1
|
Kwon HJ, Jung HY, Choi SY, Hwang IK, Kim DW, Shin MJ. TAT-PPA1 protects against oxidative stress-induced loss of dopaminergic neurons. Mol Cell Neurosci 2024; 131:103978. [PMID: 39488259 DOI: 10.1016/j.mcn.2024.103978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) of the midbrain, resulting in severe motor impairments. Inorganic pyrophosphatase 1 (PPA1) plays a key role in various biological processes, and this study introduces a cell-penetrating PPA1 fusion protein (TAT-PPA1) to explore its transduction into cells and brain tissues. TAT-PPA1 effectively penetrates SH-SY5Y cells and the SN region of PD animal models without toxicity, exhibiting protective effects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-)-induced cell death. TAT-PPA1 revealed an inhibitory influence on the MAPK signaling pathway and MPTP-induced reactive oxygen species (ROS) production. TAT-PPA1 suppresses JNK, AKT, p53, ERK, and p38 phosphorylation, showcasing its multifaceted role in cell survival pathways. In the MPTP-induced PD animal model, TAT-PPA1 prevents dopaminergic cell death and enhances motor function. This study shows that TAT-PPA1 protects against oxidative stress and cell death in neurodegenerative diseases, suggesting potential as a PD treatment.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
2
|
Wu Y, Sun Y, Song Y, Wang J, Han Y, Yang N, Lin H, Yin Y, Han X. PPA1 promotes adipogenesis by regulating the stability of C/EBPs. Cell Death Differ 2024; 31:1044-1056. [PMID: 38762596 PMCID: PMC11303681 DOI: 10.1038/s41418-024-01309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024] Open
Abstract
Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinβ and δ (C/EBPβ and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Sun
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqing Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiateng Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Zheng S, Zheng C, Chen S, Guo J, Huang L, Huang Z, Xu S, Wu Y, Li S, Lin J, You Y, Hu F. Structural and biochemical characterization of active sites mutant in human inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2024; 1868:130594. [PMID: 38428647 DOI: 10.1016/j.bbagen.2024.130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Inorganic pyrophosphatases (PPases) are enzymes that catalyze the conversion of inorganic pyrophosphate (PPi) into phosphate (Pi). Human inorganic pyrophosphatase 1 (Hu-PPase) exhibits high expression levels in a variety of tumors and plays roles in cell proliferation, apoptosis, invasion and metastasis, making it a promising prognostic biomarker and a target for cancer therapy. Despite its widespread presence, the catalytic mechanism of Hu-PPase in humans remains inadequately understood. The signature motif amino acid sequence (DXDPXD) within the active sites of PPases is preserved across different species. In this research, an enzymatic activity assay revealed that mutations led to a notable reduction in enzymatic function, although the impact of the four amino acids on the activity of the pocket varied. To investigate the influence of these residues on the substrate binding and enzymatic function of PPase, the crystal structure of the Hu-PPase-ED quadruple mutant (D116A/D118A/P119A/D121A) was determined at 1.69 Å resolution. The resulting structure maintained a barrel-like shape similar to that of the wild-type, albeit lacking Mg2+ ions. Molecular docking analysis demonstrated a decreased ability of Hu-PPase-ED to bind to PPi. Further, molecular dynamics simulation analysis indicated that the mutation rendered the loop of Mg2+ ion-binding residues less stable. Therefore, the effect on enzyme activity did not result from a change in the gross protein structure but rather from a mutation that abolished the Mg2+-coordinating groups, thereby eliminating Mg2+ binding and leading to the loss of enzyme activity.
Collapse
Affiliation(s)
- Shuping Zheng
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Chenhua Zheng
- Experiment Teaching Center of Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sishi Chen
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Jianpeng Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| | - Lirui Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhenhong Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sunting Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yihan Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shunfa Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junjin Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Yiqing You
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Achleitner MT, Jans JJM, Ebner L, Spenger J, Konstantopoulou V, Feichtinger RG, Brugger K, Mayr D, Wevers RA, Thiel C, Wortmann SB, Mayr JA. PPA1 Deficiency Causes a Deranged Galactose Metabolism Recognizable in Neonatal Screening. Metabolites 2023; 13:1141. [PMID: 37999237 PMCID: PMC10673274 DOI: 10.3390/metabo13111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Two siblings showed increased galactose and galactose-related metabolites in neonatal screening. Diagnostic workup did not reveal abnormalities in any of the known disease-causing enzymes involved in galactose metabolism. Using whole-exome sequencing, we identified a homozygous missense variant in PPA1 encoding the cytosolic pyrophosphatase 1 (PPA1), c.557C>T (p.Thr186Ile). The enzyme activity of PPA1 was determined using a colorimetric assay, and the protein content was visualized via western blotting in skin fibroblasts from one of the affected individuals. The galactolytic activity of the affected fibroblasts was determined by measuring extracellular acidification with a Seahorse XFe96 analyzer. PPA1 activity decreased to 22% of that of controls in the cytosolic fraction of homogenates from patient fibroblasts. PPA1 protein content decreased by 50% according to western blot analysis, indicating a reduced stability of the variant protein. The extracellular acidification rate was reduced in patient fibroblasts when galactose was used as a substrate. Untargeted metabolomics of blood samples revealed an elevation of other metabolites related to pyrophosphate metabolism. Besides hyperbilirubinemia in the neonatal period in one child, both children were clinically unremarkable at the ages of 3 and 14 years, respectively. We hypothesize that the observed metabolic derangement is a possible mild manifestation of PPA1 deficiency. Unresolved abnormalities in galactosemia screening might result in the identification of more individuals with PPA1 deficiency, a newly discovered inborn metabolic disorder (IMD).
