1
|
Rahaman SH, Bodhak S, Balla VK, Bhattacharya D. Role of in-situ electrical stimulation on early-stage mineralization and in-vitro osteogenesis of electroactive bioactive glass composites. BIOMATERIALS ADVANCES 2025; 166:214062. [PMID: 39406157 DOI: 10.1016/j.bioadv.2024.214062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/13/2024]
Abstract
Bioactive glass (BAG) has emerged as an effective bone graft substitute due to its diverse qualities of biocompatibility, bioactivity, osteoblast adhesion and enhanced revascularization. However, inferior osteogenic capacity of BAG compared to autologous bone grafts continues to limiting it's wide-spread clinical applications towards repairing of bone fractures and healing. In this study, we have fabricated BAG composites with 0.5 to 2 wt% bismuth ferrite (BF, a multiferroic material) with an aim to generate in-situ electrical charges pertinent to early-stage bone regeneration thus mimicking natural bone, which is a piezoelectric material. The fabricated BAG composites were characterised in terms of microstructures, phase analysis, remanent polarization, wettability and subsequently evaluated for in vitro cell proliferation and osteogenesis with and without magnetic field exposure (200 mT, 30 min./day). Pre-osteoblast cells from mice (MC3T3-E1) seeded on these composites exhibited excellent cell growth without any cytotoxicity, which is further supported by FITC/DAPI staining and a live/dead assay. The results of Alizarin Red S assay and increased levels of Alkaline Phosphatase (ALP) activity, at 21 days of culture, suggest that the BAG-BF composites promote in vitro osteogenic differentiation of pre-osteoblast cells. The enhanced osteogenesis of BAG-BF composites was also confirmed through qRT-PCR analysis, which showed rapid upregulation of osteoblastogenic specific genes namely RunX-2, Collagen-1, Bone Sialo Protein, and ALP after 21 days. Additionally, the osteogenic differentiation was assessed by the Western Blot technique, which revealed significantly higher band intensity of osteogenic markers in BAG-1.5 BF and BAG-2 BF composites than pure BAG. These findings clearly demonstrate that in-situ electrical stimulation and osteoconductive capacity of BF reinforced BAG composites have positive impact on osteoblast cell development, bone formation, and healing.
Collapse
Affiliation(s)
- Sk Hasanur Rahaman
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Bodhak
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vamsi Krishna Balla
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dipten Bhattacharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
2
|
Knill C, Henderson EJ, Johnson C, Wah VY, Cheng K, Forster AJ, Itasaki N. Defects of the spliceosomal gene SNRPB affect osteo- and chondro-differentiation. FEBS J 2024; 291:272-291. [PMID: 37584444 DOI: 10.1111/febs.16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
Although gene splicing occurs throughout the body, the phenotype of spliceosomal defects is largely limited to specific tissues. Cerebro-costo-mandibular syndrome (CCMS) is one such spliceosomal disease, which presents as congenital skeletal dysmorphism and is caused by mutations of SNRPB gene encoding Small Nuclear Ribonucleoprotein Polypeptides B/B' (SmB/B'). This study employed in vitro cell cultures to monitor osteo- and chondro-differentiation and examined the role of SmB/B' in the differentiation process. We found that low levels of SmB/B' by knockdown or mutations of SNRPB led to suppressed osteodifferentiation in Saos-2 osteoprogenitor-like cells, which was accompanied by affected splicing of Dlx5. On the other hand, low SmB/B' led to promoted chondrogenesis in HEPM mesenchymal stem cells. Consistent with other reports, osteogenesis was promoted by the Wnt/β-catenin pathway activator and suppressed by Wnt and BMP blockers, whereas chondrogenesis was promoted by Wnt inhibitors. Suppressed osteogenic markers by SNRPB knockdown were partly rescued by Wnt/β-catenin pathway activation. Reporter analysis revealed that suppression of SNRPB results in attenuated Wnt pathway and/or enhanced BMP pathway activities. SNRPB knockdown altered splicing of TCF7L2 which impacts Wnt/β-catenin pathway activities. This work helps unravel the mechanism underlying CCMS whereby reduced expression of spliceosomal proteins causes skeletal phenotypes.
