1
|
Brown ME, Thirawatananond P, Peters LD, Kern EJ, Vijay S, Sachs LK, Posgai AL, Brusko MA, Shapiro MR, Mathews CE, Bacher R, Brusko TM. Inhibition of CD226 co-stimulation suppresses diabetes development in the NOD mouse by augmenting regulatory T cells and diminishing effector T cell function. Diabetologia 2025; 68:397-418. [PMID: 39636437 PMCID: PMC11732877 DOI: 10.1007/s00125-024-06329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024]
Abstract
AIMS/HYPOTHESIS Immunotherapeutics targeting T cells are crucial for inhibiting autoimmune disease progression proximal to disease onset in type 1 diabetes. There is an outstanding need to augment the durability and effectiveness of T cell targeting therapies by directly restraining proinflammatory T cell subsets, while simultaneously augmenting regulatory T cell (Treg) activity. Here, we present a novel strategy for preventing diabetes incidence in the NOD mouse model using a blocking monoclonal antibody targeting the type 1 diabetes risk-associated T cell co-stimulatory receptor, CD226. METHODS Female NOD mice were treated with anti-CD226 at 7-8 weeks of age and then monitored for diabetes incidence and therapeutic mechanism of action. RESULTS Compared with isotype-treated controls, anti-CD226-treated NOD mice showed reduced insulitis severity (0.84-fold, p=0.0002) at 12 weeks and decreased disease incidence (HR 0.41, p=0.015) at 30 weeks. Flow cytometric analysis performed 5 weeks post treatment demonstrated reduced proliferation of conventional CD4+ T cells (0.87-fold, p=0.030) and CD8+ (0.78-fold, p=0.0018) effector memory T cells in spleens of anti-CD226-treated mice. Phenotyping of pancreatic Tregs revealed increased CD25 expression (2.05-fold, p=0.0073) and signal transducer and activator of transcription 5 (STAT5) phosphorylation (1.39-fold, p=0.0007) following anti-CD226, with splenic Tregs displaying augmented suppression of CD4+ responder T cells (Tresps) (1.49-fold, p=0.0008, 1:2 Treg:Tresp) in vitro. Anti-CD226-treated mice exhibited reduced frequencies of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-reactive CD8+ T cells in the pancreas, using both ex vivo tetramer staining (0.50-fold, p=0.0317) and single-cell T cell receptor sequencing (0.61-fold, p=0.022) approaches. 51Cr-release assays demonstrated reduced cell-mediated lysis of beta cells (0.61-fold, p<0.0001, 1:1 effector:target) by anti-CD226-treated autoreactive cytotoxic T lymphocytes. CONCLUSIONS/INTERPRETATION CD226 blockade reduces T cell cytotoxicity and improves Treg function, representing a targeted and rational approach for restoring immune regulation in type 1 diabetes.
Collapse
Affiliation(s)
- Matthew E Brown
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Puchong Thirawatananond
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Leeana D Peters
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth J Kern
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sonali Vijay
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lindsey K Sachs
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Amanda L Posgai
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Maigan A Brusko
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Melanie R Shapiro
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Clayton E Mathews
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rhonda Bacher
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Todd M Brusko
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Brown ME, Thirawatananond P, Peters LD, Kern EJ, Vijay S, Sachs LK, Posgai AL, Brusko MA, Shapiro MR, Mathews CE, Bacher R, Brusko TM. Inhibition of CD226 Co-Stimulation Suppresses Diabetes Development in the NOD Mouse by Augmenting Tregs and Diminishing Effector T Cell Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603756. [PMID: 39071293 PMCID: PMC11275941 DOI: 10.1101/2024.07.16.603756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aims/hypothesis Immunotherapeutics targeting T cells are crucial for inhibiting autoimmune disease progression proximal to disease onset in type 1 diabetes. A growing number of T cell-directed therapeutics have demonstrated partial therapeutic efficacy, with anti-CD3 (α-CD3) representing the only regulatory agency-approved drug capable of slowing disease progression through a mechanism involving the induction of partial T cell exhaustion. There is an outstanding need to augment the durability and effectiveness of T cell targeting by directly restraining proinflammatory T helper type 1 (Th1) and type 1 cytotoxic CD8+ T cell (Tc1) subsets, while simultaneously augmenting regulatory T cell (Treg) activity. Here, we present a novel strategy for reducing diabetes incidence in the NOD mouse model using a blocking monoclonal antibody targeting the type 1 diabetes-risk associated T cell co-stimulatory receptor, CD226. Methods Female NOD mice were treated with anti-CD226 between 7-8 weeks of age and then monitored for diabetes incidence and therapeutic mechanism of action. Results Compared to isotype-treated controls, anti-CD226 treated NOD mice showed reduced insulitis severity at 12 weeks and decreased disease incidence at 30 weeks. Flow cytometric analysis performed five weeks post-treatment demonstrated reduced proliferation of CD4+ and CD8+ effector memory T cells in spleens of anti-CD226 treated mice. Phenotyping of pancreatic Tregs revealed increased CD25 expression and STAT5 phosphorylation following anti-CD226, with splenic Tregs displaying augmented suppression of CD4+ T cell responders in vitro. Anti-CD226 treated mice exhibited reduced frequencies of islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP)-reactive CD8+ T cells in the pancreas, using both ex vivo tetramer staining and single-cell T cell receptor sequencing (scTCR-seq) approaches. 51Cr-release assays demonstrated reduced cell-mediated lysis of beta-cells by anti-CD226-treated autoreactive cytotoxic T lymphocytes. Conclusions/interpretation CD226 blockade reduces T cell cytotoxicity and improves Treg function, representing a targeted and rational approach for restoring immune regulation in type 1 diabetes.
