1
|
Mielecki D, Gajda E, Sikorska J, Betkowska A, Rozwadowski M, Gawel AM, Kulecka M, Zeber-Lubecka N, Godlewska M, Gawel D. Resolving the role of podoplanin in the motility of papillary thyroid carcinoma-derived cells using RNA sequencing. Comput Struct Biotechnol J 2023; 21:3810-3826. [PMID: 37560122 PMCID: PMC10407544 DOI: 10.1016/j.csbj.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
The intracellular level of podoplanin (PDPN), a transmembrane protein of still unclear function, is frequently altered in metastatic tumors. High expression of PDPN is frequently observed in papillary thyroid cancer (PTC) specimens. Similarly, PTC-derived cell lines (BCPAP and TPC1, harboring the BRAF V600E mutation and RET/PTC1 fusion, respectively), also present enhanced PDPN yield. We previously reported that depletion of PDPN impairs migration of TPC1 cells, but augments metastasis of BCPAP cells. Interestingly, this phenomenon stays in contrast to the migratory pattern observed for wild-type cells, where TPC1 exhibited higher motility than BCPAP cells. Here, we aimed to elucidate the potential role of PDPN in regulation of molecular mechanisms leading to the diverse metastatic features of the studied PTC-derived cells. We consider that this phenomenon may be caused by alternative regulation of signaling pathways due to the presence of the mutated BRAF allele or RET/PTC1 fusion. The high-throughput RNA sequencing (RNA-seq) technique was used to uncover the genes and signaling pathways affected in wild-type and PDPN-depleted TPC1 and BCPAP cells. We found that changes in the expression of various factors of signaling pathways, like RHOA and RAC1 GTPases and their regulators, are linked with both high PDPN levels and presence of the BRAF V600E mutation. We imply that the suppressed motility of wild-type BCPAP cells results from overactivation of RHOA through natively high PDPN expression. This process is accompanied by inhibition of the PI3K kinase and consequently RAC1, due to overactivation of RAS-mediated signaling and the PTEN regulator.
Collapse
Affiliation(s)
- Damian Mielecki
- Centre of Postgraduate Medical Education, Department of Cell Biology and Immunology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Ewa Gajda
- Centre of Postgraduate Medical Education, Department of Cell Biology and Immunology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Justyna Sikorska
- Centre of Postgraduate Medical Education, Department of Cell Biology and Immunology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Betkowska
- Centre of Postgraduate Medical Education, Department of Cell Biology and Immunology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marcin Rozwadowski
- Centre of Postgraduate Medical Education, Department of Cell Biology and Immunology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agata M. Gawel
- Medical University of Warsaw, Histology and Embryology Students Science Association at the Department for Histology and Embryology, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Maria Kulecka
- Centre of Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Centre of Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marlena Godlewska
- Centre of Postgraduate Medical Education, Department of Cell Biology and Immunology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Damian Gawel
- Centre of Postgraduate Medical Education, Department of Cell Biology and Immunology, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
2
|
Chan YT, Cheok YY, Cheong HC, Tan GMY, Seow SR, Tang TF, Sulaiman S, Looi CY, Gupta R, Arulanandam B, Wong WF. Influx of podoplanin-expressing inflammatory macrophages into the genital tract following Chlamydia infection. Immunol Cell Biol 2023; 101:305-320. [PMID: 36658328 DOI: 10.1111/imcb.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Genital Chlamydia trachomatis infection remains a major health issue as it causes severe complications including pelvic inflammatory disease, ectopic pregnancy and infertility in females as a result of infection-associated chronic inflammation. Podoplanin, a transmembrane receptor, has been previously reported on inflammatory macrophages. Thus, strategies that specifically target podoplanin might be able to reduce local inflammation. This study investigated the expression level and function of podoplanin in a C. trachomatis infection model. C57BL/6 mice infected with the mouse pathogen Chlamydia muridarum were examined intermittently from days 1 to 60 using flow cytometry analysis. Percentages of conventional macrophages (CD11b+ CD11c- F4/80+ ) versus inflammatory macrophages (CD11b+ CD11c+ F4/80+ ), and the expression of podoplanin in these cells were investigated. Subsequently, a podoplanin-knockout RAW264.7 cell was used to evaluate the function of podoplanin in C. trachomatis infection. Our findings demonstrated an increased CD11b+ cell volume in the spleen at day 9 after the infection, with augmented podoplanin expression, especially among the inflammatory macrophages. A large number of podoplanin-expressing macrophages were detected in the genital tract of C. muridarum-infected mice. Furthermore, analysis of the C. trachomatis-infected patients demonstrated a higher percentage of podoplanin-expressing monocytes than that in the noninfected controls. Using an in vitro infection in a transwell migration assay, we identified that macrophages deficient in podoplanin displayed defective migratory function toward C. trachomatis-infected HeLa 229 cells. Lastly, using immunoprecipitation-mass spectrometry method, we identified two potential podoplanin interacting proteins, namely, Cofilin 1 and Talin 1 actin-binding proteins. The present study reports a role of podoplanin in directing macrophage migration to the chlamydial infection site. Our results suggest a potential for reducing inflammation in individuals with chronic chlamydial infections by targeting podoplanin.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shi Rui Seow
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Rishein Gupta
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Bernard Arulanandam
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Retzbach EP, Sheehan SA, Krishnan H, Zheng H, Zhao C, Goldberg GS. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration. Mol Carcinog 2022; 61:677-689. [PMID: 35472679 PMCID: PMC9233000 DOI: 10.1002/mc.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.