Collapse
Affiliation(s)
- Chris Knill
- Faculty of Life Sciences, University of Bristol, UK
| | | | - Craig Johnson
- Faculty of Health Sciences, University of Bristol, UK
| | - Vun Yee Wah
- Faculty of Life Sciences, University of Bristol, UK
| | - Kevin Cheng
- Faculty of Life Sciences, University of Bristol, UK
| | | | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, UK
| |
Collapse
|
3
|
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S, Ai J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:870-885. [PMID: 36373108 PMCID: PMC9638231 DOI: 10.1007/s10924-022-02615-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Bahçeşehir University, Istanbul, Turkey
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Moradpanah
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tang C, Liang D, Qiu Y, Zhu J, Tang G. Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Mol Med Rep 2022; 25:132. [PMID: 35179221 PMCID: PMC8867465 DOI: 10.3892/mmr.2022.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis is a bone-related disease that results from impaired bone formation and excessive bone resorption. The potential value of adipokines has been investigated previously, due to their influence on osteogenesis. However, the osteogenic effects induced by omentin-1 remain unclear. The aim of the present study was to determine the regulatory effects of omentin-1 on osteoblast viability and differentiation, as well as to explore the underlying molecular mechanism. The present study investigated the effects of omentin-1 on the viability and differentiation of mouse pre-osteoblast cells (MC3T3-E1) using quantitative and qualitative measures. A Cell Counting Kit-8 assay was used to assess the viability of MC3T3-E1 cells following treatment with different doses of omentin-1. Omentin-1 and bone morphogenetic protein (BMP) inhibitor were added to osteogenic induction mediums in different ways to assess their effect. The alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining of MC3T3-E1 cells treated with omentin-1 and/or BMP inhibitor were used to examine the effects of omentin-1 on differentiation and mineralization. Western blotting was used to further explore its potential mechanism, and to study the role of omentin-1 on the viability and differentiation of osteoblasts. The results showed that omentin-1 altered the viability of MC3T3-E1 cells in a dose-dependent manner. Omentin-1 treatment significantly increased the expression of members of the TGF-β/Smad signaling pathway. In the omentin-1 group, the ALP activity of the MC3T3-E1 cells was increased, and the ARS staining area was also increased. The mRNA and protein expression levels of BMP2, Runt-related transcription factor 2, collagen1, osteopontin, osteocalcin and osterix in the omentin-1 group were also significantly upregulated. All these effects were reversed following treatment with SIS3 HCl. These results demonstrated that omentin-1 can significantly promote osteoblast viability and differentiation via the TGF-β/Smad signaling pathway, thereby promoting bone formation and preventing osteoporosis.
Collapse
Affiliation(s)
- Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Dengpan Liang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jingqi Zhu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guangyu Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
5
|
Wu GJ, Chen JT, Lin PI, Cherng YG, Yang ST, Chen RM. Inhibition of the estrogen receptor alpha signaling delays bone regeneration and alters osteoblast maturation, energy metabolism, and angiogenesis. Life Sci 2020; 258:118195. [PMID: 32781073 DOI: 10.1016/j.lfs.2020.118195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023]
Abstract
AIMS The estrogen-ERα axis participates in osteoblast maturation. This study was designed to further evaluated the roles of the estrogen-ERα axis in bone healing and the possible mechanisms. MAIN METHODS Female ICR mice were created a metaphyseal bone defect in the left femurs and administered with methylpiperidinopyrazole (MPP), an inhibitor of ERα. Bone healing was evaluated using micro-computed tomography. Colocalization of ERα with alkaline phosphatase (ALP) and ERα translocation to mitochondria were determined. Levels of ERα, ERβ, PECAM-1, VEGF, and β-actin were immunodetected. Expression of chromosomal Runx2, ALP, and osteocalcin mRNAs and mitochondrial cytochrome c oxidase (COX) I and COXII mRNAs were quantified. Angiogenesis was measured with immunohistochemistry. KEY FINDINGS Following surgery, the bone mass was time-dependently augmented in the bone-defect area. Simultaneously, levels of ERα were specifically upregulated and positively correlated with bone