Collapse
Affiliation(s)
- Matthew E. Brown
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Puchong Thirawatananond
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Leeana D. Peters
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Elizabeth J. Kern
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sonali Vijay
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Lindsey K. Sachs
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Amanda L. Posgai
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Maigan A. Brusko
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Melanie R. Shapiro
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Clayton E. Mathews
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Rhonda Bacher
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610
| | - Todd M. Brusko
- Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
3
|
Liao CC, Hsieh CC, Shia WC, Chou MY, Huang CC, Lin JH, Lee SH, Sung HH. Refined protocol for newly onset identification in non-obese diabetic mice: an animal-friendly, cost-effective, and efficient alternative. Lab Anim Res 2024; 40:16. [PMID: 38649958 PMCID: PMC11034171 DOI: 10.1186/s42826-024-00202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Therapeutic interventions for diabetes are most effective when administered in the newly onset phase, yet determining the exact onset moment can be elusive in practice. Spontaneous autoimmune diabetes among NOD mice appears randomly between 12 and 32 weeks of age with an incidence range from 60 to 90%. Furthermore, the disease often progresses rapidly to severe diabetes within days, resulting in a very short window of newly onset phase, that poses significant challenge in early diagnosis. Conventionally, extensive blood glucose (BG) testing is typically required on large cohorts throughout several months to conduct prospective survey. We incorporated ultrasensitive urine glucose (UG) testing into an ordinary BG survey process, initially aiming to elucidate the lag period required for excessive glucose leaking from blood to urine during diabetes progression in the mouse model. RESULTS The observations unexpectedly revealed that small amounts of glucose detected in the urine often coincide with, sometimes even a couple days prior than elevated BG is diagnosed. Accordingly, we conducted the UG-based survey protocol in another cohort that was validated to accurately identified every individual near onset, who could then be confirmed by following few BG tests to fulfill the consecutive BG + criteria. This approach required fewer than 95 BG tests, compared to over 700 tests with traditional BG survey, to diagnose all the 37-38 diabetic mice out of total 60. The average BG level at diagnosis was slightly below 350 mg/dl, lower than the approximately 400 mg/dl observed with conventional BG monitoring. CONCLUSIONS We demonstrated a near perfect correlation between BG + and ultrasensitive UG + results in prospective survey with no lag period detected under twice weekly of testing frequency. This led to the refined protocol based on surveying with noninvasive UG testing, allowing for the early identification of newly onset diabetic mice with only a few BG tests required per mouse. This protocol significantly reduces the need for extensive blood sampling, lancet usage, labor, and animal distress, aligning with the 3Rs principle. It presents a convenient, accurate, and animal-friendly alternative for early diabetes diagnosis, facilitating research on diagnosis, pathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Chia-Chi Liao
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chia-Chun Hsieh
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chung Shia
- Molecular Medicine Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Lab, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chuan-Chuan Huang
- Biomedical Technology and Device Research Lab, Industrial Technology Research Institute, Hsinchu, Taiwan
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jhih-Hong Lin
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Shu-Hsien Lee
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan.
