1
|
Yan S, Liu Q, Liang B, Zhang M, Chen W, Zhang D, Wang C, Xing D. Airborne microbes: sampling, detection, and inactivation. Crit Rev Biotechnol 2024:1-35. [PMID: 39128871 DOI: 10.1080/07388551.2024.2377191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 08/13/2024]
Abstract
The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wujun Chen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Daijun Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
El Jaddaoui I, Ghazal H, Bennett JW. Mold in Paradise: A Review of Fungi Found in Libraries. J Fungi (Basel) 2023; 9:1061. [PMID: 37998867 PMCID: PMC10672585 DOI: 10.3390/jof9111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Libraries contain a large amount of organic material, frequently stored with inadequate climate control; thus, mold growth represents a considerable threat to library buildings and their contents. In this essay, we review published papers that have isolated microscopic fungi from library books, shelving, walls, and other surfaces, as well as from air samples within library buildings. Our literature search found 54 published studies about mold in libraries, 53 of which identified fungi to genus and/or species. In 28 of the 53 studies, Aspergillus was the single most common genus isolated from libraries. Most of these studies used traditional culture and microscopic methods for identifying the fungi. Mold damage to books and archival holdings causes biodeterioration of valuable educational and cultural resources. Exposure to molds may also be correlated with negative health effects in both patrons and librarians, so there are legitimate concerns about the dangers of contact with high levels of fungal contamination. Microbiologists are frequently called upon to help librarians after flooding and other events that bring water into library settings. This review can help guide microbiologists to choose appropriate protocols for the isolation and identification of mold in libraries and be a resource for librarians who are not usually trained in building science to manage the threat molds can pose to library holdings.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Hassan Ghazal
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences, Casablanca 82403, Morocco;
- Royal Institute of Sports, Royal Institute for Managerial Training in Youth and Sport, Department of Sports Sciences, Laboratory of Sports Sciences and Performance Optimization, Salé 10102, Morocco
| | - Joan W. Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
3
|
Codina R, Esch RE, Lockey RF. The Clinical Relevance of Pollen Versus Fungal Spores in Allergic Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3615-3620. [PMID: 34146748 DOI: 10.1016/j.jaip.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
Pollen and fungal spores are associated with seasonal and perennial allergies. However, most scientific literature thus far suggests that pollen allergy is more clinically relevant than fungal allergy. Several environmental and biological factors and the difficulty in producing reliable fungal extracts account for this. Biodiversity, taxonomy, and meteorology are responsible for the types and levels of pollen and fungal spores, their fragments, and the presence of free airborne allergens. Therefore, it is difficult to accurately measure both pollen and fungal allergen exposure. In addition, understanding the enzymatic nature of fungal and some pollen allergens, the presence of allergenic and nonallergenic substances that may modulate the allergic immune response, and allergen cross-reactivity are all necessary to appropriately evaluate both sensitivity and exposure. The raw materials and manufacturing processes used to prepare pollen versus fungal extracts differ, further increasing the complexity to properly determine allergic sensitivity and degrees of exposure. The pollen extracts used for diagnosis and treatment are relatively consistent, and some have been standardized. However, obtaining clinically relevant fungal extracts is more difficult. Doing so will allow for the proper selection of such extracts to more appropriately diagnose and treat both pollen- and fungal-induced allergic diseases.
Collapse
Affiliation(s)
- Rosa Codina
- Allergen Science & Consulting, Lenoir, NC; Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of south Florida, Tampa, Fla.
