1
|
Eisenson DL, Iwase H, Chen W, Hisadome Y, Cui W, Santillan MR, Schulick AC, Gu D, Maxwell A, Koenig K, Sun Z, Warren D, Yamada K. Combined islet and kidney xenotransplantation for diabetic nephropathy: an update in ongoing research for a clinically relevant application of porcine islet transplantation. Front Immunol 2024; 15:1351717. [PMID: 38476227 PMCID: PMC10927755 DOI: 10.3389/fimmu.2024.1351717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Combined islet and kidney xenotransplantation for the treatment of diabetic nephropathy represents a compelling and increasingly relevant therapeutic possibility for an ever-growing number of patients who would benefit from both durable renal replacement and cure of the underlying cause of their renal insufficiency: diabetes. Here we briefly review immune barriers to islet transplantation, highlight preclinical progress in the field, and summarize our experience with combined islet and kidney xenotransplantation, including both challenges with islet-kidney composite grafts as well as our recent success with sequential kidney followed by islet xenotransplantation in a pig-to-baboon model.
Collapse
Affiliation(s)
- Daniel L. Eisenson
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hayato Iwase
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weili Chen
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wanxing Cui
- Cell Therapy and Manufacturing, Medstar Georgetown University Hospital, Washington DC, United States
| | - Michelle R. Santillan
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander C. Schulick
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Du Gu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amanda Maxwell
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristy Koenig
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel Warren
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Yamada K, Eisenson DL, Chen X, Ji L, Santillan MR, Moore A. Vascularized Islet Transplantation as Composite Islet-Kidney Grafts with Nanoparticle-Labeled Islets in Large Animal Preclinical Transplant Models. Methods Mol Biol 2023; 2592:233-249. [PMID: 36507998 PMCID: PMC11462519 DOI: 10.1007/978-1-0716-2807-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although there are many patients with diabetes and end-stage renal failure (DM/ESRD) who would benefit from a transplantation strategy that addresses both their ESRD and its underlying cause, current methods of islet and kidney transplantation using live donors have had only limited success. The first major obstacle is that the number of islets obtained from a live donor partial pancreatectomy is generally insufficient to cure diabetes in recipients, as large numbers of intraportally administered islets are lost due to ischemia before they are engrafted and vascularized in the recipient liver. To overcome this hurdle, we have developed a strategy to transplant islets as a vascularized graft. Autologous prevascularization of donor islets under the donor's own renal capsule prior to transplantation preserves islets and thus achieves normal glycemic control in diabetic recipients in our preclinical transplant models with a limited donor pancreas resection. In addition, from an immunological perspective, the innate tolerogenic qualities of the kidney provide immunoprotection for the engrafted, vascularized islets when they are transplanted as part of the composite islet-kidney (I-K) grafts. This "Trojan Horse" approach of transplanting a composite I-K eliminates the lengthy time which is otherwise required for vascularization of intraportally administered free islets, minimizing loss of islets to ischemic damage and facilitating the induction of tolerance. We have also recently developed a strategy to further minimize the required size of resected donor pancreas to prepare composite I-K graft using a novel, synthesized, small interfering RNA (siRNA)-nanoparticle probe. In this chapter, we introduce our living donor transplantation strategy to cure diabetic nephropathy using composite I-K graft.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Daniel L Eisenson
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaojuan Chen
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Lei Ji
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle R Santillan
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Synthesis of siRNA-Conjugated Dextran-Coated Iron Oxide Nanoparticles for Islet Protection During Transplantation and Noninvasive Imaging. Methods Mol Biol 2022; 2592:163-174. [PMID: 36507992 DOI: 10.1007/978-1-0716-2807-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation (Tx) has a lifesaving potential for type 1 diabetes (T1D) patients. Islet damage during and after transplantation is one of the major reasons hampering its wide clinical application. Inability to monitor transplanted islets also severely limits our understanding of mechanisms regarding declining graft function after transplantation. Our team has proposed to use magnetic nanoparticles conjugated to siRNA (MN-siRNA) to label islets prior to transplantation with two goals in mind: to protect them from damage by silencing harmful genes and to monitor them after transplantation using noninvasive magnetic resonance imaging (MRI). This manuscript provides a step-by-step protocol for the synthesis and characterization of MN-siRNA probes.