| |
Collapse
|
4
|
Thirawatananond P, Brown ME, Sachs LK, Arnoletti JM, Yeh WI, Posgai AL, Shapiro MR, Chen YG, Brusko TM. Treg-Specific CD226 Deletion Reduces Diabetes Incidence in NOD Mice by Improving Regulatory T-Cell Stability. Diabetes 2023; 72:1629-1640. [PMID: 37625150 PMCID: PMC10588280 DOI: 10.2337/db23-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Costimulation serves as a critical checkpoint for T-cell activation, and several genetic variants affecting costimulatory pathways confer risk for autoimmune diseases. A single nucleotide polymorphism (rs763361) in the CD226 gene encoding a costimulatory receptor increases susceptibility to multiple autoimmune diseases, including type 1 diabetes. We previously found that Cd226 knockout protected NOD mice from disease, but the impact of CD226 on individual immune subsets remained unclear. Our prior reports implicate regulatory T cells (Tregs), as human CD226+ Tregs exhibit reduced suppressive function. Hence, we hypothesized that genomic Cd226 gene deletion would increase Treg stability and that Treg-specific Cd226 deletion would inhibit diabetes in NOD mice. Indeed, crossing NOD.Cd226-/- and a NOD Treg-lineage tracing strain resulted in decreased pancreatic Foxp3-deficient "ex-Tregs." We generated a novel Treg-conditional knockout (TregΔCd226) strain that displayed decreased insulitis and diabetes incidence. CD226-deficient pancreatic Tregs had increased expression of the coinhibitory counter-receptor T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT). Moreover, NOD splenocytes treated with TIGIT-Fc fusion protein exhibited reduced T-cell proliferation and interferon-γ production following anti-CD3/CD28 stimulation. This study demonstrates that a CD226/TIGIT imbalance contributes to Treg instability in NOD mice and highlights the potential for therapeutic targeting this costimulatory pathway to halt autoimmunity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Puchong Thirawatananond
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Lindsey K. Sachs
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Juan M. Arnoletti
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Wen-I Yeh
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Boyles JS, Sadowski D, Potter S, Vukojicic A, Parker J, Chang WY, Ma YL, Chambers MG, Nelson J, Barmettler B, Smith EM, Kersjes K, Himes ER, Lin C, Lucchesi J, Brahmbhatt J, Sina R, Martin JA, Maestri E, Wiethoff CM, Dyas GL, Linnik MD, Na S, Witcher DR, Budelsky A, Rubtsova K. A nondepleting anti-CD19 antibody impairs B cell function and inhibits autoimmune diseases. JCI Insight 2023; 8:e166137. [PMID: 37427592 PMCID: PMC10371335 DOI: 10.1172/jci.insight.166137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.
Collapse
Affiliation(s)
- Jeffrey S. Boyles
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Dorota Sadowski
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Scott Potter
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Aleksandra Vukojicic
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - James Parker
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - William Y. Chang
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Yanfei L. Ma
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Mark G. Chambers
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - James Nelson
- Biotechnology Discovery Research, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Barbra Barmettler
- Biotechnology Discovery Research, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Eric M. Smith
- Biotechnology Discovery Research, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Kara Kersjes
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Evan R. Himes
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Chaohua Lin
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jonathan Lucchesi
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jaladhi Brahmbhatt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Ramtin Sina
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jennifer A. Martin
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Evan Maestri
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Christopher M. Wiethoff
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Gregory L. Dyas
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Matthew D. Linnik
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Songqing Na
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Derrick R. Witcher
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Alison Budelsky
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Kira Rubtsova
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| |
Collapse
|
6
|
Anderson RL, DiMeglio LA, Mander AP, Dayan CM, Linsley PS, Herold KC, Marinac M, Ahmed ST. Innovative Designs and Logistical Considerations for Expedited Clinical Development of Combination Disease-Modifying Treatments for Type 1 Diabetes. Diabetes Care 2022; 45:2189-2201. [PMID: 36150059 PMCID: PMC9911317 DOI: 10.2337/dc22-0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
It has been 100 years since the life-saving discovery of insulin, yet daily management of type 1 diabetes (T1D) remains challenging. Even with closed-loop systems, the prevailing need for persons with T1D to attempt to match the kinetics of insulin activity with the kinetics of carbohydrate metabolism, alongside dynamic life factors affecting insulin requirements, results in the need for frequent interventions to adjust insulin dosages or consume carbohydrates to correct mismatches. Moreover, peripheral insulin dosing leaves the liver underinsulinized and hyperglucagonemic and peripheral tissues overinsulinized relative to their normal physiologic roles in glucose homeostasis. Disease-modifying therapies (DMT) to preserve and/or restore functional β-cell mass with controlled or corrected autoimmunity would simplify exogenous insulin need, thereby reducing disease mortality, morbidity, and management burdens. However, identifying effective DMTs for T1D has proven complex. There is some consensus that combination DMTs are needed for more meaningful clinical benefit. Other complexities are addressable with more innovative trial designs and logistics. While no DMT has yet been approved for marketing, existing regulatory guidance provides opportunities to further "de-risk" development. The T1D development ecosystem can accelerate progress by using more innovative ways for testing DMTs for T1D. This perspective outlines suggestions for accelerating evaluation of candidate T1D DMTs, including combination therapies, by use of innovative trial designs, enhanced logistical coordination of efforts, and regulatory guidance for expedited development, combination therapies, and adaptive designs.