healing. Administration of MPP to mice consistently decreased levels of ERα and bone healing. As to the mechanisms, osteogenesis was enhanced in bone healing, but MPP attenuated osteoblast maturation. In parallel, expressions of osteogenesis-related ALP, Runx2, and osteocalcin mRNAs were induced in the injured zone. Treatment with MPP led to significant inhibition of the alp, runx2, and osteocalcin gene expressions. Remarkably, administration of MPP lessened translocation of ERα to mitochondria and expressions of mitochondrial energy production-related coxI and coxII genes. Furthermore, exposure to MPP decreased levels of PECAM-1 and VEGF in the bone-defect area. SIGNIFICANCE The present study showed the contributions of the estrogen-ERα axis to bone healing through stimulation of energy production, osteoblast maturation, and angiogenesis.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Tai Yang
- Department of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Caiado H, Conceição N, Tiago D, Marreiros A, Vicente S, Enriquez JL, Vaz AM, Antunes A, Guerreiro H, Caldeira P, Cancela ML. Evaluation of MGP gene expression in colorectal cancer. Gene 2020; 723:144120. [PMID: 31589964 DOI: 10.1016/j.gene.2019.144120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE Matrix Gla protein (MGP) is a vitamin K-dependent, γ-carboxylated protein that was initially found to be a physiological inhibitor of ectopic calcifications affecting mainly cartilage and the vascular system. Mutations in the MGP gene were found to be responsible for a human pathology, the Keutel syndrome, characterized by abnormal calcifications in cartilage, lungs, brain and vascular system. MGP was recently implicated in tumorigenic processes such as angiogenesis and shown to be abnormally regulated in several tumors, including cervical, ovarian, urogenital and breast. This fact has triggered our interest in analyzing the expression of MGP and of its regulator, the transcription factor runt related transcription factor 2 (RUNX2), in colorectal cancer (CRC). METHODS MGP and RUNX2 expression were analyzed in cancer and non-tumor biopsies samples from 33 CRC patients and 9 healthy controls by RT-qPCR. Consequently, statistical analyses were performed to evaluate the clinical-pathological significance of MGP and RUNX2 in CRC. MGP protein was also detected by immunohistochemical analysis. RESULTS Showed an overall overexpression of MGP in the tumor mucosa of patients at mRNA level when compared to adjacent normal mucosa and healthy control tissues. In addition, analysis of the expression of RUNX2 mRNA demonstrated an overexpression in CRC tissue samples and a positive correlation with MGP expression (Pearson correlation coefficient 0.636; p ≤ 0.01) in tumor mucosa. However correlations between MGP gene expression and clinical-pathological characteristics, such as gender, age and pathology classification did not provide relevant information that may shed light towards the differences of MGP expression observed between normal and malignant tissue. CONCLUSIONS We were able to associate the high levels of MGP mRNA expression with a worse prognosis and survival rate lower than five years. These results contributed to improve our understanding of the molecular mechanism underlying MGP deregulation in cancer.
Collapse
Affiliation(s)
- Helena Caiado
- ProRegeM PhD Programme in Mechanisms of Disease and Regenerative Medicine, University of Algarve, Faro 8005-139, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal; Algarve Biomedical Center, University of Algarve, Faro 8005-139, Portugal.
| | - Daniel Tiago
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| | - Ana Marreiros
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal; Algarve Biomedical Center, University of Algarve, Faro 8005-139, Portugal
| | - Susana Vicente
- Pathology Department, University Hospital of Algarve, Faro 8000-386, Portugal
| | - Jose Luis Enriquez
- Pathology Department, University Hospital of Algarve, Faro 8000-386, Portugal
| | - Ana Margarida Vaz
- Gastroenterology Department, University Hospital of Algarve, Faro 8000-386, Portugal
| | - Artur Antunes
- Gastroenterology Department, University Hospital of Algarve, Faro 8000-386, Portugal
| | - Horácio Guerreiro
- Gastroenterology Department, University Hospital of Algarve, Faro 8000-386, Portugal
| | - Paulo Caldeira
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal; Gastroenterology Department, University Hospital of Algarve, Faro 8000-386, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal; Algarve Biomedical Center, University of Algarve, Faro 8005-139, Portugal; Centre for Biomedical Research, University of Algarve, Faro 8005-139, Portugal.
