1
|
Zhang F, Han Y, Mao Y, Li W. Associations between non-insulin-based insulin resistance indices and diabetic nephropathy in patients with diabetes mellitus in US adults: a cross-sectional study of NHANES 1999-2018. Front Endocrinol (Lausanne) 2024; 15:1458521. [PMID: 39720248 PMCID: PMC11666371 DOI: 10.3389/fendo.2024.1458521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Objective This study investigated the associations between non-insulin-based insulin resistance indices (METS-IR, TyG, TG/HDL, and TyG-BMI) and the risk of diabetic nephropathy (DN) in US adults with diabetes mellitus (DM). Methods This study was based on the 1999-2018 National Health and Nutrition Examination Survey (NHANES) database and included 6,891 patients with DM for cross-sectional analysis. Multivariate adjusted models and restricted cubic spline (RCS) models were employed to assess the association between the insulin resistance index and the risk of DN. Subgroup analyses were conducted to explore the impact of different population characteristics. Results The results indicated that higher quartiles of METS-IR, TyG, TG/HDL, and TyG-BMI were associated with a significantly increased risk of DN. After adjusting for multiple covariates, including gender, age, and race, the associations between these indices and the risk of DN remained significant, with corresponding odds ratios (ORs) of 1.51 (95% confidence interval [CI]: 1.29-1.76), 2.06 (95% CI: 1.77-2.40), 1.61 (95% CI: 1.38-1.88), and 1.57 (95% CI: 1.35-1.84), with all P-values less than 0.001. RCS analysis indicated a nonlinear relationship between these indices and the risk of DN. The TyG index exhibited a highly consistent association with the risk of DN in all models. Conclusion Non-insulin-based insulin resistance indices are significantly associated with the risk of DN. The TyG index is a superior tool for assessing the risk of DN. These indices can assist in identifying patients at risk of DN, thereby enabling the implementation of more effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Fan Zhang
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Endocrinology, Changzhou Third People’s Hospital, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People’s Hospital, Changzhou, China
| | - Yan Han
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Endocrinology, Changzhou Third People’s Hospital, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People’s Hospital, Changzhou, China
| | - Yonghua Mao
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Endocrinology, Changzhou Third People’s Hospital, Changzhou, China
| | - Wenjian Li
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Urology, Changzhou Third People’s Hospital, Changzhou, China
| |
Collapse
|
2
|
Du Y, Wu M, Song S, Bian Y, Shi Y. TXNIP deficiency attenuates renal fibrosis by modulating mTORC1/TFEB-mediated autophagy in diabetic kidney disease. Ren Fail 2024; 46:2338933. [PMID: 38616177 PMCID: PMC11018024 DOI: 10.1080/0886022x.2024.2338933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/30/2024] [Indexed: 04/16/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.
Collapse
Affiliation(s)
- Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yawei Bian
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
4
|
García-Caballero C, Guerrero-Hue M, Vallejo-Mudarra M, Palomino Antolin A, Decouty-Pérez C, Sánchez-Mendoza LM, Villalba JM, González-Reyes JA, Opazo-Rios L, Vázquez-Carballo C, Herencia C, Leiva-Cepas F, Cortegano I, Andrés BD, Egido J, Egea J, Moreno JA. Nox4 is involved in acute kidney injury associated to intravascular hemolysis. Free Radic Biol Med 2024; 225:430-444. [PMID: 39413979 DOI: 10.1016/j.freeradbiomed.2024.10.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Massive intravascular hemolysis occurs not unfrequently in many clinical conditions. Breakdown of erythrocytes promotes the accumulation of heme-derivates in the kidney, increasing oxidative stress and cell death, thus promoting acute kidney injury (AKI). NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in the kidney, however it is unknown the role of Nox4 in hemolysis and whether inhibition of this enzyme may protect from heme-mediated injury. To answer these questions, we elicited intravascular hemolysis in wild type and Nox4 knockout mice. We also evaluated whether nephrotoxic effects of heme may be reduced by using Nox4 siRNA and pharmacologic inhibition with GKT137831, a Nox4 inhibitor, both in vivo and in cultured renal cells. Our results showed that induction of massive hemolysis elicited AKI characterized by loss of renal function, morphological alterations of the tubular epithelium and podocytes, oxidative stress, inflammation, mitochondrial dysfunction, blockade of autophagy and cell death. These pathological effects were significantly prevented in Nox4-deficient mice and in animals treated with GKT137831. In vitro studies showed that Nox4 disruption by specific siRNAs or Nox4 inhibitors declined heme-mediated ROS production and cell death. Our data identify Nox4 as a key enzyme involved in intravascular hemolysis-induced AKI. Thus, Nox4 inhibition may be a potential therapeutic approach to prevent renal damage in patients with severe hemolytic crisis.