Collapse
Affiliation(s)
| | - Linda A. DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Adrian P. Mander
- Centre for Trials Research, Cardiff University School of Medicine, Cardiff, U.K
| | - Colin M. Dayan
- Centre for Endocrine and Diabetes Science, Cardiff University School of Medicine, Cardiff, U.K
| | - Peter S. Linsley
- Systems Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | | | - Simi T. Ahmed
- New York Stem Cell Foundation Research Institute, New York, NY
| |
Collapse
|
7
|
Shi Z, Li Y, Jaberi-Douraki M. Hybrid computational modeling demonstrates the utility of simulating complex cellular networks in type 1 diabetes. PLoS Comput Biol 2021; 17:e1009413. [PMID: 34570760 PMCID: PMC8496846 DOI: 10.1371/journal.pcbi.1009413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/07/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Persistent destruction of pancreatic β-cells in type 1 diabetes (T1D) results from multifaceted pancreatic cellular interactions in various phase progressions. Owing to the inherent heterogeneity of coupled nonlinear systems, computational modeling based on T1D etiology help achieve a systematic understanding of biological processes and T1D health outcomes. The main challenge is to design such a reliable framework to analyze the highly orchestrated biology of T1D based on the knowledge of cellular networks and biological parameters. We constructed a novel hybrid in-silico computational model to unravel T1D onset, progression, and prevention in a non-obese-diabetic mouse model. The computational approach that integrates mathematical modeling, agent-based modeling, and advanced statistical methods allows for modeling key biological parameters and time-dependent spatial networks of cell behaviors. By integrating interactions between multiple cell types, model results captured the individual-specific dynamics of T1D progression and were validated against experimental data for the number of infiltrating CD8+T-cells. Our simulation results uncovered the correlation between five auto-destructive mechanisms identifying a combination of potential therapeutic strategies: the average lifespan of cytotoxic CD8+T-cells in islets; the initial number of apoptotic β-cells; recruitment rate of dendritic-cells (DCs); binding sites on DCs for naïve CD8+T-cells; and time required for DCs movement. Results from therapy-directed simulations further suggest the efficacy of proposed therapeutic strategies depends upon the type and time of administering therapy interventions and the administered amount of therapeutic dose. Our findings show modeling immunogenicity that underlies autoimmune T1D and identifying autoantigens that serve as potential biomarkers are two pressing parameters to predict disease onset and progression.