| |
Collapse
|
7
|
Liu Z, Yu Z, Chang H, Wang Y, Xiang H, Zhang X, Yu B. Strontium‑containing α‑calcium sulfate hemihydrate promotes bone repair via the TGF‑β/Smad signaling pathway. Mol Med Rep 2019; 20:3555-3564. [PMID: 31432182 PMCID: PMC6755234 DOI: 10.3892/mmr.2019.10592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/09/2019] [Indexed: 11/16/2022] Open
Abstract
Calcium phosphate-based bone substitutes have been widely used for bone repair, augmentation and reconstruction in bone implant surgery. While some of these substitutes have shown excellent biological efficacy, there remains a need to improve the performance of the current calcium phosphate-based bone substitutes. Strontium ions (Sr) can promote new osteogenesis, inhibit osteoclast formation and increase osteoconductivity. However, the therapeutic effect and mechanism of strontium-containing α-calcium sulfate hemihydrate (Sr-CaS) remains unclear. The present study created bone injuries in rats and treated the injuries with Sr-CaS. Then Cell Counting Kit-8, soft agar colony formation, flow cytometry, Transwell and Alizarin Red staining assays were performed to assess the bone cells for their proliferation, growth, apoptosis, invasion, and osteogenic differentiation abilities. The bone reconstructive states were measured by the microCT method, hematoxylin and eosin staining and Masson staining. Bone-related factors were analyzed by the reverse transcription-quantitative PCR assay; transforming growth factor (TGF)-β, mothers against decapentaplegic homolog (Smad)2/3 and β-catenin expression was measured by western blot analysis and osteocalcin (OCN) expression was assessed by immunohistochemistry. Sr-CaS did not significantly affect the proliferation and apoptosis of bone marrow stem cells (BMSCs), but did accelerate the migration and osteogenic differentiation of BMSCs in vitro. Sr-CaS promoted bone repair and significantly increased the values for bone mineral density, bone volume fraction, and trabecular thickness, but decreased trabecular spacing in vivo in a concentration-dependent manner. In addition, Sr-CaS dramatically upregulated the expression levels of genes associated with osteogenic differentiation (Runt-related transcription factor 2, Osterix, ALP, OCN and bone sialoprotein) both in vitro and in vivo. Sr-CaS also increased Smad2/3, TGF-β and phosphorylated-β-catenin protein expression in vitro and in vivo. These results indicated that materials that contain 5 or 10% Sr can improve bone defects by regulating the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zewei Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong Chang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haibo Xiang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xianrong Zhang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Arriaga MA, Ding MH, Gutierrez AS, Chew SA. The Application of microRNAs in Biomaterial Scaffold-Based Therapies for Bone Tissue Engineering. Biotechnol J 2019; 14:e1900084. [PMID: 31166084 DOI: 10.1002/biot.201900084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the application of microRNAs (miRNAs) or anti-microRNAs (anti-miRNAs) that can induce expression of the runt-related transcription factor 2 (RUNX2), a master regulator of osteogenesis, has been investigated as a promising alternative bone tissue engineering strategy. In this review, biomaterial scaffold-based applications that have been used to deliver cells expressing miRNAs or anti-miRNAs that induce expression of RUNX2 for bone tissue engineering are discussed. An overview of the components of the scaffold-based therapies including the miRNAs/anti-miRNAs, cell types, gene delivery vectors, and scaffolds that have been applied are provided. To date, there have been nine miRNAs/anti-miRNAs (i.e., miRNA-26a, anti-miRNA-31, anti-miRNA-34a, miRNA-135, anti-miRNA-138, anti-miRNA-146a, miRNA-148b, anti-miRNA-221, and anti-miRNA-335) that have been incorporated into scaffold-based bone tissue engineering applications and investigated in an in vivo bone critical-sized defect model. For all of the biomaterial scaffold-based miRNA therapies that have been developed thus far, cells that are transfected or transduced with the miRNA/anti-miRNA are loaded into the scaffolds and implanted at the site of interest instead of locally delivering the miRNA/anti-miRNAs directly from the scaffolds. Thus, future work may focus on developing biomaterial scaffolds to deliver miRNAs or anti-miRNAs into cells in vivo.
Collapse
Affiliation(s)
- Marco A Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Astrid S Gutierrez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| |
Collapse
|
9
|
Wang H, Zhao B, Liu C, Wang C, Tan X, Hu M. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting. PLoS One 2016; 11:e0158513. [PMID: 27391895 PMCID: PMC4938601 DOI: 10.1371/journal.pone.0158513] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022] Open
Abstract
Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey’s multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.