Collapse
Affiliation(s)
- Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Alejandra Palomino Antolin
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Celine Decouty-Pérez
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Luz Marina Sánchez-Mendoza
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - José Antonio González-Reyes
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - Lucas Opazo-Rios
- Health Science Faculty, University of Las Américas, Concepción, Talcahuano, Chile.
| | - Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain.
| | - Carmen Herencia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain.
| | - Fernando Leiva-Cepas
- Departament of Morphological and Sociosanitary Sciences, Pathology Unit, Faculty of Medicine and Nurse, University of Cordoba/Pathology Unit, Hospital Universitario Reina Sofía, Cordoba, Spain.
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain.
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain.
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Javier Egea
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| |
Collapse
|
5
|
Azarova I, Klyosova E, Azarova V, Polonikov A. NADPH oxidase 5 is a novel susceptibility gene for type 2 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230527. [PMID: 39529984 PMCID: PMC11554360 DOI: 10.20945/2359-4292-2023-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/10/2024] [Indexed: 11/16/2024]
Abstract
Objective This pilot study investigated whether single nucleotide polymorphisms (SNP) in the NOX5 gene (NADPH oxidase 5) are associated with the type 2 diabetes (T2D) risk. Subjects and methods A total of 1579 patients with T2D and 1627 age- and sex-matched healthy subjects were recruited for this study. Genotyping of common SNPs, namely rs35672233, rs3743093, rs2036343, rs311886, and rs438866, was performed using the MassArray-4 system. Results SNP rs35672233 was associated with an increased risk of T2D (OR = 1.67, 95% CI 1.29-2.17, FDR = 0.003). The H3 haplotype (rs35672233T-rs3743093G-rs2036343A-rs311886C-rs438866C) increased T2D risk (OR = 1.65, 95% CI 1.27-2.13, FDR = 0.001). The rs35672233 polymorphism and H3 haplotype were found to have an association with T2D risk only in subjects with a body mass index greater than 25 kg/m2 (FDR < 0.01). Environmental risk factors, such as chronic psycho-emotional stress, sedentary lifestyle, high-calorie diet and SNP rs35672233 were jointly associated with T2D susceptibility. A haplotype comprising the allele rs35672233-C and conferring protection against T2D, was associated with elevated levels of antioxidants such as total glutathione and uric acid, as well as reduced levels of two-hour postprandial glucose in the plasma of patients. The NOX5 polymorphisms showed no associations with diabetic complications. Conclusion The present study is the first to establish associations between polymorphisms in NOX5 and the risk of type 2 diabetes mellitus, and provides a new line of evidence for the crucial role of oxidative stress-related genes in disease susceptibility.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological ChemistryKursk State Medical UniversityKurskRussian Federation Department of Biological Chemistry, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Biochemical Genetics and MetabolomicsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and MetabolomicsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
- Department of BiologyMedical Genetics and EcologyKursk State Medical UniversityKurskRussian Federation Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
| | - Valentina Azarova
- Kursk Emergency HospitalKurskRussian Federation Kursk Emergency Hospital, Kursk, Russian Federation
| | - Alexey Polonikov
- Department of BiologyMedical Genetics and EcologyKursk State Medical UniversityKurskRussian Federation Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Statistical Genetics and BioinformaticsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| |
Collapse
|
6
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Fan X, Yang M, Lang Y, Lu S, Kong Z, Gao Y, Shen N, Zhang D, Lv Z. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis 2024; 15:442. [PMID: 38910210 PMCID: PMC11194272 DOI: 10.1038/s41419-024-06833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Diabetic kidney disease, known as a glomerular disease, arises from a metabolic disorder impairing renal cell function. Mitochondria, crucial organelles, play a key role in substance metabolism via oxidative phosphorylation to generate ATP. Cells undergo metabolic reprogramming as a compensatory mechanism to fulfill energy needs for survival and growth, attracting scholarly attention in recent years. Studies indicate that mitochondrial metabolic reprogramming significantly influences the pathophysiological progression of DKD. Alterations in kidney metabolism lead to abnormal expression of signaling molecules and activation of pathways, inducing oxidative stress-related cellular damage, inflammatory responses, apoptosis, and autophagy irregularities, culminating in renal fibrosis and insufficiency. This review delves into the impact of mitochondrial metabolic reprogramming on DKD pathogenesis, emphasizing the regulation of metabolic regulators and downstream signaling pathways. Therapeutic interventions targeting renal metabolic reprogramming can potentially delay DKD progression. The findings underscore the importance of focusing on metabolic reprogramming to develop safer and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Dongdong Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
8
|
Jha R, Lopez-Trevino S, Kankanamalage HR, Jha JC. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024; 12:1098. [PMID: 38791060 PMCID: PMC11118045 DOI: 10.3390/biomedicines12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of both type 1 and type 2 diabetes. DKD is characterised by injury to both glomerular and tubular compartments, leading to kidney dysfunction over time. It is one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Persistent high blood glucose levels can damage the small blood vessels in the kidneys, impairing their ability to filter waste and fluids from the blood effectively. Other factors like high blood pressure (hypertension), genetics, and lifestyle habits can also contribute to the development and progression of DKD. The key features of renal complications of diabetes include morphological and functional alterations to renal glomeruli and tubules leading to mesangial expansion, glomerulosclerosis, homogenous thickening of the glomerular basement membrane (GBM), albuminuria, tubulointerstitial fibrosis and progressive decline in renal function. In advanced stages, DKD may require treatments such as dialysis or kidney transplant to sustain life. Therefore, early detection and proactive management of diabetes and its complications are crucial in preventing DKD and preserving kidney function.