Collapse
Affiliation(s)
- Edward P. Retzbach
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Stephanie A. Sheehan
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University Stony Brook, NY, 11794-8661, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Gary S. Goldberg
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
4
|
Receptor Activity Modifying Protein RAMP Sub-Isoforms and Their Functional Differentiation, Which Regulates Functional Diversity of Adrenomedullin. BIOLOGY 2022; 11:biology11050788. [PMID: 35625516 PMCID: PMC9138304 DOI: 10.3390/biology11050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
AM knockout (AM-/-) and RAMP2 knockout (RAMP2-/-) proved lethal for mice due to impaired embryonic vascular development. Although most vascular endothelial cell-specific RAMP2 knockout (E-RAMP2-/-) mice also died during the perinatal period, a few E-RAMP2-/- mice reached adulthood. Adult E-RAMP2-/- mice developed spontaneous organ damage associated with vascular injury. In contrast, adult RAMP3 knockout (RAMP3-/-) mice showed exacerbated postoperative lymphedema with abnormal lymphatic drainage. Thus, RAMP2 is essential for vascular development and homeostasis and RAMP3 is essential for lymphatic vessel function. Cardiac myocyte-specific RAMP2 knockout mice showed early onset of heart failure as well as abnormal mitochondrial morphology and function, whereas RAMP3-/- mice exhibited abnormal cardiac lymphatics and a delayed onset of heart failure. Thus, RAMP2 is essential for maintaining cardiac mitochondrial function, while RAMP3 is essential for cardiac lymphangiogenesis. Transplantation of cancer cells into drug-inducible vascular endothelial cell-specific RAMP2 knockout mice resulted in enhanced metastasis to distant organs, whereas metastasis was suppressed in RAMP3-/- mice. RAMP2 suppresses cancer metastasis by maintaining vascular homeostasis and inhibiting vascular inflammation and pre-metastatic niche formation, while RAMP3 promotes cancer metastasis via malignant transformation of cancer-associated fibroblasts. Focusing on the diverse physiological functions of AM and the functional differentiation of RAMP2 and RAMP3 may lead to the development of novel therapeutic strategies.
Collapse
|
5
|
Monteiro L, do Amaral B, Delgado L, Garcês F, Salazar F, Pacheco JJ, Lopes C, Warnakulasuriya S. Podoplanin Expression Independently and Jointly with Oral Epithelial Dysplasia Grade Acts as a Potential Biomarker of Malignant Transformation in Oral Leukoplakia. Biomolecules 2022; 12:biom12050606. [PMID: 35625534 PMCID: PMC9138639 DOI: 10.3390/biom12050606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Our aim was to evaluate the expression of biomarkers, CD44v6, CD147, EGFR, p53, p63, p73, p16, and podoplanin in oral leukoplakias (OL) and to assess their potential for prediction of malignant transformation (MT). We analyzed the expression of CD44v6, CD147, EGFR, p53, p63, p73, p16, and podoplanin by immunohistochemistry in 52 OL, comprised of 41 low-grade (LG) dysplasia and 11 high-grade (HG) cases. Twelve healthy normal tissues (NT) were also included. Univariate and multivariate analysis were performed to evaluate any association with MT. Variable expression among the studied markers was observed, with a significant increase of high expression from NT to LG and HG cases in CD44v6 (p = 0.002), P53 (p = 0.002), P73 (p = 0.043), and podoplanin (p < 0.001). In multivariate analysis, cases with high podoplanin score showed a significant increased risk of MT (HR of 10.148 (95% CI of 1.503−68.532; p = 0.017). Furthermore, podoplanin combined with binary dysplasia grade obtained a HR of 10.238 (95% CI of 2.06−50.889; p = 0.004). To conclude, CD44v6, p53, p73, and podoplanin showed an increasing expression along the natural history of oral carcinogenesis. Podoplanin expression independently or combined with dysplasia grade could be useful predictive markers of MT in OL.
Collapse
Affiliation(s)
- Luís Monteiro
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (B.d.A.); (F.S.); (J.J.P.)
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (L.D.); (F.G.); (C.L.)
- Correspondence: ; Tel.: +351-224157168
| | - Barbas do Amaral
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (B.d.A.); (F.S.); (J.J.P.)
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (L.D.); (F.G.); (C.L.)
- Stomatology Department, Hospital de Santo António, Centro Hospitalar do Porto, 4099-001 Porto, Portugal
| | - Leonor Delgado
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (L.D.); (F.G.); (C.L.)
| | - Fernanda Garcês
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (L.D.); (F.G.); (C.L.)
| | - Filomena Salazar
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (B.d.A.); (F.S.); (J.J.P.)
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (L.D.); (F.G.); (C.L.)
| | - José Júlio Pacheco
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (B.d.A.); (F.S.); (J.J.P.)
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (L.D.); (F.G.); (C.L.)
| | - Carlos Lopes
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal; (L.D.); (F.G.); (C.L.)
- Molecular Pathology and Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto University, 4099-001 Porto, Portugal
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, The WHO Collaborating Centre for Oral Cancer, London SE1 9RT, UK;
| |
Collapse
|
6
|
Keratinocyte-Expressed Podoplanin is Dispensable for Multi-Step Skin Carcinogenesis. Cells 2020; 9:cells9061542. [PMID: 32599908 PMCID: PMC7348927 DOI: 10.3390/cells9061542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Podoplanin is a small transmembrane mucin-like glycoprotein that plays a crucial role in the development of the lung, heart and lymphatic vascular system. Its expression is upregulated in several types of human carcinomas and podoplanin levels in squamous cell carcinomas (SCCs) of the oral cavity and the lung correlate with cancer invasiveness, lymph node metastasis and shorter survival time of patients, indicating that podoplanin promotes tumor progression. However, its role during the early stages of carcinogenesis remain unclear. We generated mice with a specific deletion of podoplanin in epidermal keratinocytes (K5-Cre;Pdpnflox/flox mice) and subjected them to a multistep chemical skin carcinogenesis regimen. The rate of tumor initiation; the number, size and differentiation of tumors; and the malignant transformation rate were comparable in K5-Cre;Pdpnflox/flox mice and Pdpnflox/flox control mice. However, tumor cell invasion was reduced in K5-Cre;Pdpnflox/flox mice, in particular single cell invasion. Quantitative immunofluorescence analyses revealed that peritumoral lymphangiogenesis was reduced in K5-Cre;Pdpnflox/flox mice, whereas there were no major changes of tumor-associated immune cell subpopulations. Thus, keratinocyte-expressed podoplanin is dispensable for the early steps of skin carcinogenesis but contributes to the progression of established tumors.