Collapse
Affiliation(s)
- Melanie T. Achleitner
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
| | - Judith J. M. Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Laura Ebner
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
| | - Johannes Spenger
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
| | - Vassiliki Konstantopoulou
- Department of Pediatrics, Austrian Newborn Screening, Medical University of Vienna, 1090 Vienna, Austria;
| | - René G. Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
| | - Karin Brugger
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
| | - Doris Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
| | - Ron A. Wevers
- Department of Human Genetics, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Pediatrics I, University Heidelberg, Analysezentrum 3, 69120 Heidelberg, Germany;
| | - Saskia B. Wortmann
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
- Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Johannes A. Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK), Paracelsus Medical University, 5020 Salzburg, Austria; (M.T.A.); (L.E.); (J.S.); (R.G.F.); (K.B.); (D.M.); (S.B.W.)
| |
Collapse
|
5
|
Sun Y, Yao J, Lu C, Yang N, Han X, Lin H, Yin Y. Cold-inducible PPA1 is critical for the adipocyte browning in mice. Biochem Biophys Res Commun 2023; 677:45-53. [PMID: 37549601 DOI: 10.1016/j.bbrc.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Promoting the thermogenic capacity of brown/beige adipocytes is becoming a promising strategy to counteract obesity and related metabolic diseases. Inorganic pyrophosphatase 1 (PPA1) is an enzyme that catalyzes the hydrolysis of PPi to Pi, and its presence is required for anabolism to take place in cells. Our previous study demonstrated the importance of PPA1 in maintaining adipose tissue function and whole-body metabolic homeostasis. In this study, we found that the expression of PPA1 was positively associated with the thermogenic capacity of brown/beige adipocytes. PPA1+/- mice exhibited less browning capacity in subcutaneous white adipose tissue compared to wild-type mice and also showed apparent cold intolerance. We found that decreased PPA1 abundance may lead to mitochondrial dysfunction and inhibited adipocyte browning both in vivo and in vitro. Furthermore, our study also revealed that PPA1 worked as a new target gene of nuclear respiratory factor 1 (NRF1), a major transcription regulator of mitochondrial biogenesis. Together, our findings indicated an essential role of PPA1 in mitochondrial function and browning in adipocytes and suggested PPA1 as a new therapeutic target for increasing thermogenesis to combat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingxin Yao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang Lu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Marshall K, Twum Y, Gao W. Proteome derangement in malignant epithelial cells and its stroma following exposure to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Arch Toxicol 2023; 97:711-720. [PMID: 36434399 PMCID: PMC10071504 DOI: 10.1007/s00204-022-03426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Discovering novel changes in the proteome of malignant lung epithelial cells and/or the tumor-microenvironment is paramount for diagnostic, prognostic, and/or therapy development. A time-dependent 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumor model was used to screen the proteome of lung tumors. NNK-transformed human lung epithelial BEAS-2B cells were then established to evaluate the epithelial cell-specific protein changes. A duration-dependent increase of tumor burden was observed in NNK-treated mice, 2/12 (17%), 8/12 (67%), 9/12 (75%), and 10/10 (100%) at weeks 8, 12, 16, and 20 after the NNK exposure, respectively. A total of 25 differentially expressed proteins (≥ twofold change), predominantly structural, signaling, and metabolic proteins, were detected by two-dimensional difference gel electrophoresis and identified by mass spectrometry. Calregulin, ezrin, histamine releasing factor (HRF), and inorganic pyrophosphatase 1 (PPA1) exhibited changes and were further confirmed via immunoblotting. In addition, immunohistochemistry (IHC) analysis indicated upregulated E-cadherin and decreased vimentin expression in epithelial cells of tumor tissues. Acquisition of a neoplastic phenotype in NNK-transformed BEAS-2B cells was demonstrated by enhanced wound closure and increased anchorage independent colony formation. In transformed BEAS-2B cells, protein expression of E-cadherin, ezrin, and PPA1 (but not calregulin and HRF) was upregulated, as was observed in tumor tissues IHC staining using mouse lung tumor tissues further revealed that HRF upregulation was not lung epithelial cell specific. Altogether, tumorigenesis after NNK exposure may be initiated by protein dysregulation in lung epithelial cells together with proteome derangement derived from other cell types existing in the tumor-microenvironment.