Collapse
Affiliation(s)
- Hong Wang
- Department of Stomatology, General Hospital of the People’s Libration Army, Beijing, China
- Department of Stomatology, the Second Affiliated Stomatological Hospital of Liaoning Medical University, Jinzhou, China
| | - Bingjing Zhao
- Department of Stomatology, General Hospital of the People’s Libration Army, Beijing, China
- Department of Stomatology, the Second Affiliated Stomatological Hospital of Liaoning Medical University, Jinzhou, China
| | - Changkui Liu
- Department of Stomatology, the 451th Hospital of the People’s Libration Army, Xi’an, China
| | - Chao Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Xinying Tan
- Department of Stomatology, the 304th Hospital of the People’s Libration Army, Beijing, China
| | - Min Hu
- Department of Stomatology, General Hospital of the People’s Libration Army, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Ho MH, Yao CJ, Liao MH, Lin PI, Liu SH, Chen RM. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Int J Nanomedicine 2015; 10:5941-54. [PMID: 26451104 PMCID: PMC4590342 DOI: 10.2147/ijn.s90669] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline phosphatase and osteocalcin gene expressions. Our results suggest the potential of chitosan nanofiber scaffolds for therapy of bone diseases, including bone defects and bone fractures.
Collapse
Affiliation(s)
- Ming-Hua Ho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan ; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan ; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan ; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Othman SF, Wartella K, Sharghi VK, Xu H. The e-incubator: a magnetic resonance imaging-compatible mini incubator. Tissue Eng Part C Methods 2014; 21:347-55. [PMID: 25190214 DOI: 10.1089/ten.tec.2014.0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tissue engineering community has been vocal regarding the need for noninvasive instruments to assess the development of tissue-engineered constructs. Medical imaging has helped fulfill this role. However, specimens allocated to a test tube for imaging cannot be tested for a prolonged period or returned to the incubator. Therefore, samples are essentially wasted due to potential contamination and transfer in a less than optimal growth environment. In turn, we present a standalone, miniature, magnetic resonance imaging-compatible incubator, termed the e-incubator. This incubator uses a microcontroller unit to automatically sense and regulate physiological conditions for tissue culture, thus allowing for concurrent tissue culture and evaluation. The e-incubator also offers an innovative scheme to study underlying mechanisms related to the structural and functional evolution of tissues. Importantly, it offers a key step toward enabling real-time testing of engineered tissues before human transplantation. For validation purposes, we cultured tissue-engineered bone constructs for 4 weeks to test the e-incubator. Importantly, this technology allows for visualizing the evolution of temporal and spatial morphogenesis. In turn, the e-incubator can filter deficient constructs, thereby increasing the success rate of implantation of tissue-engineered constructs, especially as construct design grows in levels of complexity to match the geometry and function of patients' unique needs.
Collapse
Affiliation(s)
- Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska
| | | | | | | |
Collapse
|
12
|
Abdelmagid SM, Belcher JY, Moussa FM, Lababidi SL, Sondag GR, Novak KM, Sanyurah AS, Frara NA, Razmpour R, Del Carpio-Cano FE, Safadi FF. Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:697-713. [PMID: 24462663 DOI: 10.1016/j.ajpath.2013.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 11/25/2022]
Abstract
We have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb(+)/SjJ (D2J/Gpnmb(+))]. Serum analysis showed decreases in OA and the bone-formation markers alkaline phosphatase and osteocalcin in D2J mice. Although D2J mice showed decreased osteoid and mineralization surfaces, their osteoblasts were increased in number, compared to D2J/Gpnmb(+) mice. We then examined the ability of D2J osteoblasts to differentiate in culture, where their differentiation and function were decreased, as evidenced by low alkaline phosphatase activity and matrix mineralization. Quantitative RT-PCR analyses confirmed the decreased expression of differentiation markers in D2J osteoblasts. In vitro, D2J osteoblasts proliferated and survived significantly less, compared to D2J/Gpnmb(+) osteoblasts. Next, we investigated whether mutant OA protein induces endoplasmic reticulum stress in D2J osteoblasts. Neither endoplasmic reticulum stress markers nor endoplasmic reticulum ultrastructure were altered in D2J osteoblasts. Finally, we assessed underlying mechanisms that might alter proliferation of D2J osteoblasts. Interestingly, TGF-β receptors and Smad-2/3 phosphorylation were up-regulated in D2J osteoblasts, suggesting that OA contributes to TGF-β signaling. These data confirm the anabolic role of OA in postnatal bone formation.