Collapse
|
7
|
New Therapeutic Strategies for Osteoarthritis by Targeting Sialic Acid Receptors. Biomolecules 2020; 10:biom10040637. [PMID: 32326143 PMCID: PMC7226619 DOI: 10.3390/biom10040637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterized by articular cartilage degradation and joint degeneration. The articular cartilage is mainly formed by chondrocytes and a collagen-proteoglycan extracellular matrix that contains high levels of glycosylated proteins. It was reported that the shift from glycoproteins containing α-2,6-linked sialic acids to those that contain α-2,3 was associated with the onset of common types of arthritis. However, the pathophysiology of α-2,3-sialylation in cartilage has not been yet elucidated. We show that cartilage from osteoarthritic patients expresses high levels of the α-2,3-sialylated transmembrane mucin receptor, known as podoplanin (PDPN). Additionally, the Maackia amurensis seed lectin (MASL), that can be utilized to target PDPN, attenuates the inflammatory response mediated by NF-kB activation in primary chondrocytes and protects human cartilage breakdown ex vivo and in an animal model of arthritis. These findings reveal that specific lectins targeting α-2,3-sialylated receptors on chondrocytes might effectively inhibit cartilage breakdown. We also present a computational 3D molecular model for this interaction. These findings provide mechanistic information on how a specific lectin could be used as a novel therapy to treat degenerative joint diseases such as osteoarthritis.
Collapse
|
8
|
Podoplanin promotes cancer-associated thrombosis and contributes to the unfavorable overall survival in an ectopic xenograft mouse model of oral cancer. Biomed J 2019; 43:146-162. [PMID: 32441651 PMCID: PMC7283562 DOI: 10.1016/j.bj.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Podoplanin (PDPN) is a transmembrane glycoprotein that mediates tumor cell-induced platelets aggregation in different cancer types. Emerging data indicate that PDPN is a marker for poor prognosis of human oral squamous cell carcinoma (OSCC). However, the functional impacts of PDPN on cancer formation and disease progression of OSCC remain to be elucidated. Methods The sublines of the OECM-1 oral cancer cells with PDPN knockdown or overexpression were established. The cellular characteristics and the ability to induce platelet aggregation of these cells lines were analyzed. An ectopic xenograft animal model by inoculating cancer cells into the anterior neck region of nude mice was established to investigate the functional impact of PDPN on disease progression and cancer-associated thrombosis of OSCC. Results PDPN promoted OSCC cell migration and invasion, but had no effect on cell proliferation in vitro and tumor growth in vivo. Co-incubation of PDPN-positive (PDPN+) OSCC cells with platelets induced platelet activation and aggregation. The mice bearing PDPN+ tumor had a decrease in overall survival despite that there was no gross appearance of distant metastasis. A speckled immunofluorescence staining pattern of platelet marker mCD41 was defined in the PDPN+ tumor sections and the intensity was greater than in the PDPN-low or negative tumor sections. Co-immunofluorescence staining of the tumor sections with mCD41 and the endothelial cell marker mCD31 further demonstrated that platelet aggregates were located in the lumen of blood vessel and were also distributed intratumorally in the mice bearing PDPN+ tumors. Conclusions These data demonstrated that PDPN expression in the cancer cells is associated with high risk of thrombosis, leading to unfavorable overall survival of the mice. This study provides new insights into the functions of PDPN in cancer-associated thrombosis and in the pathophysiology of OSCC.
Collapse
|
9
|
Deficiency of the adrenomedullin-RAMP3 system suppresses metastasis through the modification of cancer-associated fibroblasts. Oncogene 2019; 39:1914-1930. [PMID: 31754214 DOI: 10.1038/s41388-019-1112-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is a primary source of morbidity and mortality in cancer. Adrenomedullin (AM) is a multifunctional peptide regulated by receptor activity-modifying proteins (RAMPs). We previously reported that the AM-RAMP2 system is involved in tumor angiogenesis, but the function of the AM-RAMP3 system remains largely unknown. Here, we investigated the actions of the AM-RAMP2 and 3 systems in the tumor microenvironment and their impact on metastasis. PAN02 pancreatic cancer cells were injected into the spleens of mice, leading to spontaneous liver metastasis. Tumor metastasis was enhanced in vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-). By contrast, metastasis was suppressed in RAMP3-/- mice, where the number of podoplanin (PDPN)-positive cancer-associated fibroblasts (CAFs) was reduced in the periphery of tumors at metastatic sites. Because PDPN-positive CAFs are a hallmark of tumor malignancy, we assessed the regulation of PDPN and found that Src/Cas/PDPN signaling is mediated by RAMP3. In fact, RAMP3 deficiency CAFs suppressed migration, proliferation, and metastasis in co-cultures with tumor cells in vitro and in vivo. Moreover, the activation of RAMP2 in RAMP3-/- mice suppressed both tumor growth and metastasis. Based on these results, we suggest that the upregulation of PDPN in DI-E-RAMP2-/- mice increases malignancy, while the downregulation of PDPN in RAMP3-/- mice reduces it. Selective activation of RAMP2 and inhibition of RAMP3 would therefore be expected to suppress tumor metastasis. This study provides the first evidence that understanding and targeting to AM-RAMP systems could contribute to the development of novel therapeutics against metastasis.