Collapse
|
4
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
5
|
Wang W, Teng Y, Xue JJ, Cai HK, Pan YB, Ye XN, Mao XL, Li SW. Nanotechnology in Kidney and Islet Transplantation: An Ongoing, Promising Field. Front Immunol 2022; 13:846032. [PMID: 35464482 PMCID: PMC9024121 DOI: 10.3389/fimmu.2022.846032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Organ transplantation has evolved rapidly in recent years as a reliable option for patients with end-stage organ failure. However, organ shortage, surgical risks, acute and chronic rejection reactions and long-term immunosuppressive drug applications and their inevitable side effects remain extremely challenging problems. The application of nanotechnology in medicine has proven highly successful and has unique advantages for diagnosing and treating diseases compared to conventional methods. The combination of nanotechnology and transplantation brings a new direction of thinking to transplantation medicine. In this article, we provide an overview of the application and progress of nanotechnology in kidney and islet transplantation, including nanotechnology for renal pre-transplantation preservation, artificial biological islets, organ imaging and drug delivery.
Collapse
Affiliation(s)
- Wei Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya Teng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ji-Ji Xue
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hong-Kai Cai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yu-Biao Pan
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Xing-Nan Ye
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xin-Li Mao, ; Shao-Wei Li,
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xin-Li Mao, ; Shao-Wei Li,
| |
Collapse
|
6
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
7
|
Kharbikar BN, Zhong JX, Cuylear DL, Perez CA, Desai TA. Theranostic biomaterials for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19. [PMID: 35529078 PMCID: PMC9075690 DOI: 10.1016/j.cobme.2021.100299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue engineering strategies, notably biomaterials, can be modularly designed and tuned to match specific patient needs. Although many challenges within tissue engineering remain, the incorporation of diagnostic strategies to create theranostic (combined therapy and diagnostic) biomaterials presents a unique platform to provide dual monitoring and treatment capabilities and advance the field toward personalized technologies. In this review, we summarize recent developments in this young field of regenerative theranostics and discuss the clinical potential and outlook of these systems from a tissue engineering perspective. As the need for precision and personalized medicines continues to increase to address diseases in all tissues in a patient-specific manner, we envision that such theranostic platforms can serve these needs.
Collapse
|
8
|
Sun A, Hayat H, Liu S, Tull E, Bishop JO, Dwan BF, Gudi M, Talebloo N, Dizon JR, Li W, Gaudet J, Alessio A, Aguirre A, Wang P. 3D in vivo Magnetic Particle Imaging of Human Stem Cell-Derived Islet Organoid Transplantation Using a Machine Learning Algorithm. Front Cell Dev Biol 2021; 9:704483. [PMID: 34458264 PMCID: PMC8397508 DOI: 10.3389/fcell.2021.704483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Stem cell-derived islet organoids constitute a promising treatment of type 1 diabetes. A major hurdle in the field is the lack of appropriate in vivo method to determine graft outcome. Here, we investigate the feasibility of in vivo tracking of transplanted stem cell-derived islet organoids using magnetic particle imaging (MPI) in a mouse model. Human induced pluripotent stem cells-L1 were differentiated to islet organoids and labeled with superparamagnetic iron oxide nanoparticles. The phantoms comprising of different numbers of labeled islet organoids were imaged using an MPI system. Labeled islet organoids were transplanted into NOD/scid mice under the left kidney capsule and were then scanned using 3D MPI at 1, 7, and 28 days post transplantation. Quantitative assessment of the islet organoids was performed using the K-means++ algorithm analysis of 3D MPI. The left kidney was collected and processed for immunofluorescence staining of C-peptide and dextran. Islet organoids expressed islet cell markers including insulin and glucagon. Image analysis of labeled islet organoids phantoms revealed a direct linear correlation between the iron content and the number of islet organoids. The K-means++ algorithm showed that during the course of the study the signal from labeled islet organoids under the left kidney capsule decreased. Immunofluorescence staining of the kidney sections showed the presence of islet organoid grafts as confirmed by double staining for dextran and C-peptide. This study demonstrates that MPI with machine learning algorithm analysis can monitor islet organoids grafts labeled with super-paramagnetic iron oxide nanoparticles and provide quantitative information of their presence in vivo.