Collapse
Affiliation(s)
- Samir M Abdelmagid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio
| | - Joyce Y Belcher
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio
| | - Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Suzanne L Lababidi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio
| | - Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Kimberly M Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio
| | - Afif S Sanyurah
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Nagat A Frara
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Roshanak Razmpour
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Fabiola E Del Carpio-Cano
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio.
| |
Collapse
|
13
|
Kirkham GR, Lovrics A, Byrne HM, Jensen OE, King JR, Shakesheff KM, Buttery LDK. Early gene regulation of osteogenesis in embryonic stem cells. Integr Biol (Camb) 2012; 4:1470-7. [PMID: 23042286 DOI: 10.1039/c2ib20164j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The early gene regulatory networks (GRNs) that mediate stem cell differentiation are complex, and the underlying regulatory associations can be difficult to map accurately. In this study, the expression profiles of the genes Dlx5, Msx2 and Runx2 in mouse embryonic stem cells were monitored over a 48 hour period after exposure to the growth factors BMP2 and TGFβ1. Candidate GRNs of early osteogenesis were constructed based on published experimental findings and simulation results of Boolean and ordinary differential equation models were compared with our experimental data in order to test the validity of these models. Three gene regulatory networks were found to be consistent with the data, one of these networks exhibited sustained oscillation, a behaviour which is consistent with the general view of embryonic stem cell plasticity. The work cycle presented in this paper illustrates how mathematical modelling can be used to elucidate from gene expression profiles GRNs that are consistent with experimental data.
Collapse
Affiliation(s)
- Glen R Kirkham
- Centre for Biomolecular Sciences, University Park, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Fazenda C, Simões B, Kelsh RN, Cancela ML, Conceição N. Dual transcriptional regulation by runx2 of matrix Gla protein in Xenopus laevis. Gene 2010; 450:94-102. [PMID: 19896523 DOI: 10.1016/j.gene.2009.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 11/25/2022]
Abstract
Matrix Gla protein (MGP) is an extracellular mineral-binding protein expressed in several tissues but it only accumulates in bone and calcified cartilage under physiological conditions. Available evidence indicates that it acts as a physiological inhibitor of mineralization. Runx2 is a transcription factor essential for bone formation in mammals, affecting osteoblast and chondrocyte differentiation by regulating key genes crucial for bone and cartilage development. Being an important cartilage-associated gene, MGP is a potential target for Runx2, and thus we have investigated the possible functional interactions between them. In A6 cells, Runx2 was found to modulate MGP transcription and deletion analysis of MGP distal and proximal promoter-luciferase constructs identified cis-regulatory regions. Interestingly, we have also identified a runx2-binding site that mediates transcriptional repression of XlMGP. Mutation of this element, located between -54 and +33 bp, results in 18-fold up-regulation of transcription. Furthermore, and in addition to the previously reported Xlrunx2 types I and II, we have identified three transcripts encoding novel, truncated Xlrunx2 isoforms. Although only type I and type II could transactivate XlMGP, the truncated isoforms identified in this study, which result from alternative splicing, could be involved in negative regulation of MGP expression, as described for other RUNX2 truncated isoforms acting in other target genes. In vivo microinjection of XlMGP promoter constructs and runx2 mRNA confirmed that those promoters are targets for this transcription factor. These data also indicate that MGP is under dual regulation by runx2 through the use of various isoforms and context-dependent formation of transcriptional complexes.
Collapse
Affiliation(s)
- Cindy Fazenda
- University of Algarve, CCMAR, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
15
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2008; 2:1-13. [PMID: 18293427 DOI: 10.1002/term.63] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Discovered in 1965, bone morphogenetic proteins (BMPs) are a group of cytokines from the transforming growth factor-beta (TGFbeta) superfamily with significant roles in bone and cartilage formation. BMPs are used as powerful osteoinductive components of diverse tissue-engineering products for the healing of bone. Several BMPs with different physiological roles have been identified in humans. The purpose of this review is to cover the biological function of the main members of BMP family, the latest research on BMPs signalling pathways and advances in the production of recombinant BMPs for tissue engineering purposes.