Collapse
Affiliation(s)
- Zhenzhen Shi
- 1DATA Consortium, Kansas State University Olathe, Olathe, Kansas, United States of America
- Department of Mathematics, Kansas State University, Manhattan, Kansas, United States of America
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Majid Jaberi-Douraki
- 1DATA Consortium, Kansas State University Olathe, Olathe, Kansas, United States of America
- Department of Mathematics, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
8
|
Shapiro MR, Yeh WI, Longfield JR, Gallagher J, Infante CM, Wellford S, Posgai AL, Atkinson MA, Campbell-Thompson M, Lieberman SM, Serreze DV, Geurts AM, Chen YG, Brusko TM. CD226 Deletion Reduces Type 1 Diabetes in the NOD Mouse by Impairing Thymocyte Development and Peripheral T Cell Activation. Front Immunol 2020; 11:2180. [PMID: 33013915 PMCID: PMC7500101 DOI: 10.3389/fimmu.2020.02180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023] Open
Abstract
The costimulatory molecule CD226 is highly expressed on effector/memory T cells and natural killer cells. Costimulatory signals received by T cells can impact both central and peripheral tolerance mechanisms. Genetic polymorphisms in CD226 have been associated with susceptibility to type 1 diabetes and other autoimmune diseases. We hypothesized that genetic deletion of Cd226 in the non-obese diabetic (NOD) mouse would impact type 1 diabetes incidence by altering T cell activation. CD226 knockout (KO) NOD mice displayed decreased disease incidence and insulitis in comparison to wild-type (WT) controls. Although female CD226 KO mice had similar levels of sialoadenitis as WT controls, male CD226 KO mice showed protection from dacryoadenitis. Moreover, CD226 KO T cells were less capable of adoptively transferring disease compared to WT NOD T cells. Of note, CD226 KO mice demonstrated increased CD8+ single positive (SP) thymocytes, leading to increased numbers of CD8+ T cells in the spleen. Decreased percentages of memory CD8+CD44+CD62L- T cells were observed in the pancreatic lymph nodes of CD226 KO mice. Intriguingly, CD8+ T cells in CD226 KO mice showed decreased islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-tetramer and CD5 staining, suggesting reduced T cell receptor affinity for this immunodominant antigen. These data support an important role for CD226 in type 1 diabetes development by modulating thymic T cell selection as well as impacting peripheral memory/effector CD8+ T cell activation and function.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Cells, Cultured
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Gene Expression Regulation
- Glucose-6-Phosphatase/genetics
- Glucose-6-Phosphatase/metabolism
- Humans
- Immunodominant Epitopes/immunology
- Immunologic Memory
- Lymphocyte Activation
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Peripheral Tolerance
- Receptors, Antigen, T-Cell/metabolism
- Thymocytes/immunology
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Wen-I Yeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Joshua R. Longfield
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - John Gallagher
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Caridad M. Infante
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Sarah Wellford
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Scott M. Lieberman
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | | | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Tian J, Dang H, O'Laco KA, Song M, Tiu BC, Gilles S, Zakarian C, Kaufman DL. Homotaurine Treatment Enhances CD4 + and CD8 + Regulatory T Cell Responses and Synergizes with Low-Dose Anti-CD3 to Enhance Diabetes Remission in Type 1 Diabetic Mice. Immunohorizons 2019; 3:498-510. [PMID: 31636084 PMCID: PMC6823932 DOI: 10.4049/immunohorizons.1900019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Immune cells express γ-aminobutyric acid receptors (GABA-R), and GABA administration can inhibit effector T cell responses in models of autoimmune disease. The pharmacokinetic properties of GABA, however, may be suboptimal for clinical applications. The amino acid homotaurine is a type A GABA-R (GABAA-R) agonist with good pharmacokinetics and appears safe for human consumption. In this study, we show that homotaurine inhibits in vitro T cell proliferation to a similar degree as GABA but at lower concentrations. In vivo, oral homotaurine treatment had a modest ability to reverse hyperglycemia in newly hyperglycemic NOD mice but was ineffective after the onset of severe hyperglycemia. In severely diabetic NOD mice, the combination of homotaurine and low-dose anti-CD3 treatment significantly increased 1) disease remission, 2) the percentages of splenic CD4+and CD8+ regulatory T cells compared with anti-CD3 alone, and 3) the frequencies of CD4+ and CD8+ regulatory T cells in the pancreatic lymph nodes compared with homotaurine monotherapy. Histological examination of their pancreata provided no evidence of the large-scale GABAA-R agonist-mediated replenishment of islet β-cells that has been reported by others. However, we did observe a few functional islets in mice that received combined therapy. Thus, GABAA-R activation enhanced CD4+and CD8+ regulatory T cell responses following the depletion of effector T cells, which was associated with the preservation of some functional islets. Finally, we observed that homotaurine treatment enhanced β-cell replication and survival in a human islet xenograft model. Hence, GABAA-R agonists, such as homotaurine, are attractive candidates for testing in combination with other therapeutic agents in type 1 diabetes clinical trials.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Karen Anne O'Laco
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Min Song
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Bryan-Clement Tiu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Spencer Gilles
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Christina Zakarian
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Daniel L Kaufman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
10
|
Burke GW, Ciancio G, Morsi M, Figueiro J, Chen L, Vendrame F, Pugliese A. Type 1 Diabetes Recurrence After Simultaneous Pancreas-Kidney