Collapse
|
10
|
Podoplanin, a Potential Therapeutic Target for Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7457013. [PMID: 31321241 PMCID: PMC6610758 DOI: 10.1155/2019/7457013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022]
Abstract
Introduction The role of podoplanin (PDPN) in nasopharyngeal carcinoma (NPC) is still unknown. The aims of this study were to investigate the expression and role of PDPN in NPC cells. Materials and Methods Immunofluorescence staining and functional tests were used to determine the effects of PDPN knockdown by siRNA in TW01 NPC cells. Microarray analysis was conducted to identify genes regulated by PDPN. The molecular mechanism of PDPN on NPC cells was further determined by Ingenuity Pathways Analysis (IPA). Results PDPN was expressed in most TW01 NPC cells. PDPN knockdown by siRNA decreased NPC cell proliferation, migration, and invasion. The microarray data showed 63 upregulated genes and 12 downregulated genes following PDPN knockdown. The top 5 most upregulated genes analyzed by IPA were IFI27, IFI44L, IFI6, OAS1, and TRIM22, and the most relevant pathway was the interferon signaling pathway. Conclusions To the best of our knowledge, this is the first report to show that knocking down PDPN leads to suppression of NPC cell proliferation, migration, and invasion. Our results suggest that PDPN may serve as a potential chemotherapeutic target for NPC treatment in the future.
Collapse
|
11
|
Sikorska J, Gaweł D, Domek H, Rudzińska M, Czarnocka B. Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases. BMC Cancer 2019; 19:85. [PMID: 30654768 PMCID: PMC6337816 DOI: 10.1186/s12885-018-5239-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Podoplanin (PDPN) is a mucin-type transmembrane glycoprotein specific to the lymphatic system. PDPN expression has been found in various human tumors and is considered to be a marker of cancer. We had previously shown that PDPN expression contributes to carcinogenesis in the TPC1 papillary thyroid cancer-derived cell line by enhancing cell migration and invasiveness. The aim of this study was to determine the effect of PDPN down-regulation in another thyroid cancer-derived cell line: BcPAP. Methods In order to determine the effects of PDPN on malignant features of BcPAP cells (harboring the BRAFV600E mutated allele) and TPC1 cells (carrying the RET/PTC1 rearrangement), we silenced PDPN in these cells using small interfering RNA (siRNA). The efficacy of PDPN silencing was confirmed by qRT-PCR and Western blotting. Then, we tested the motility and invasiveness of these cells (using scratch test and Transwell assay), their growth capacities F(cell cycle analysis, viability, clonogenic activity) and apoptosis assays), adhesion-independent colony-formation capacities, as well as the effect of PDPN silencing on MMPs expression and activity (zymography). Results We found that PDPN-induced cell phenotype depended on the genetic background of thyroid tumor cells. PDPN down-regulation in BcPAP cells was negatively correlated with the migration and invasion, in contrast to TPC1 cells in which PDPN depletion resulted in enhanced migration and invasiveness. Moreover, our results suggest that in BcPAP cells, PDPN may be involved in the epithelial-mesenchymal transition (EMT) through regulating the expression of the ezrin, radixin and moesin (E/R/M) proteins, MMPs 9 and MMP2, remodeling of actin cytoskeleton and cellular protrusions. We also demonstrated that PDPN expression is associated with the MAPK signaling pathway. The inhibition of the MAPK pathway resulted in a decreased PDPN expression, increased E/R/M phosphorylation and reduced cell migration. Additionally, PDPN depleted BcPAP cells treated with inhibitors of MEK1/2 kinases (U0126) or of the BRAF V600E protein (PLX4720) had reduced motility, similar to that previously observed in TPC1 cells after PDPN knock-down. Conclusions Altogether, our data suggest that PDPN may play an important role in the control of invasion and migration of papillary thyroid carcinoma cells in association with the E/R/M, MMPs and MAPK kinases. Electronic supplementary material The online version of this article (10.1186/s12885-018-5239-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Sikorska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Damian Gaweł
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Hanna Domek
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland.
| |
Collapse
|
12
|
Krishnan H, Miller WT, Blanco FJ, Goldberg GS. Src and podoplanin forge a path to destruction. Drug Discov Today 2019; 24:241-249. [DOI: 10.1016/j.drudis.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
13
|
Etemad-Moghadam S, Alaeddini M. Is podoplanin expression associated with transforming growth factor-β signaling in odontogenic cysts and tumors? J Oral Pathol Med 2018; 47:519-525. [PMID: 29577431 DOI: 10.1111/jop.12710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Induction of podoplanin by transforming growth factor-β (TGF-β) has been shown in a number of lesions but not in odontogenic tumors (OTs). We evaluated the association between these markers in OTs for the first time and compared their expression among the different neoplasms. METHODS Immunohistochemistry using monoclonal antibody against podoplanin and TGF-β was performed on 76 odontogenic cysts and tumors. Spearman's correlation coefficient, Kruskal-Wallis, and Mann-Whitney U tests followed by adjustment with Bonferroni were used for statistical analysis (P < .05). RESULTS A significant difference in podoplanin expression was found among the lesions consisting of solid ameloblastomas, adenomatoid odontogenic tumors, ameloblastic fibromas, odontogenic myxomas (OMs), odontogenic keratocysts, and calcifying odontogenic cysts. Significant differences were observed only between OMs and each of the other neoplasms. Podoplanin immunostaining in the connective tissue was absent in most lesions. TGF-β was significantly different among the study sample but not between the lesions in paired comparisons. None of the studied OTs showed significant correlations between podoplanin-TGF-β, in either the epithelium or the stroma. These markers were also descriptively reported in calcifying epithelial odontogenic tumors. CONCLUSIONS The inductive effect of TGF-β on podoplanin seems to be limited, if any, in odontogenic lesions. Podoplanin appears to play a role in some aspects of OTs with epithelial or mixed origins. Despite the possible participation of podoplanin in tumorigenesis, it may not necessarily be involved in the aggressive behavior of OTs.
