvrad.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Enzymatically catalyzed reduction of metals by bacteria has potential application value to uranium-mine wastewater. However, its practical implementation has long been restricted by its intrinsic drawbacks such as low efficiency and long treatment-time. This study aims to explore the effect of electrodes on U (VI) removal efficiency by a purified indigenous bacteria isolated from a uranium mining waste pile in China. The effects of current intensity, pH, initial U (Ⅵ) concentration, initial dosage of bacteria and contact time on U (Ⅵ) removal efficiency were investigated via static experiments. The results show that U(VI) removal rate was stabilized above 90% and the contact time sharply shortened within 1 h when utilized nickel-graphite electrode as an electron donor. Over the treatment ranges investigated maximum removal of U (Ⅵ) was 96.04% when the direct current was 10 mA, pH was 5, initial U (Ⅵ) concentration was 10 mg/L, and dosage of Leifsonia sp. was 0.25 g/L. In addition, it is demonstrated that U (VI) adsorption by Leifsonia sp. is mainly chemisorption and/or reduction as the quasi-secondary kinetics is more suitable for fitting the process. FTIR results indicated that amino, amide, aldehyde and phosphate -containing groups played a role in the immobilization of U (VI) more or less. SEM and EDS measurements revealed that U appeared to be more obviously aggregated on the surface of cells. A plausible explanation for this, supported by XPS, is that U (VI) was partially reduced to U (IV) by direct current then precipitated on the cells surface. These observations reveal that Nickel-graphite electrode exhibited good electro-chemical properties and synergistic capacity with Leifsonia sp. which potentially provides a new avenue for uranium enhanced removal/immobilization by indigenous bacteria.
Collapse
Affiliation(s)
- Wenfa Tan
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Han Wu
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Chuqin Huang
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Junwen Lv
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Huang Yu
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Zhou X, Liang M, Zheng Y, Zhang J, Liang J. Sustained degradation of phenol under extreme conditions by polyurethane-based Bacillus sp. ZWB3. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1194-1206. [PMID: 37771222 PMCID: wst_2023_259 DOI: 10.2166/wst.2023.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Phenol is a serious pollutant to the environment, therefore, it is urgent to find a rapid and effective method for its removal. In this study, Bacillus cereus ZWB3 immobilized on a polyurethane (PUF) carrier was studied. The PUF-ZWB3 required only 20 h for the degradation of 1,500 mg L-1 of phenol, shortened by 8 h than the free bacteria. In addition, the PUF-ZWB3 could increase the degradation concentration of phenol from 1,500 to 2,000 mg L-1, and the complete degradation of 2,000 mg L-1 phenol only used 44 h. In addition, the PUF-ZWB3 showed much higher removal of phenol than the free bacteria at different pH values, salt concentrations, and heavy metal ions. Particularly, the PUF-ZWB3 could still completely remove phenol in a strongly alkaline environment, such as pH 10 and 11. In addition, the removal efficiency of phenol by PUF-ZWB3 was still 100% after 10 cycles. This study showed that the PUF immobilization system had great potential in the field of remediation of organic pollution.
Collapse
Affiliation(s)
- Xu Zhou
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China E-mail:
| | - Mingzhao Liang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yujing Zheng
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jianfeng Zhang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Liang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Umar Mustapha M, Halimoon N, Wan Johari WL, Abd Shukor MY. Enhanced Carbofuran Degradation Using Immobilized and Free Cells of Enterobacter sp. Isolated from Soil. Molecules 2020; 25:molecules25122771. [PMID: 32560037 PMCID: PMC7355768 DOI: 10.3390/molecules25122771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.