Transplantation. CURRENT TRANSPLANTATION REPORTS 2018. [DOI: 10.1007/s40472-018-0210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Besançon A, Goncalves T, Valette F, Dahllöf MS, Mandrup-Poulsen T, Chatenoud L, You S. Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice. Diabetologia 2018; 61:389-398. [PMID: 29030662 DOI: 10.1007/s00125-017-4459-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/16/2017] [Indexed: 12/23/2022]
Abstract
AIM/HYPOTHESIS Combination therapy targeting the major actors involved in the immune-mediated destruction of pancreatic beta cells appears to be an indispensable approach to treat type 1 diabetes effectively. We hypothesised that the combination of an orally active pan-histone deacetylase inhibitor (HDACi: givinostat) with subtherapeutic doses of CD3 antibodies may provide ideal synergy to treat ongoing autoimmunity. METHODS NOD mice transgenic for the human CD3ε (also known as CD3E) chain (NOD-huCD3ε) were treated for recent-onset diabetes with oral givinostat, subtherapeutic doses of humanised CD3 antibodies (otelixizumab, 50 μg/day, 5 days, i.v.) or a combination of both drugs. Disease remission, metabolic profiles and autoreactive T cell responses were analysed in treated mice. RESULTS We demonstrated that givinostat synergised with otelixizumab to induce durable remission of diabetes in 80% of recently diabetic NOD-huCD3ε mice. Remission was obtained in only 47% of mice treated with otelixizumab alone. Oral givinostat monotherapy did not reverse established diabetes but reduced the in situ production of inflammatory cytokines (IL-1β, IL-6, TNF-α). Importantly, the otelixizumab + givinostat combination strongly improved the metabolic status of NOD-huCD3ε mice; the mice recovered the capacity to appropriately produce insulin, control hyperglycaemia and sustain glucose tolerance. Finally, diabetes remission induced by the combination therapy was associated with a significant reduction of insulitis and autoantigen-specific CD8+ T cell responses. CONCLUSIONS/INTERPRETATION HDACi and low-dose CD3 antibodies synergised to abrogate in situ inflammation and thereby improved pancreatic beta cell survival and metabolic function leading to long-lasting diabetes remission. These results support the therapeutic potential of protocols combining these two drugs, both in clinical development, to restore self-tolerance and insulin independence in type 1 diabetes.
Collapse
Affiliation(s)
- Alix Besançon
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Tania Goncalves
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Fabrice Valette
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Mattias S Dahllöf
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucienne Chatenoud
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Sylvaine You
- University Paris Descartes, Sorbonne Paris Cité, Paris, France.
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France.
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France.
| |
Collapse
|
12
|
Chen YG, Mathews CE, Driver JP. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 2018; 9:51. [PMID: 29527189 PMCID: PMC5829040 DOI: 10.3389/fendo.2018.00051] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk.
Collapse
Affiliation(s)
- Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - John P. Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: John P. Driver,
| |
Collapse
|
13
|
Lenzen S. Animal models of human type 1 diabetes for evaluating combination therapies and successful translation to the patient with type 1 diabetes. Diabetes Metab Res Rev 2017; 33. [PMID: 28692149 DOI: 10.1002/dmrr.2915] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Animal models of human type 1 diabetes will be of a great importance for the evaluation of new combination therapies with curative potential. However, reliable predictive power for successful translation to patients with type 1 diabetes is crucial. This will be particularly important in the future when evaluating success of new combination therapies that show great promise for preservation and restoration of beta cell mass and thereby reverse the type 1 diabetic hyperglycaemia. But not all spontaneous animal models are equally well suited for this purpose. The advantages and disadvantages of the three spontaneous rat models (BioBreeding diabetes-prone [BB] rat, Komeda [KDP] rat, and LEW.1AR1-iddm [IDDM] rat) as well as the NOD mouse, compared with the characteristics of human type 1 diabetes, are considered in this review.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Itoh A, Ridgway WM. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes. Immunotargets Ther 2017; 6:31-38. [PMID: 28580341 PMCID: PMC5448691 DOI: 10.2147/itt.s117264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate immunity in T1D immunotherapy.
Collapse
Affiliation(s)
- Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114:161-174. [PMID: 28532690 DOI: 10.1016/j.addr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Immunotherapy has been widely explored for applications to both augment and suppress intrinsic host immunity. Clinical achievements have seen a number of immunotherapeutic drugs displace established strategies like chemotherapy in treating immune-associated diseases. However, single drug approaches modulating an individual arm of the immune system are often incompletely effective. Imperfect mechanistic understanding and heterogeneity within disease pathology have seen monotherapies inadequately equipped to mediate complete disease remission. Recent success in applications of combinatorial immunotherapy has suggested that targeting multiple biological pathways simultaneously may be critical in treating complex immune pathologies. Drug delivery approaches through engineered biomaterials offer the potential to augment desired immune responses while mitigating toxic side-effects by localizing immunotherapy. This review discusses recent advances in immunotherapy and highlights newly explored combinatorial drug delivery approaches. Furthermore, prospective future directions for immunomodulatory drug delivery to exploit are provided.