Collapse
Affiliation(s)
- Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Retzbach EP, Sheehan SA, Nevel EM, Batra A, Phi T, Nguyen ATP, Kato Y, Baredes S, Fatahzadeh M, Shienbaum AJ, Goldberg GS. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol 2018; 78:126-136. [PMID: 29496040 DOI: 10.1016/j.oraloncology.2018.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
Abstract
Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer.
Collapse
Affiliation(s)
- Edward P Retzbach
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Stephanie A Sheehan
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Evan M Nevel
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Amber Batra
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Tran Phi
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Angels T P Nguyen
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Yukinari Kato
- New Industry Creation Hatchery Center, Tohoku University; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Soly Baredes
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Mahnaz Fatahzadeh
- Department of Diagnostic Sciences, New Jersey School of Dental Medicine, Rutgers University, Newark, NJ 07103 USA
| | - Alan J Shienbaum
- Department of Pathology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gary S Goldberg
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
15
|
Miyata K, Takemoto A, Okumura S, Nishio M, Fujita N. Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation. Sci Rep 2017. [PMID: 28642617 PMCID: PMC5481446 DOI: 10.1038/s41598-017-04324-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Podoplanin/Aggrus, known as a platelet aggregation-inducing factor, is frequently overexpressed in lung squamous cell carcinomas (LSCC) and glioblastomas among other tumours, and its expression has been reported to be correlated with poor prognosis. However, the contribution of podoplanin to malignant progression has been elusive. Here we demonstrate that in podoplanin-positive LSCC cells, their growth was abrogated by podoplanin knockout in vivo but not in vitro. Conversely, ectopic expression of podoplanin promoted cell growth in vivo and facilitated intratumoral platelet activation. Consistently, LSCC cells evoked podoplanin-mediated platelet aggregation (PMPA), and the releasates from platelets during PMPA promoted the growth of LSCC cells in vitro. Phospho-receptor-tyrosine-kinase array analysis revealed that epidermal growth factor receptor (EGFR) phosphorylation of LSCC cells was responsible for the growth promotion induced by platelet releasates. Treatment with an antiplatelet agent or podoplanin-neutralizing antibody depressed the growth of an LSCC tumour xenograft via suppression of EGFR phosphorylation. These results suggested that podoplanin in LSCC enhanced cell growth by inducing PMPA in vivo and contributed to malignant progression.
Collapse
Affiliation(s)
- Kenichi Miyata
- Division of Experimental Chemotherapy, The Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, The Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Sakae Okumura
- Thoracic Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 1350-8550, Japan
| | - Makoto Nishio
- Thoracic Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 1350-8550, Japan
| | - Naoya Fujita
- Division of Experimental Chemotherapy, The Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan. .,The Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
16
|
Mermod M, Bongiovanni M, Petrova TV, Dubikovskaya EA, Simon C, Tolstonog G, Monnier Y. Correlation between podoplanin expression and extracapsular spread in squamous cell carcinoma of the oral cavity using subjective immunoreactivity scores and semiquantitative image analysis. Head Neck 2016; 39:98-108. [PMID: 27437903 DOI: 10.1002/hed.24537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The correlation between podoplanin expression and extracapsular spread in head and neck squamous cell carcinoma (HNSCC) has never been reported. The purpose of this study was to assess the predictive value of podoplanin expression for this parameter. METHODS Subjective immunoreactivity scores and semiquantitative image analysis of podoplanin expression were performed in 67 patients with primary oral squamous cell carcinoma and in their corresponding lymph nodes. Neck classification showed 34 cases (51%) of pN0 and 33 cases (49%) of pN+. Correlation between the levels of podoplanin expression and the histopathological data was established. RESULTS In lymph nodes, a high level of podoplanin expression correlated with the presence of extracapsular spread by multivariate analysis (p = .03). A strong correlation between subjective and semiquantitative image analysis was observed (r = 0.77; p < .001). CONCLUSION A high level of podoplanin expression in lymph node metastases of oral squamous cell carcinoma is independently associated with extracapsular spread. © 2016 Wiley Periodicals, Head Neck 39: 98-108, 2017.