Collapse
Affiliation(s)
- Kent Marshall
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University, School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
| | - Yaw Twum
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA.
| |
Collapse
|
7
|
Kim E, Ham SA, Hwang JS, Won JP, Lee HG, Hur J, Seo HG. Zinc finger protein 251 deficiency impairs glucose metabolism by inducing adipocyte hypertrophy. Mol Cell Endocrinol 2023; 562:111838. [PMID: 36565788 DOI: 10.1016/j.mce.2022.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Zinc finger protein (ZFP) 251 is a member of the C2H2 ZFP family containing a Krüppel-associated box domain that might mainly act as a transcriptional repressor. However, its cellular function remains largely unknown. Here, we discovered that ZFP251 deficiency caused glucose intolerance in mice. This phenotype was associated with impaired insulin signaling due to hypertrophic changes in white adipose tissue (WAT). Gene ontology analysis revealed that ZFP251 deficiency affected the expression of genes associated with adipocyte differentiation and lipid and fatty acid metabolism. Consistent with in vivo results, hypertrophic changes were observed in Zfp251 knockdown (KD) 3T3-L1 adipocytes. In addition, Zfp251 KD 3T3-L1 preadipocytes exhibited cell cycle arrest in G0/G1 phase, leading to impaired differentiation into mature adipocytes, upon which abnormal mitotic clonal expansion and reduced expression of adipogenic markers were exhibited. These results suggest that ZFP251 deficiency causes impaired adipogenesis and adipocyte hypertrophy, leading to dysfunction of WAT.
Collapse
Affiliation(s)
- Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sun Ah Ham
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Wang S, Wei J, Li S, Luo Y, Li Y, Wang X, Shen W, Luo D, Liu D. PPA1, an energy metabolism initiator, plays an important role in the progression of malignant tumors. Front Oncol 2022; 12:1012090. [PMID: 36505776 PMCID: PMC9733535 DOI: 10.3389/fonc.2022.1012090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Inorganic pyrophosphatase (PPA1) encoded by PPA1 gene belongs to Soluble Pyrophosphatases (PPase) family and is expressed widely in various tissues of Homo sapiens, as well as significantly in a variety of malignancies. The hydrolysis of inorganic pyrophosphate (PPi) to produce orthophosphate (Pi) not only dissipates the negative effects of PPi accumulation, but the energy released by this process also serves as a substitute for ATP. PPA1 is highly expressed in a variety of tumors and is involved in proliferation, invasion, and metastasis during tumor development, through the JNK/p53, Wnt/β-catenin, and PI3K/AKT/GSK-3β signaling pathways. Because of its remarkable role in tumor development, PPA1 may serve as a biological target for adjuvant therapy of tumor malignancies. Further, PPA1 is a potential biomarker to predict survival in patients with cancer, where the assessment of its transcriptional regulation can provide an in-depth understanding. Herein, we describe the signaling pathways through which PPA1 regulates malignant tumor progression and provide new insights to establish PPA1 as a biomarker for tumor diagnosis.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China,College of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Jianmei Wei
- Department of Clinical Pharmacy, The Third Affiliated Hospital of Zunyi Medical University (The First People' s Hospital of Zunyi), Zunyi, China
| | - Shunwei Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Yuyin Luo
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China,College of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yifei Li
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Xianglin Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China,College of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China,*Correspondence: Daishun Liu, ; Dehong Luo, ; Wenzhi Shen,
| | - Dehong Luo
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China,*Correspondence: Daishun Liu, ; Dehong Luo, ; Wenzhi Shen,
| | - Daishun Liu
- College of Clinical Medicine, Zunyi Medical University, Zunyi, China,*Correspondence: Daishun Liu, ; Dehong Luo, ; Wenzhi Shen,
| |
Collapse
|
9
|
Multi-Ingredient Supplement Supports Mitochondrial Health through Interleukin-15 Signaling in Older Adult Human Dermal Fibroblasts. COSMETICS 2022. [DOI: 10.3390/cosmetics9030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The macroscopic and microscopic deterioration of human skin with age is, in part, attributed to a functional decline in mitochondrial health. We previously demonstrated that exercise attenuated age-associated changes within the skin through enhanced mitochondrial health via IL-15 signaling, an exercise-induced cytokine whose presence increases in circulation following physical activity. The purpose of this investigation was to determine if these mitochondrial-enhancing effects could be mimicked with the provision of a novel multi-ingredient supplement (MIS). Cultured human fibroblasts isolated from older, sedentary women were treated with control media (CON) or CON supplemented with the following active ingredients to create the MIS: coenzyme Q10, alpha lipoic acid, resveratrol, curcumin, zinc, lutein, astaxanthin, copper, biotin, and vitamins C, D, and E. Outcomes were determined following 24 or 72 h of treatment. MIS provision to dermal fibroblasts significantly increased the mRNA abundance of mitochondrial biogenesis activators and downstream IL-15 signaling pathways, and proteins for oxidative phosphorylation subunits and antioxidant defenses. These findings were co-temporal with lower cellular senescence and cytotoxicity following MIS treatment. In summary, MIS supplementation led to exercise-mimetic effects on human dermal fibroblasts and their mitochondria by reproducing the molecular and biochemical effects downstream of IL-15 activation.
Collapse
|