Collapse
|
16
|
Mittermayer F, Caveney E, De Oliveira C, Fleming GA, Gourgiotis L, Puri M, Tai LJ, Turner JR. Addressing Unmet Medical Needs in Type 1 Diabetes: A Review of Drugs Under Development. Curr Diabetes Rev 2017; 13:300-314. [PMID: 27071617 PMCID: PMC5748875 DOI: 10.2174/1573399812666160413115655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The incidence of type 1 diabetes (T1D) is increasing worldwide and there is a very large need for effective therapies. Essentially no therapies other than insulin are currently approved for the treatment of T1D. Drugs already in use for type 2 diabetes and many new drugs are under clinical development for T1D, including compounds with both established and new mechanisms of action. Content of the Review: Most of the new compounds in clinical development are currently in Phase 1 and 2. Drug classes discussed in this review include new insulins, SGLT inhibitors, GLP-1 agonists, immunomodulatory drugs including autoantigens and anti-cytokines, agents that regenerate β-cells and others. Regulatory Considerations: In addition, considerations are provided with regard to the regulatory environment for the clinical development of drugs for T1D, with a focus on the United States Food and Drug Administration and the European Medicines Agency. Future opportunities, such as combination treatments of immunomodulatory and beta-cell regenerating therapies, are also discussed.
Collapse
Affiliation(s)
| | - Erica Caveney
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| | | | | | | | - Mala Puri
- Cardiovascular and Metabolic Diseases, Quintiles, Durham, NC, USA
| | | | - J. Rick Turner
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| |
Collapse
|
17
|
Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Perry DJ, Schultz AR, Hulme MA, Shuster JJ, Zou B, Wasserfall CH, Posgai AL, Mathews CE, Brusko TM, Atkinson MA, Schatz DA. Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes. Diabetes 2016; 65:3765-3775. [PMID: 27669730 PMCID: PMC5127248 DOI: 10.2337/db16-0823] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/18/2016] [Indexed: 12/17/2022]
Abstract
Low-dose antithymocyte globulin (ATG) plus pegylated granulocyte colony-stimulating factor (G-CSF) preserves β-cell function for at least 12 months in type 1 diabetes. Herein, we describe metabolic and immunological parameters 24 months following treatment. Patients with established type 1 diabetes (duration 4-24 months) were randomized to ATG and pegylated G-CSF (ATG+G-CSF) (N = 17) or placebo (N = 8). Primary outcomes included C-peptide area under the curve (AUC) following a mixed-meal tolerance test (MMTT) and flow cytometry. "Responders" (12-month C-peptide ≥ baseline), "super responders" (24-month C-peptide ≥ baseline), and "nonresponders" (12-month C-peptide < baseline) were evaluated for biomarkers of outcome. At 24 months, MMTT-stimulated AUC C-peptide was not significantly different in ATG+G-CSF (0.49 nmol/L/min) versus placebo (0.29 nmol/L/min). Subjects treated with ATG+G-CSF demonstrated reduced CD4+ T cells and CD4+/CD8+ T-cell ratio and increased CD16+CD56hi natural killer cells (NK), CD4+ effector memory T cells (Tem), CD4+PD-1+ central memory T cells (Tcm), Tcm PD-1 expression, and neutrophils. FOXP3+Helios+ regulatory T cells (Treg) were elevated in ATG+G-CSF subjects at 6, 12, and 18 but not 24 months. Immunophenotyping identified differential HLA-DR expression on monocytes and NK and altered CXCR3 and PD-1 expression on T-cell subsets. As such, a group of metabolic and immunological responders was identified. A phase II study of ATG+G-CSF in patients with new-onset type 1 diabetes is ongoing and may support ATG+G-CSF as a prevention strategy in high-risk subjects.