Collapse
Affiliation(s)
- Maxime Mermod
- Department of Otolaryngology - Head and Neck Surgery, Head and Neck Tumor Laboratory, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Massimo Bongiovanni
- Institute of Pathology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Elena A Dubikovskaya
- Laboratory of Bioorganic Chemistry and Molecular Imaging (LBCMI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Simon
- Department of Otolaryngology - Head and Neck Surgery, Head and Neck Tumor Laboratory, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Genrich Tolstonog
- Department of Otolaryngology - Head and Neck Surgery, Head and Neck Tumor Laboratory, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Yan Monnier
- Department of Otolaryngology - Head and Neck Surgery, Head and Neck Tumor Laboratory, CHUV and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Monteiro LS, Delgado ML, Ricardo S, do Amaral B, Salazar F, Pacheco JJ, Lopes CA, Bousbaa H, Warnakulasuryia S. Prognostic significance of CD44v6, p63, podoplanin and MMP-9 in oral squamous cell carcinomas. Oral Dis 2016; 22:303-12. [PMID: 26788715 DOI: 10.1111/odi.12442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/20/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To analyse the expression of the CD44v6, p63, podoplanin and MMP-9, and their prognostic significance in patients with oral squamous cell carcinomas (OSCC). MATERIAL AND METHODS Immunohistochemistry technique was performed on 60 OSCC for detection of CD44v6, p63, podoplanin and MMP-9 proteins. Extent and intensity of staining were evaluated in tumour cells and were compared with patients' clinical-pathological characteristics and survival. RESULTS CD44v6 expression was detected at the membrane of tumour cells of 94% cases. Nuclear expression of p63 protein was present in 96.5%. Podoplanin was observed at the membrane of tumour cells of 94% cases. MMP-9 was found in the cytoplasm of tumour cells in 83.7% cases. A high level of expression (67%-89%) in all four proteins was noted. Podoplanin was associated with the expression of MMP-9 (P = 0.010) and both were associated with lymph node metastasis (P = 0.011 and P = 0.018, respectively). Co-expression of podoplanin/MMP-9 was an adverse independent prognostic factor for cancer-specific survival (P = 0.008) and recurrence-free survival (P = 0.042). CONCLUSION Podoplanin and MMP-9 together could contribute to tumour progression and dissemination of OSCC. Their combined overexpression showed an adverse effect on survival, suggesting that they could be regarded as important prognostic biomarkers in OSCC.
Collapse
Affiliation(s)
- L S Monteiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), IUCS - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.,Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - M L Delgado
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), IUCS - Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - S Ricardo
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - B do Amaral
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), IUCS - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.,Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde, Gandra, Portugal.,Stomatology Department, Hospital de Santo António, Oporto Hospitalar Centre, Porto, Portugal
| | - F Salazar
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), IUCS - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.,Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - J J Pacheco
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), IUCS - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.,Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - C A Lopes
- Molecular Pathology and Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto University, Porto, Portugal
| | - H Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), IUCS - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal
| | - S Warnakulasuryia
- Oral Medicine, The WHO Collaborating Centre for Oral Cancer, King's College, London, UK
| |
Collapse
|
18
|
Patil A, Patil K, Tupsakhare S, Gabhane M, Sonune S, Kandalgaonkar S. Evaluation of Podoplanin in Oral Leukoplakia and Oral Squamous Cell Carcinoma. SCIENTIFICA 2015; 2015:135298. [PMID: 26558136 PMCID: PMC4618324 DOI: 10.1155/2015/135298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Background. Recent studies have demonstrated that podoplanin was expressed in some dysplastic lesions adjacent to primary oral cancers suggesting that podoplanin expression may occur in early oral tumorigenesis and lymphangiogenesis and therefore is related to tumor growth. The purpose of this study is to determine the role of podoplanin as a biomarker for cancer risk assessment in oral leukoplakia and correlation of podoplanin expression with grades of oral squamous cell carcinoma (OSCC). Materials and Methods. In the present retrospective study, podoplanin expression was investigated immunohistochemically in 40 patients each of oral leukoplakia and OSCC. The scores were analyzed statistically using one-way ANOVA test followed by Tukey HSD. Results. By applying one-way ANOVA test, there was a highly significant increase of the podoplanin expression from mild to severe dysplasia and from well to poorly differentiated OSCC (P < 0.01). Statistically highly significant difference was present between scores of mild to moderate dysplasia, moderate to severe dysplasia, well to poorly differentiated OSCC, and moderately to poorly differentiated OSCC (Tukey HSD test, P < 0.01). Conclusion. Podoplanin can be used as a biomarker for early oral tumorigenesis and for malignant transformation risk assessment of premalignant lesions and as a tumor progression biomarker for advanced grades of OSCC.
Collapse
Affiliation(s)
- Ashok Patil
- Department of Oral Pathology and Microbiology, SMBT Dental College and Hospital, Sangamner, Maharashtra 422608, India
| | - Kishor Patil
- Department of Oral Pathology and Microbiology, SMBT Dental College and Hospital, Sangamner, Maharashtra 422608, India
| | - Suyog Tupsakhare
- Department of Oral Pathology and Microbiology, SMBT Dental College and Hospital, Sangamner, Maharashtra 422608, India
| | - Mahesh Gabhane
- Department of Oral Pathology and Microbiology, SMBT Dental College and Hospital, Sangamner, Maharashtra 422608, India
| | - Shrikant Sonune
- Department of Oral Pathology and Microbiology, SMBT Dental College and Hospital, Sangamner, Maharashtra 422608, India
| | - Shilpa Kandalgaonkar
- Department of Oral Pathology and Microbiology, SMBT Dental College and Hospital, Sangamner, Maharashtra 422608, India
| |
Collapse
|
19
|
Shi H, Liu L, Liu LM, Geng J, Chen L. Inhibition of tumor growth by β-elemene through downregulation of the expression of uPA, uPAR, MMP-2, and MMP-9 in a murine intraocular melanoma model. Melanoma Res 2015; 25:15-21. [PMID: 25405459 DOI: 10.1097/cmr.0000000000000124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper explores the underlying mechanism through which β-elemene inhibits the growth of intraocular melanoma in a mouse model. C57BL/6J mice were administered a subretinal injection of B16F10 melanoma cells and divided into two groups: treatment and control. The treatment group was administered β-elemene through an intravitreal injection and the control group was injected with a blank emulsion. After 21 days of continuous treatment, tumor masses were removed and weighed. The mRNA expression levels of the urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), matrix metalloproteinase (MMP)-2, and MMP-9 were assayed by real-time PCR, and the protein expression levels of uPA, uPAR, MMP-2, and MMP-9 were assayed by immunocytochemistry and western blotting. Tumor size was inhibited by β-elemene in the treatment group, and the expressions of uPA, uPAR, MMP-2, and MMP-9 were all downregulated at both the mRNA and the protein level compared with the control group. In a mouse model of intraocular melanoma, β-elemene inhibits tumor growth by downregulating the expression of uPA, uPAR, MMP-2, and MMP-9.