| | - Robert E Esch
- School of Natural Sciences, Lenoir-Rhyne University, Hickory, NC
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of south Florida, Tampa, Fla
| |
Collapse
|
4
|
Upadhyay E, Mohammad AlMass AA, Dasgupta N, Rahman S, Kim J, Datta M. Assessment of Occupational Health Hazards Due to Particulate Matter Originated from Spices. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091519. [PMID: 31035724 PMCID: PMC6538991 DOI: 10.3390/ijerph16091519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022]
Abstract
Spices have been known for their various health activities; however, they also possess the allergic potential for the respiratory system and the skin as they are fine particulate matter. Persons involved in spice agriculture and food industries are at greater risk since they are exposed to a considerable amount of combustible dust, which may be the cause of fire and explosion and adversely affect the health. These workers may experience allergy, long-term and short-term respiratory issues including occupational asthma, dermatitis, etc. Some spices induce T cell-based inflammatory reaction upon contact recognition of the antigen. Antigen Presenting Cells (APC) on binding to the causative metabolite results in activation of macrophages by allergen cytokine interleukin (IL)-12 and tumor necrosis factor-beta (TNF). Cross-reactivity for protein allergens is another factor which seems to be a significant trigger for the stimulation of allergic reactions. Thus, it was imperative to perform a systematic review along with bioinformatics based representation of some evident allergens has been done to identify the overall conservation of epitopes. In the present manuscript, we have covered a multifold approach, i.e., to categorize the spice particles based on a clear understanding about nature, origin, mechanisms; to assess metabolic reactions of the particles after exposure as well as knowledge on the conditions of exposure along with associated potential health effects. Another aim of this study is to provide some suggestions to prevent and to control the exposure up to some extent.
Collapse
Affiliation(s)
- Era Upadhyay
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 302 002, India.
| | - Afnan Ahmad Mohammad AlMass
- Emergency Medicine Department, King Saud University Medical City, King Saud University, Riyadh 11321, Saudi Arabia.
| | - Nandita Dasgupta
- Department of Biotechnology, Institute of Engineering and Technology, Dr. APJ Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India.
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea.
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea.
| | - Manali Datta
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 302 002, India.
| |
Collapse
|
5
|
Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol 2018; 142:353-363. [PMID: 30080527 PMCID: PMC6083885 DOI: 10.1016/j.jaci.2018.06.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Fungi are ubiquitous outdoors and indoors. Exposure, sensitization, or both to fungi are strongly associated with development of asthma and allergic airway diseases. Furthermore, global climate change will likely increase the prevalence of fungi and enhance their antigenicity. Major progress has been made during the past several years regarding our understanding of antifungal immunity. Fungi contain cell-wall molecules, such as β-glucan and chitin, and secrete biologically active proteases and glycosidases. Airway epithelial cells and innate immune cells, such as dendritic cells, are equipped with cell-surface molecules that react to these fungal products, resulting in production of cytokines and proinflammatory mediators. As a result, the adaptive arm of antifungal immunity, including TH1-, TH2-, and TH17-type CD4+ T cells, is established, reinforcing protection against fungal infection and causing detrimental immunopathology in certain subjects. We are only in the beginning stages of understanding the complex biology of fungi and detailed mechanisms of how they activate the immune response that can protect against or drive diseases in human subjects. Here we describe our current understanding with an emphasis on airway allergic immune responses. The gaps in our knowledge and desirable future directions are also discussed.
Collapse
Affiliation(s)
- Kathleen R Bartemes
- Division of Allergic Diseases, Department of Internal Medicine, and the Department of Immunology, Mayo Clinic, Rochester, Minn
| | - Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, and the Department of Immunology, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
6
|
Abstract
In last 30 to 40 years there has been a significant increase in the incidence of allergy. This increase cannot be explained by genetic factors alone. Increasing air pollution and its interaction with biological allergens along with changing lifestyles are contributing factors. Dust mites, molds, and animal allergens contribute to most of the sensitization in the indoor setting. Tree and grass pollens are the leading allergens in the outdoor setting. Worsening air pollution and increasing particulate matter worsen allergy symptoms and associated morbidity. Cross-sensitization of allergens is common. Treatment involves avoidance of allergens, modifying lifestyle, medical treatment, and immunotherapy.
Collapse
Affiliation(s)
- Madhavi Singh
- Department of Family and Community Medicine, Penn State Hershey Medical Group, 1850 East Park Avenue, Suite 207, State College, PA 16803, USA.