Collapse
Affiliation(s)
- Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Stephen E Gitelman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Peter A Gottlieb
- Department of Pediatrics and Medicine, University of Colorado, Denver, CO
| | - Aaron W Michels
- Department of Pediatrics and Medicine, University of Colorado, Denver, CO
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Andrew R Schultz
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Maigan A Hulme
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Jonathan J Shuster
- Department of Health Outcomes and Policy, University of Florida, Gainesville, FL
| | - Baiming Zou
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pediatrics, University of Florida, Gainesville, FL
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| |
Collapse
|
18
|
Haller MJ, Atkinson MA, Wasserfall CH, Brusko TM, Mathews CE, Hulme M, Cintron M, Shuster J, McGrail K, Posgai A, Schatz D. Mobilization without immune depletion fails to restore immunological tolerance or preserve beta cell function in recent onset type 1 diabetes. Clin Exp Immunol 2015; 183:350-7. [PMID: 26462724 DOI: 10.1111/cei.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 12/12/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been used to restore immune competence following chemoablative cancer therapy and to promote immunological tolerance in certain settings of autoimmunity. Therefore, we tested the potential of G-CSF to impact type 1 diabetes (T1D) progression in patients with recent-onset disease [n = 14; n = 7 (placebo)] and assessed safety, efficacy and mechanistic effects on the immune system. We hypothesized that pegylated G-CSF (6 mg administered subcutaneously every 2 weeks for 12 weeks) would promote regulatory T cell (Treg) mobilization to a degree capable of restoring immunological tolerance, thus preventing further decline in C-peptide production. Although treatment was well tolerated, G-CSF monotherapy did not affect C-peptide production, glycated haemoglobin (HbA1c) or insulin dose. Mechanistically, G-CSF treatment increased circulating neutrophils during the 12-week course of therapy (P < 0·01) but did not alter Treg frequencies. No effects were observed for CD4(+) : CD8(+) T cell ratio or the ratio of naive : memory (CD45RA(+)/CD45RO(+)) CD4(+) T cells. As expected, manageable bone pain was common in subjects receiving G-CSF, but notably, no severe adverse events such as splenomegaly occurred. This study supports the continued exploration of G-CSF and other mobilizing agents in subjects with T1D, but only when combined with immunodepleting agents where synergistic mechanisms of action have previously demonstrated efficacy towards the preservation of C-peptide.
Collapse
Affiliation(s)
- M J Haller
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| | - M A Atkinson
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA.,Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C H Wasserfall
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - T M Brusko
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C E Mathews
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - M Hulme
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - M Cintron
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| | - J Shuster
- Health Outcomes and Policy, University of Florida, Gainesville, FL, USA
| | - K McGrail
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - A Posgai
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - D Schatz
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Mathews CE, Xue S, Posgai A, Lightfoot YL, Li X, Lin A, Wasserfall C, Haller MJ, Schatz D, Atkinson MA. Acute Versus Progressive Onset of Diabetes in NOD Mice: Potential Implications for Therapeutic Interventions in Type 1 Diabetes. Diabetes 2015; 64:3885-90. [PMID: 26216853 PMCID: PMC4613974 DOI: 10.2337/db15-0449] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
Most natural history models for type 1 diabetes (T1D) propose that overt hyperglycemia results after a progressive loss of insulin-secreting β-cell mass and/or function. To experimentally address this concept, we prospectively determined morning blood glucose measurements every other day in multiple cohorts (total n = 660) of female NOD/ShiLtJ mice starting at 8 weeks of age until diabetes onset or 26 weeks of age. Consistent with this notion, a majority of mice that developed diabetes (354 of 489 [72%]) displayed a progressive increase in blood glucose with transient excursions >200 mg/dL, followed by acute and persistent hyperglycemia at diabetes onset. However, 135 of the 489 (28%) diabetic animals demonstrated normal glucose values followed by acute (i.e., sudden) hyperglycemia. Interestingly, diabetes onset occurred earlier in mice with acute versus progressive disease onset (15.37 ± 0.3207 vs. 17.44 ± 0.2073 weeks of age, P < 0.0001). Moreover, the pattern of onset (i.e., progressive vs. acute) dramatically influenced the ability to achieve reversal of T1D by immunotherapeutic intervention, with increased effectiveness observed in situations of a progressive deterioration in euglycemia. These studies highlight a novel natural history aspect in this animal model, one that may provide important guidance for the selection of subjects participating in human trials seeking disease reversal.
Collapse
Affiliation(s)
| | - Song Xue
- Department of Pathology, University of Florida, Gainesville, FL
| | - Amanda Posgai
- Department of Pathology, University of Florida, Gainesville, FL
| | | | - Xia Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Andrea Lin
- Department of Pathology, University of Florida, Gainesville, FL
| | | | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL
| |
Collapse
|