Collapse
Affiliation(s)
- Mohammed Umar Mustapha
- Desert Research Monitoring and Control Centre, Yobe State University, Damaturu P.M.B 1144, Nigeria;
| | - Normala Halimoon
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Correspondence:
| | - Wan Lutfi Wan Johari
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Mohd. Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| |
Collapse
|
5
|
Tan WF, Li Y, Guo F, Wang YC, Ding L, Mumford K, Lv JW, Deng QW, Fang Q, Zhang XW. Effect of Leifsonia sp. on retardation of uranium in natural soil and its potential mechanisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106202. [PMID: 32063554 DOI: 10.1016/j.jenvrad.2020.106202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Uranium mining and milling activities for many years resulted in release of uranium into the adjoining soil in varying degrees. Bioremediation approaches (i.e., immobilization via the action of bacteria) resulting in uranium bearing solid is supposed as an economic and clean in-situ approach for the treatment of uranium contaminated sites. This study purposes to determine the immobilization efficiency of uranium in soil by Leifsonia sp. The results demonstrated that cells have a good proliferation ability under the stress of uranium and play a role in retaining uranium in soil. Residual uranium in active Leifsonia-medium group (66%) was higher than that in the controls, which was 31% in the deionised water control, 46% in the Leifsonia group, and 47% in the medium group, respectively. This indicated that Leifsonia sp. facilitates the immobilization efficiency of uranium in soil by converting part of the reducible and oxidizable fraction of uranium into the residual fraction. X-ray photoelectron fitting results showed that tetravalent states uranium existed in the soil samples, which indicated that the hexavalent uranium was converted into tetravalent by cells. This is the first report of effect of Leifsonia sp. on uranium immobilization in soil. The findings implied that Leifsonia sp. could, to some extent, prevent the migration and diffusion of uranium in soil by changing the chemical states into less toxicity and less risky forms.
Collapse
Affiliation(s)
- Wen-Fa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Yuan Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Feng Guo
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ya-Chao Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Lei Ding
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Kathryn Mumford
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Australia
| | - Jun-Wen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qin-Wen Deng
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiao-Wen Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
6
|
Jiang Y, Lu Y, Huang Y, Chen S, Ji Z. Bacillus amyloliquefaciens HZ-12 heterologously expressing NdmABCDE with higher ability of caffeine degradation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Maniyam MN, Ibrahim AL, Cass AEG. Enhanced cyanide biodegradation by immobilized crude extract of Rhodococcus UKMP-5M. ENVIRONMENTAL TECHNOLOGY 2019; 40:386-398. [PMID: 29032742 DOI: 10.1080/09593330.2017.1393015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The capability of the crude extract of Rhodococcus UKMP-5M was enhanced by adopting the technology of immobilization. Among the matrices screened to encapsulate the crude extract, gellan gum emerged as the most suitable immobilization material, exceeding the activity of cyanide-degrading enzyme by 61% and 361% in comparison to alginate carrier and non-immobilized crude extract, respectively. Improved bead mechanical strength which supported higher biocatalyst activity by 63% was observed when concentration of gellan gum, concentration of calcium chloride, number of beads and bead size were optimized. The immobilized crude extract demonstrated higher tolerance towards broad range of pH (5-10) and temperature (30°C-40°C), superior cyanide-degrading activity over time and improved storage stability by maintaining 76% of its initial activity after 30 days at 4°C. Furthermore, repeated use of the gellan gum beads up to 20 batches without substantial loss in the catalytic activity was documented in the present study, indicating that the durability of the beads and the stability of the enzyme are both above adequate. Collectively, the findings reported here revealed that the utilization of the encapsulated crude extract of Rhodococcus UKMP-5M can be considered as a novel attempt to develop an environmentally favourable and financially viable method in cyanide biodegradation.
Collapse
Affiliation(s)
| | - Abdul Latif Ibrahim
- a Institute of Bio-IT Selangor, Universiti Selangor , Shah Alam , Selangor , Malaysia
| | - Anthony E G Cass
- b Department of Chemistry , Imperial College London, South Kensington Campus , London , UK
| |
Collapse
|
8
|
Yusuf I, Ahmad SA, Phang LY, Yasid NA, Shukor MY. Effective production of keratinase by gellan gum-immobilised Alcaligenes sp. AQ05-001 using heavy metal-free and polluted feather wastes as substrates. 3 Biotech 2019; 9:32. [PMID: 30622870 DOI: 10.1007/s13205-018-1555-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022] Open
Abstract
The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.
Collapse
Affiliation(s)
- Ibrahim Yusuf
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
- 2Department of Microbiology, Faculty of Science, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - Siti Aqlima Ahmad
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Lai Yee Phang
- 3Department of Bioprocess, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Nur Adeela Yasid
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Mohd Yunus Shukor
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| |
Collapse
|