Collapse
Affiliation(s)
- Hong Shi
- aDepartment of Ophthalmology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Shushan, Hefei bDepartment of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Yao Y, Ma J, Xue Y, Wang P, Li Z, Li Z, Hu Y, Shang X, Liu Y. MiR-449a exerts tumor-suppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol Oncol 2014; 9:640-56. [PMID: 25487955 DOI: 10.1016/j.molonc.2014.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common and aggressive primary brain tumors in adults. Deregulated expression of microRNAs (miRNAs) has been associated with GBM progression through alterations in either oncogenic or tumor suppressor targets. Here, we elucidated the function and the possible molecular mechanisms of miR-449a in human GBM cell lines and tumor specimens-derived glioblastoma stem cells (GSCs). Quantitative real-time PCR demonstrated that miR-449a was down-regulated in human GBM cell lines and GSCs. Functionally, miR-449a acted as a tumor suppressor by reducing cell proliferation, migration and invasion as well as inducing apoptosis in human GBM cell lines and GSCs. Myc-associated zinc-finger protein (MAZ) was identified as a direct target of miR-449a, mediating these tumor-suppressive effects, demonstrated by Western blot assay and luciferase assays. Moreover, over-expression of miR-449a inhibited the expression of Podoplanin (PDPN) by down-regulating MAZ which could positively control the promoter activities via binding to the promoter of PDPN, demonstrated by luciferase assays and chromatin immunoprecipitation assays. Further, the PI3K/AKT pathway was blocked when MAZ was down-regulated by miR-449a. This process was coincided with the up-regulation of apoptotic proteins and the down-regulation of anti-apoptotic proteins, MMP2 and MMP9. Furthermore, nude mice carrying over-expressed miR-449a combined with knockdown MAZ tumors produced the smallest tumors and the highest survival. These results elucidated a novel molecular mechanism of GBM progression, and may thus suggest a promising application for GBM treatment.
Collapse
Affiliation(s)
- Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
21
|
Inoue H, Tsuchiya H, Miyazaki Y, Kikuchi K, Ide F, Sakashita H, Kusama K. Podoplanin expressing cancer-associated fibroblasts in oral cancer. Tumour Biol 2014; 35:11345-52. [PMID: 25119595 DOI: 10.1007/s13277-014-2450-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/04/2014] [Indexed: 01/01/2023] Open
Abstract
Podoplanin is a mucin-type glycoprotein widely used as a lymphatic endothelial marker. It is well known that podoplanin is expressed in various neoplasms including oral squamous cell carcinoma (OSCC). Apart from podoplanin expression in cancer cells, recent studies have suggested that podoplanin expression in stromal cancer-associated fibroblasts (CAFs) may be an indicator of poor prognosis in various cancers. In the present study, we performed immunohistochemical analyses of podoplanin and alpha-smooth muscle actin (α-SMA) in OSCC in order to clarify the significance of podoplanin-positive CAFs. Paraffin-embedded tissue specimens of 69 primary and 29 corresponding metastatic lesions in lymph nodes were examined immunohistochemically using antibodies against podoplanin and α-SMA. Podoplanin-positive stromal fibroblasts were detected in 51 (73.9%) of the 69 primary OSCCs and 24 (82.8%) of the 29 lymph nodes metastases. α-SMA immunoreactivity was observed in 39 (56.5%) of the primaries and 24 (82.8%) of the metastases. Further examination showed that 38 (74.5%) of the primary lesions and 23 (95.8%) of the metastases with podoplanin positivity were also positive for α-SMA. In addition, the intensity of α-SMA immunoreactivity increased as that of podoplanin became stronger. Podoplanin-positive CAFs are considered to be myofibroblasts that may contribute to progression of oral cancer.
Collapse
Affiliation(s)
- Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Saitama, 350-0283, Japan,
| | | | | | | | | | | | | |
Collapse
|
22
|
Podoplanin—a novel marker in oral carcinogenesis. Tumour Biol 2014; 35:8407-13. [DOI: 10.1007/s13277-014-2266-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/19/2014] [Indexed: 02/04/2023] Open
|
23
|
Huttenlocher S, Seibold ND, Gebhard MP, Noack F, Thorns C, Hasselbacher K, Wollenberg B, Schild SE, Rades D. Evaluation of the prognostic role of tumor cell podoplanin expression in locally advanced squamous cell carcinoma of the head and neck. Strahlenther Onkol 2014; 190:1021-7. [PMID: 24928249 DOI: 10.1007/s00066-014-0694-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the potential prognostic role of tumor cell podoplanin expression in patients treated with resection followed by irradiation or chemoradiotherapy for locally advanced squamous cell carcinoma of the head and neck (SCCHN). MATERIALS AND METHODS Podoplanin expression (≤10 % versus > 10 %) and 12 other factors were evaluated in 160 patients for their association with locoregional control (LRC), metastases-free (MFS) and overall survival (OS). Other factors were age, gender, Eastern Cooperative Oncology Group (ECOG) performance status, preradiotherapy (pre-RT) hemoglobin level, tumor site, histological grading, T category, N category, American Joint Committee on Cancer (AJCC) stage, human papillomavirus (HPV) status, extent of resection and concurrent chemotherapy. RESULTS In multivariate analysis, ECOG performance status 0-1 (risk ratio, RR: 3.01; 95 % confidence interval, CI: 1.42-7.14; p = 0.003), pre-RT hemoglobin levels ≥ 7.45 mmol/l (12 g/dl; RR: 2.03; 95 % CI: 1.04-3.94; p = 0.038), oropharyngeal cancer (RR: 1.25; 95 % CI: 1.01-1.55; p = 0.038) and T category T1-2 (RR: 1.81; 95 % CI: 1.24-2.79; p = 0.002) were significantly associated with improved LRC. T category T1-2 (RR: 1.90; 95 % CI: 1.25-3.06; p = 0.002) and N category N0-2a (RR: 5.22; 95 % CI: 1.96-18.09; p < 0.001) were significantly associated with better MFS. Pre-RT hemoglobin levels ≥ 7.45 mmol/l (RR: 2.44; 95 % CI: 1.27-4.74; p = 0.007), T category T1-2 (RR: 1.97; 95 % CI: 1.36-3.04; p < 0.001) and N category N0-2a (RR: 2.87; 95 % CI: 1.37-6.61; p = 0.005) were significantly associated with improved OS. Podoplanin expression ≤ 10 % showed a trend towards improved OS on both univariate (p = 0.050) and multivariate analysis (RR: 1.86; 95 % CI: 0.96-3.59; p = 0.07). CONCLUSION Treatment outcomes were significantly associated with performance status, pre-RT hemoglobin level, tumor site and tumor stage. Tumor cell expression of podoplanin ≤ 10 % showed a trend towards improved OS when compared to podoplanin expression of > 10 %.