Collapse
Affiliation(s)
- P C Bessa
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
16
|
Shimada K, Suzuki N, Ono Y, Tanaka K, Maeno M, Ito K. Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells. Bone 2008; 42:886-93. [PMID: 18321803 DOI: 10.1016/j.bone.2008.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate within the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from human bone marrow to identify the proteins interacting with Smad4. Two full-length cDNA clones for Ubc9 were identified, and the potential functions of Ubc9 were investigated. To determine the role of Ubc9 in the BMP signaling pathway, the endogenous transcription of Ubc9 in the human osteoblast cell line Saos-2 was silenced using siRNA. The expression of BMP-induced transcription factors, including Runx2, Dlx5, Msx2, and Osterix, was examined using real-time reverse transcription polymerase chain reaction (qRT-PCR), and the protein expression of Smad4, Smad1, phosphorylated Smad1, and BMP type I receptors was determined by Western blotting. The subcellular localization of Smad1 and Smad4 was observed using immunofluorescence staining after Ubc9 silencing. To determine whether Smad4 is sumoylated in vitro, recombinant Smad4 was purified and sumoylated Smad4 was visualized using Western blotting. The mRNA expression of various transcription factors was markedly inhibited after Ubc9 silencing. The protein levels of Smad4 and phosphorylated Smad1 decreased in a dose-dependent manner according to the amount of siRNA applied. Gene silencing also decreased the nuclear accumulation of Smad1 and Smad4. The sumoylation assay showed that sumoylated Smad4 is present and dependent on Ubc9 in vitro, which was confirmed by pretreatment with Senp2, a SUMO-protease. These results suggest that Ubc9 promotes the stability of sumoylated Smad4. Furthermore, the expression of key transcription factors, phosphorylated Smad1 protein, and the nuclear accumulation of Smad1 and Smad4 are inhibited by Ubc9 silencing. Thus, Ubc9 plays an important role in the up-regulation of the BMP signaling pathway.
Collapse
Affiliation(s)
- Koichi Shimada
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Promotion by collagen tripeptide of type I collagen gene expression in human osteoblastic cells and fracture healing of rat femur. Biosci Biotechnol Biochem 2007; 71:2680-7. [PMID: 17986775 DOI: 10.1271/bbb.70287] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peptides produced by the enzymatic degradation of collagens are reported to have various activities of biological and medical interest. The mechanisms underlying their actions are, however, poorly understood. We have produced, by collagenase digestion of type I collagen, a highly purified, non-antigenic, and low allergenic tripeptide fraction (collagen tripeptide, Ctp). We report here the effects of Ctp on the in vivo bone fracture healing and in vitro calcification of osteoblastic cells. An oral administration of Ctp to rats with a femur fracture accelerated the fracture healing. Ctp apparently stimulated the calcification of human osteoblastic cells in culture. This osteotrophic effect was accompanied by a significant increase in type I collagen protein production and its mRNA levels. DNA microarray and quantitative RT-PCR analyses demonstrated that Ctp upregulated the bone-specific transcription factor, Osterix, suggesting that the induction of type I collagen gene expression by Ctp was mediated by upregulation of this factor.
Collapse
|
18
|
Lambertini E, Penolazzi L, Tavanti E, Schincaglia GP, Zennaro M, Gambari R, Piva R. Human estrogen receptor alpha gene is a target of Runx2 transcription factor in osteoblasts. Exp Cell Res 2007; 313:1548-60. [PMID: 17350616 DOI: 10.1016/j.yexcr.2007.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 01/29/2007] [Accepted: 02/01/2007] [Indexed: 11/18/2022]
Abstract
Several studies into the mechanisms involved in control of osteoblast-specific gene expression have identified Runx2 and ERalpha (estrogen receptor alpha) as essential regulators of osteoblast differentiation. Recently, interactions between Runx2 and ERalpha have been described. Here, we investigate the role of Runx2 on the regulation of ERalpha expression by determining its interaction with the F promoter, one of the multiple promoters of the human ERalpha gene and the only one active in bone. We found that, in this promoter, three Runx2-like sites are present. By electrophoretic mobility shift assay in combination with supershift and ChIP experiments, we demonstrated that Runx2 preferentially binds one of the Runx2 motifs of the F promoter. To understand whether or not they are involved in influencing F promoter activity, different promoter-reporter deletion and mutation constructs were transiently transfected into human osteoblastic cells. Comparison of luciferase activities allowed the identification of a prevalent negative role of a sequence context, within the -117,877/-117,426 region, which may be under the control of Runx2 (a) site. Finally, silencing and overexpression of endogenous Runx2 provided evidence that Runx2 has a more complex role than initially expected. In fact, Runx2 (a) and Runx2 (b) sites carried out opposite roles which are conditioned by Runx2 levels in bone cells. Therefore, the resulting F promoter activity may be tightly regulated by a dynamic interplay between these two Runx2 sites, with a predominance of negative effect of the Runx2 (a) site.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Biochemistry and Molecular Biology, Molecular Biology Section, Ferrara University, Via Fossato di Mortara, 74, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|