| | - Amy Hays
- Department of Family and Community Medicine, Penn State Hershey Medical Group, 303 Benner Pike #1, State College, PA 16803, USA
| |
Collapse
|
7
|
LaKind JS, Overpeck J, Breysse PN, Backer L, Richardson SD, Sobus J, Sapkota A, Upperman CR, Jiang C, Beard CB, Brunkard JM, Bell JE, Harris R, Chretien JP, Peltier RE, Chew GL, Blount BC. Exposure science in an age of rapidly changing climate: challenges and opportunities. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:529-538. [PMID: 27485992 PMCID: PMC5071542 DOI: 10.1038/jes.2016.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/13/2016] [Indexed: 05/18/2023]
Abstract
Climate change is anticipated to alter the production, use, release, and fate of environmental chemicals, likely leading to increased uncertainty in exposure and human health risk predictions. Exposure science provides a key connection between changes in climate and associated health outcomes. The theme of the 2015 Annual Meeting of the International Society of Exposure Science-Exposures in an Evolving Environment-brought this issue to the fore. By directing attention to questions that may affect society in profound ways, exposure scientists have an opportunity to conduct "consequential science"-doing science that matters, using our tools for the greater good and to answer key policy questions, and identifying causes leading to implementation of solutions. Understanding the implications of changing exposures on public health may be one of the most consequential areas of study in which exposure scientists could currently be engaged. In this paper, we use a series of case studies to identify exposure data gaps and research paths that will enable us to capture the information necessary for understanding climate change-related human exposures and consequent health impacts. We hope that paper will focus attention on under-developed areas of exposure science that will likely have broad implications for public health.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, 106 Oakdale Avenue, Catonsville, 21228 MD USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, 21201 MD USA
- Department of Pediatrics, Hershey Medical Center, Penn State U College of Medicine, Hershey, 17033 PA USA
| | - Jonathan Overpeck
- Institute of the Environment, University of Arizona, ENR2 Building, Room N523, 1064 East Lowell Street, PO Box 210137, Tucson, 85721-013 7 AZ USA
| | - Patrick N Breysse
- National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, NE, MS-F60,, Atlanta, 30341 GA USA
| | - Lorrie Backer
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, MS-F60, Atlanta, 30341 GA USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, JM Palms Center for GSR, Columbia, 29208 SC USA
| | - Jon Sobus
- National Exposure Research Laboratory, US Environmental Protection Agency, Mail Code: E205-04, Research Triangle Park, 27711 NC USA
| | - Amir Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, 20742 MD USA
| | - Crystal R Upperman
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, 20742 MD USA
| | - Chengsheng Jiang
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, 20742 MD USA
| | - C Ben Beard
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop P-02, 3156 Rampart Road, Fort Collins, 80521 CO USA
| | - J M Brunkard
- Waterborne Diseases Prevention Branch, Centers for Disease Control and Prevention, Mail Stop C-09, 1600 Clifton Road NE, Atlanta, 30333 GA USA
| | - Jesse E Bell
- Cooperative Institute for Climate and Satellites—NC, North Carolina State University, 151 Patton Avenue, Asheville, 28801 NC USA
| | - Ryan Harris
- USAF, 14th Weather Squadron (DoD Applied Climate Services), Asheville, NC USA
| | - Jean-Paul Chretien
- Armed Forces Health Surveillance Branch, Defense Health Agency, Silver Spring, MD USA
| | - Richard E Peltier
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, 149 Goessmann Laboratory, 686 North Pleasant Street, Amherst, 01003 MA USA
| | - Ginger L Chew
- Division of Environmental Hazards and Health Effects, Air Pollution and Respiratory Health Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, MS-F60, Atlanta, 30341 GA USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch of the Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, MS F47, Atlanta, 30341 GA USA
| |
Collapse
|
8
|
Fronczek CF, Yoon JY. Biosensors for Monitoring Airborne Pathogens. ACTA ACUST UNITED AC 2015; 20:390-410. [DOI: 10.1177/2211068215580935] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 01/15/2023]
|
9
|
Twaroch TE, Curin M, Valenta R, Swoboda I. Mold allergens in respiratory allergy: from structure to therapy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:205-20. [PMID: 25840710 PMCID: PMC4397360 DOI: 10.4168/aair.2015.7.3.205] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022]
Abstract
Allergic reactions to fungi were described 300 years ago, but the importance of allergy to fungi has been underestimated for a long time. Allergens from fungi mainly cause respiratory and skin symptoms in sensitized patients. In this review, we will focus on fungi and fungal allergens involved in respiratory forms of allergy, such as allergic rhinitis and asthma. Fungi can act as indoor and outdoor respiratory allergen sources, and depending on climate conditions, the rates of sensitization in individuals attending allergy clinics range from 5% to 20%. Due to the poor quality of natural fungal allergen extracts, diagnosis of fungal allergy is hampered, and allergen-specific immunotherapy is rarely given. Several factors are responsible for the poor quality of natural fungal extracts, among which the influence of culture conditions on allergen contents. However, molecular cloning techniques have allowed us to isolate DNAs coding for fungal allergens and to produce a continuously growing panel of recombinant allergens for the diagnosis of fungal allergy. Moreover, technologies are now available for the preparation of recombinant and synthetic fungal allergen derivatives which can be used to develop safe vaccines for the treatment of fungal allergy.