Collapse
Affiliation(s)
- Stefan Huttenlocher
- Department of Radiation Oncology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rudzińska M, Gaweł D, Sikorska J, Karpińska KM, Kiedrowski M, Stępień T, Marchlewska M, Czarnocka B. The role of podoplanin in the biology of differentiated thyroid cancers. PLoS One 2014; 9:e96541. [PMID: 24797369 PMCID: PMC4010536 DOI: 10.1371/journal.pone.0096541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023] Open
Abstract
Podoplanin (PDPN), a mucin-type transmembrane glycoprotein specific to the lymphatic system is expressed in a variety of human cancers, and is regarded as a factor promoting tumor progression. The purpose of this study was to elucidate the molecular role of PDPN in the biology of thyroid cancer cells. PDPN expression was evaluated in primary thyroid carcinomas and thyroid carcinoma cell lines by RT-qPCR, Western blotting, IF and IHC. To examine the role of podoplanin in determining a cell's malignant potential (cellular migration, invasion, proliferation, adhesion, motility, apoptosis), a thyroid cancer cell line with silenced PDPN expression was used. We observed that PDPN was solely expressed in the cancer cells of 40% of papillary thyroid carcinoma (PTC) tissues. Moreover, PDPN mRNA and protein were highly expressed in PTC-derived TPC1 and BcPAP cell lines but were not detected in follicular thyroid cancer derived cell lines. PDPN knock-down significantly decreased cellular invasion, and modestly reduced cell migration, while proliferation and adhesion were not affected. Our results demonstrate that PDPN mediates the invasive properties of cells derived from papillary thyroid carcinomas, suggesting that podoplanin might promote PTC progression.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Damian Gaweł
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Justyna Sikorska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Kamila M. Karpińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mirosław Kiedrowski
- Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tomasz Stępień
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Magdalena Marchlewska
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
25
|
Kong DCH, Chew KYC, Tan EL, Khoo SP. The effect of epiregulin on epidermal growth factor receptor expression and proliferation of oral squamous cell carcinoma cell lines. Cancer Cell Int 2014; 14:65. [PMID: 25866477 PMCID: PMC4392732 DOI: 10.1186/1475-2867-14-65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Background Epiregulin (EPR) is a novel member of the epidermal growth factor (EGF) family. It has been shown to promote wound healing in oral epithelium, enhance proliferation of other epithelial tissues, and is involved in several epithelial-related malignancies such as colorectal, lung, and bladder carcinoma. More recently, EPR transcripts were found to be high in a study on archival oral squamous cell carcinoma (OSCC) specimens. This implies that EPR may be responsible for the progression of OSCC. The aim of this was to elucidate the effects of EPR on (i) cell morphological changes, (ii) cell proliferation and (iii) receptor expression of the H-series OSCC cell lines. Methods The clinicopathological origin and the expression of the epidermal growth factor receptor (EGFR) and ErbB4 receptors of the H-series cell lines were initially characterised. Based on these parameters, two of the H-series cell lines, namely H103 and H357 were selected for downstream experiments. The cell lines were treated with 1 ng/ml, 10 ng/ml, and 20 ng/ml of EPR for 24 and 48 hours in all subsequent experiments. Untreated cells acted as the control which was used for comparison with each treated group. The cell morphological changes, cell proliferation and receptor expression of the OSCC cell lines were evaluated using phase contrast microscopy, 5-bromo-2’-deoxy-uridine (BrdU) assays and flow cytometry respectively. The results were compared and analysed using the student t-test. Results There were no appreciable morphological changes in the cells regardless of the dose of EPR tested nor between the different timelines. There were no significant changes in cell proliferation after EPR treatment. As for the effect of EPR on receptor expression, 20 ng/ml of EPR significantly reduced the density of EGFR expression (p value = 0.049) in the H103 cell line after the 24-hour treatment. No other statistically significant changes were detected. Conclusions The results show that EPR had no effect on the morphology and proliferativity of OSCC cells. However, the significant decline in EGFR expression after EPR treatment suggests that EPR might play an important role in the regulation of EGFR expression and hence OSCC progression.
Collapse
Affiliation(s)
| | | | - Eng Lai Tan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- School of Dentistry, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|