Collapse
Affiliation(s)
- Aixia Sun
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Hasaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,Lyman Briggs College, Michigan State University, East Lansing, MI, United States
| | - Sihai Liu
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States.,Department of Orthopedics, Beijing Charity Hospital, Capital Medical University, Beijing, China
| | - Eliah Tull
- Medgar Evers College, City University of New York, Brooklyn, NY, United States
| | - Jack Owen Bishop
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,Department of Neuroscience, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Bennett Francis Dwan
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Mithil Gudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,Lyman Briggs College, Michigan State University, East Lansing, MI, United States
| | - Nazanin Talebloo
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - James Raynard Dizon
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Wen Li
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Jeffery Gaudet
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,Magnetic Insight Inc., Alameda, CA, United States
| | - Adam Alessio
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,Department of Computational Mathematics, Science and Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, United States.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Pomposelli T, Schuetz C, Wang P, Yamada K. A Strategy to Simultaneously Cure Type 1 Diabetes and Diabetic Nephropathy by Transplant of Composite Islet-Kidney Grafts. Front Endocrinol (Lausanne) 2021; 12:632605. [PMID: 34054721 PMCID: PMC8153710 DOI: 10.3389/fendo.2021.632605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years islet cell transplant has proven itself to be a viable clinical option for a select group of diabetic patients. Graft loss after transplant however continues to hinder the long-term success of the procedure. Transplanting the islets as a pre-vascularized composite islet-kidney graft has emerged as a relevant solution. Much groundbreaking research has been done utilizing this model in conjunction with strategies aimed towards islet cell survival and prolongation of function in the host. Transplanting the islet cells as a prevascularized graft under the capsule of the donor kidney as a composite islet-kidney graft has been shown to provide long term durable blood glucose control in large animal studies by limiting graft apoptosis as well as providing a physical barrier against the host immune response. While promising, this technique is limited by long term immunosuppression requirements of the host with its well-known adverse sequelae. Research into tolerance inducing strategies of the host to the allogeneic and xenogeneic islet-kidney graft has shown much promise in the avoidance of long-term immunosuppression. In addition, utilizing xenogeneic tissue grafts could provide a near-limitless supply of organs. The islet-kidney model could provide a durable and long-term cure for diabetes. Here we summarize the most recent data, as well as groundbreaking strategies to avoid long term immunosuppression and promote graft acceptance.
Collapse
Affiliation(s)
- Thomas Pomposelli
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Christian Schuetz
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Demine S, Schulte ML, Territo PR, Eizirik DL. Beta Cell Imaging-From Pre-Clinical Validation to First in Man Testing. Int J Mol Sci 2020; 21:E7274. [PMID: 33019671 PMCID: PMC7582644 DOI: 10.3390/ijms21197274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.
Collapse
Affiliation(s)
- Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
| | - Michael L. Schulte
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
| | - Paul R. Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Decio L. Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
11
|
Current Progress and Perspective: Clinical Imaging of Islet Transplantation. Life (Basel) 2020; 10:life10090213. [PMID: 32961769 PMCID: PMC7555367 DOI: 10.3390/life10090213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Islet transplantation has great potential as a cure for type 1 diabetes. At present; the lack of a clinically validated non-invasive imaging method to track islet grafts limits the success of this treatment. Some major clinical imaging modalities and various molecular probes, which have been studied for non-invasive monitoring of transplanted islets, could potentially fulfill the goal of understanding pathophysiology of the functional status and viability of the islet grafts. In this current review, we summarize the recent clinical studies of a variety of imaging modalities and molecular probes for non-invasive imaging of transplanted beta cell mass. This review also includes discussions on in vivo detection of endogenous beta cell mass using clinical imaging modalities and various molecular probes, which will be useful for longitudinally detecting the status of islet transplantation in Type 1 diabetic patients. For the conclusion and perspectives, we highlight the applications of multimodality and novel imaging methods in islet transplantation.
Collapse
|