Collapse
Affiliation(s)
- Teresa E Twaroch
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ines Swoboda
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.; The Molecular Biotechnology Section, University of Applied Sciences, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
10
|
Raulf M, Buters J, Chapman M, Cecchi L, de Blay F, Doekes G, Eduard W, Heederik D, Jeebhay MF, Kespohl S, Krop E, Moscato G, Pala G, Quirce S, Sander I, Schlünssen V, Sigsgaard T, Walusiak-Skorupa J, Wiszniewska M, Wouters IM, Annesi-Maesano I. Monitoring of occupational and environmental aeroallergens-- EAACI Position Paper. Concerted action of the EAACI IG Occupational Allergy and Aerobiology & Air Pollution. Allergy 2014; 69:1280-99. [PMID: 24894737 DOI: 10.1111/all.12456] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
Exposure to high molecular weight sensitizers of biological origin is an important risk factor for the development of asthma and rhinitis. Most of the causal allergens have been defined based on their reactivity with IgE antibodies, and in many cases, the molecular structure and function of the allergens have been established. Significant information on allergen levels that cause sensitization and allergic symptoms for several major environmental and occupational allergens has been reported. Monitoring of high molecular weight allergens and allergen carrier particles is an important part of the management of allergic respiratory diseases and requires standardized allergen assessment methods for occupational and environmental (indoor and outdoor) allergen exposure. The aim of this EAACI task force was to review the essential points for monitoring environmental and occupational allergen exposure including sampling strategies and methods, processing of dust samples, allergen analysis, and quantification. The paper includes a summary of different methods for sampling and allergen quantification, as well as their pros and cons for various exposure settings. Recommendations are being made for different exposure scenarios.
Collapse
Affiliation(s)
- M. Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance; Ruhr-Universität Bochum (IPA); Bochum Germany
| | - J. Buters
- ZAUM- Center of Allergy & Environment; Helmholtz Zentrum München/Technical Universität München; Christine Kühne Center for Allergy Research and Education (CK-CARE); Member of the German Center of Lung Research (DZL); Munich Germany
| | | | - L. Cecchi
- Interdepartmental Centre of Bioclimatology; University of Florence; Allergy and Clinical Immunology Section; Azienda Sanitaria di Prato; Prato Italy
| | - F. de Blay
- Department of Chest Diseases; University Hospital Strasbourg; Strasbourg France
| | - G. Doekes
- Division of Environmental Epidemiology; Institute for Risk Assessment Sciences (IRAS); Utrecht University; Utrecht the Netherlands
| | - W. Eduard
- Department of Chemical and Biological Work Environment/National Institute of Occupational Health; Institute of Medical Biology; University in Tromsø; Tromsø Norway
| | - D. Heederik
- Division of Environmental Epidemiology; Institute for Risk Assessment Sciences (IRAS); Utrecht University; Utrecht the Netherlands
| | - M. F. Jeebhay
- Centre for Occupational and Environmental Health Research; School of Public Health and Family Medicine, University of Cape Town; Cape Town South Africa
| | - S. Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance; Ruhr-Universität Bochum (IPA); Bochum Germany
| | - E. Krop
- Division of Environmental Epidemiology; Institute for Risk Assessment Sciences (IRAS); Utrecht University; Utrecht the Netherlands
| | - G. Moscato
- Department of Public Health; Experimental and Forensic Medicine of the University of Pavia; Pavia Italy
| | - G. Pala
- Occupational Physician's Division; Local Health Authority of Sassari; Sassari Italy
| | - S. Quirce
- Department of Allergy; Hospital La Paz Institute for Health Research (IdiPAZ) and CIBER of Respiratory Diseases CIBERES; Madrid Spain
| | - I. Sander
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance; Ruhr-Universität Bochum (IPA); Bochum Germany
| | - V. Schlünssen
- Department of Public Health; Section for Environment; Occupation and Health; Aarhus University; Aarhus Denmark
| | - T. Sigsgaard
- Department of Public Health; Section for Environment; Occupation and Health; Aarhus University; Aarhus Denmark
| | | | | | - I. M. Wouters
- Division of Environmental Epidemiology; Institute for Risk Assessment Sciences (IRAS); Utrecht University; Utrecht the Netherlands
| | - I. Annesi-Maesano
- INSERM; Equipe Epidémiologie des allergies et des maladies respiratorires UMR-S 707; Paris France
- EPAR; Faculté de Médecine Saint-Antoine; UPMC; Paris France
| | | |
Collapse
|
11
|
Rivera-Mariani FE, Nazario-Jiménez S, López-Malpica F, Bolaños-Rosero B. Sensitization to airborne ascospores, basidiospores, and fungal fragments in allergic rhinitis and asthmatic subjects in San Juan, Puerto Rico. Int Arch Allergy Immunol 2011; 155:322-34. [PMID: 21346362 DOI: 10.1159/000321610] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fungal spores are the predominant biological particulate in the atmosphere of Puerto Rico, yet their potential as allergens has not been studied in subjects with respiratory allergies. The purpose of this study was to determine the level of sensitization of subjects with respiratory allergies to these particles. METHODS Serum samples were drawn from 33 subjects with asthma, allergic rhinitis, or nonallergic rhinitis and 2 controls with different skin prick test reactivity. An MK-3 sampler was used to collect air samples and the reactivity of the sera to fungal particles was detected with a halogen immunoassay. RESULTS All subjects reacted to at least 1 fungal particle. Thirty-one subjects reacted to ascospores, 29 to basidiospores, 19 to hyphae/fungal fragments, and 12 to mitospores. The median percentage of haloes in allergic rhinitis subjects was 4.82% while asthma or nonallergic rhinitis subjects had values of 1.09 and 0.39%, respectively. Subjects with skin prick tests positive to 3, 2, 1, or no extract had 5.24, 1.09, 1.61, and, 0.57% of haloed particles, respectively. If skin prick tests were positive to basidiomycetes, pollen, animals, or deuteromycetes, the percentages of haloes were 4.72, 4.15, 3.63, and 3.31%, respectively. Of all haloed particles, 46% were unidentified, 25% ascospores, 20% basidiospores, 7% hyphae/fungal fragments, and 2% mitospores. IgE levels and the number of positive skin prick test extracts correlated with the percentage of haloes. CONCLUSION In tropical environments, sensitization to airborne basidiomycetes, ascomycetes, and fungal fragments seems to be more prevalent than sensitization to mitospores in subjects with active allergies, suggesting a possible role in exacerbations of respiratory allergies.
Collapse
Affiliation(s)
- Félix E Rivera-Mariani
- Department of Microbiology, School of Medicine, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | | |
Collapse
|
12
|
Green BJ, Tovey ER, Beezhold DH, Perzanowski MS, Acosta LM, Divjan AI, Chew GL. Surveillance of Fungal Allergic Sensitization Using the Fluorescent Halogen Immunoassay. J Mycol Med 2009; 19:253-261. [PMID: 20495612 PMCID: PMC2872482 DOI: 10.1016/j.mycmed.2009.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE: Conidia derived from a small number of common fungal genera are widely accepted as the etiological agents responsible for fungal allergic sensitization. The contribution of fungal conidia, spores, airborne hyphae, and subcellular fragments from other uncharacterized fungal genera remains unclear. In this proof-of-concept study, we examined the composition of mycoaerosols that atopic women were exposed and sensitized to in their own indoor environment using the fluorescent halogen immunoassay (fHIA). PATIENTS AND METHODS: Mycoaerosols were collected onto mixed cellulose ester protein binding membranes (PBMs) for 30 minutes with volumetric air sampling pumps. The PBMs were laminated with an adhesive cover slip and indirectly immunostained with individual patient serum IgE using the fHIA. Samples were examined using confocal laser scanning microscopy and immunostained particles were expressed as a percentage of total particles. RESULTS: All air samples contained a broad spectrum of fungal spores, conidia, hyphae, and other fungal particulates. Airborne concentrations varied between individual study participant environments. Positively immunostained conidia belonging to moniliaceous amerospores, Cladosporium, Alternaria, and many unknown species were observed in the majority of air samples. Other fungal genera including Bipolaris, Curvularia, Pithomyces, and Stachybotrys, in addition to, ascospore genera and dematiaceous hyphal fragments released detectable allergen. Twelve percent of all fHIA haloes quantified in the analysis were directed towards fungal particles. No immunostaining was detected to conidia belonging to Epicoccum, Fusarium, and Spegazzinia species. CONCLUSION: In addition to characterized fungal aeroallergens, we observed a wider composition of fungi that bound human IgE. Field surveillance studies that utilize immunodiagnostic techniques such as the fHIA will provide further insight into the diversity of fungi that function as aeroallergen sources in individual study participant environments.
Collapse
Affiliation(s)
- Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, U.S.A
| | - Euan R. Tovey
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Donald H. Beezhold
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, U.S.A
| | | | - Luis M. Acosta
- Mailman School of Public Health, Columbia University, New York, NY, U.S.A
| | - Adnan I. Divjan
- Mailman School of Public Health, Columbia University, New York, NY, U.S.A
| | - Ginger L. Chew
- Mailman School of Public Health, Columbia University, New York, NY, U.S.A
| |
Collapse
|
13
|
Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne fungal fragments and allergenicity. Med Mycol 2007; 44 Suppl 1:S245-55. [PMID: 17050446 DOI: 10.1080/13693780600776308] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Exposure to fungi, particularly in water damaged indoor environments, has been thought to exacerbate a number of adverse health effects, ranging from subjective symptoms such as fatigue, cognitive difficulties or memory loss to more definable diseases such as allergy, asthma and hypersensitivity pneumonitis. Understanding the role of fungal exposure in these environments has been limited by methodological difficulties in enumerating and identifying various fungal components in environmental samples. Consequently, data on personal exposure and sensitization to fungal allergens are mainly based on the assessment of a few select and easily identifiable species. The contribution of other airborne spores, hyphae and fungal fragments to exposure and allergic sensitization are poorly characterized. There is increased interest in the role of aerosolized fungal fragments following reports that the combination of hyphal fragments and spore counts improved the association with asthma severity. These fragments are particles derived from any intracellular or extracellular fungal structure and are categorized as either submicron particles or larger fungal fragments. In vitro studies have shown that submicron particles of several fungal species are aerosolized in much higher concentrations (300-500 times) than spores, and that respiratory deposition models suggest that such fragments of Stachybotrys chartarum may be deposited in 230-250 fold higher numbers than spores. The practical implications of these models are yet to be clarified for human exposure assessments and clinical disease. We have developed innovative immunodetection techniques to determine the extent to which larger fungal fragments, including hyphae and fractured conidia, function as aeroallergen sources. These techniques were based on the Halogen Immunoassay (HIA), an immunostaining technique that detects antigens associated with individual airborne particles >1 microm, with human serum immunoglobulin E (IgE). Our studies demonstrated that the numbers of total airborne hyphae were often significantly higher in concentration than conidia of individual allergenic genera. Approximately 25% of all hyphal fragments expressed detectable allergen and the resultant localization of IgE immunostaining was heterogeneous among the hyphae. Furthermore, conidia of ten genera that were previously uncharacterized could be identified as sources of allergens. These findings highlight the contribution of larger fungal fragments as aeroallergen sources and present a new paradigm of fungal exposure. Direct evidence of the associations between fungal fragments and building-related disease is lacking and in order to gain a better understanding, it will be necessary to develop diagnostic reagents and detection methods, particularly for submicron particles. Assays using monoclonal antibodies enable the measurement of individual antigens but interpretation can be confounded by cross-reactivity between fungal species. The recent development of species-specific monoclonal antibodies, used in combination with a fluorescent-confocal HIA technique should, for the first time, enable the speciation of morphologically indiscernible fungal fragments. The application of this novel method will help to characterize the contribution of fungal fragments to adverse health effects due to fungi and provide patient-specific exposure and sensitization profiles.
Collapse
Affiliation(s)
- Brett J Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505-2888, USA.
| | | | | | | | | | | |
Collapse
|