Collapse
Affiliation(s)
- Rajesh Jha
- Kansas College of Osteopathic Medicine, Wichita, KS 67202, USA;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
9
|
Zhao QX, Yan SB, Wang F, Li XX, Shang GK, Zheng ZJ, Xiao J, Lin ZW, Li CB, Ji XP. STING deficiency alleviates ferroptosis through FPN1 stabilization in diabetic kidney disease. Biochem Pharmacol 2024; 222:116102. [PMID: 38428828 DOI: 10.1016/j.bcp.2024.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, has known as one of the most significant pathological processes involved in diabetic kidney disease (DKD). Stimulator of interferon genes (STING) has been demonstrated its potential in regulating ferroptosis, but the regulatory role in DKD mice and underlying mechanisms haven't been illustrated. To elucidate whether and how STING regulates ferroptosis in DKD, we detected the influence of STING on diabetic-related ferroptosis in a diabetic model and in erastin-induced renal tubular epithelial cells (RTECs). Our study demonstrated that STING was abnormally activated and promoted ferroptosis in DKD. STING deficiency alleviated renal pathologic damages and disfunction in diabetic mice via alleviating ferroptosis and reducing oxidative stress. Mechanismly, STING inhibition was shown to improve ferroptosis and reduce oxidative stress in erastin-induced RTECs. The disruption of ferroportin1 (FPN1) on the basis of STING inhibition abolished the improvements in ferroptosis and promoted reactive oxygen species (ROS) generation. Further, STING inhibition alleviated ferroptosis via stabilizing FPN1 protein level by decreasing ubiquitinated FPN1 for proteasomal degradation. In conclusion, STING deficiency protected against diabetic renal injury via alleviating ferroptosis through stabilizing FPN1 and reducing oxidative stress, providing a possible potential approach for the treatment of DKD.
Collapse
Affiliation(s)
- Qin-Xiao Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Sen-Bo Yan
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fen Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao-Xing Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guo-Kai Shang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zi-Jie Zheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jie Xiao
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zong-Wei Lin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Chuan-Bao Li
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Xiao-Ping Ji
- National Key Laboratory for Innovation and Transformation of Luobing Theory, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Jandeleit-Dahm KAM, Kankanamalage HR, Dai A, Meister J, Lopez-Trevino S, Cooper ME, Touyz RM, Kennedy CRJ, Jha JC. Endothelial NOX5 Obliterates the Reno-Protective Effect of Nox4 Deletion by Promoting Renal Fibrosis via Activation of EMT and ROS-Sensitive Pathways in Diabetes. Antioxidants (Basel) 2024; 13:396. [PMID: 38671844 PMCID: PMC11047703 DOI: 10.3390/antiox13040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hyperglycemia induces intrarenal oxidative stress due to the excessive production of reactive oxygen species (ROS), leading to a cascade of events that contribute to the development and progression of diabetic kidney disease (DKD). NOX5, a pro-oxidant NADPH oxidase isoform, has been identified as a significant contributor to renal ROS in humans. Elevated levels of renal ROS contribute to endothelial cell dysfunction and associated inflammation, causing increased endothelial permeability, which can disrupt the renal ecosystem, leading to progressive albuminuria and renal fibrosis in DKD. This study specifically examines the contribution of endothelial cell-specific human NOX5 expression in renal pathology in a transgenic mouse model of DKD. This study additionally compares NOX5 with the previously characterized NADPH oxidase, NOX4, in terms of their relative roles in DKD. Regardless of NOX4 pathway, this study found that endothelial cell-specific expression of NOX5 exacerbates renal injury, albuminuria and fibrosis. This is attributed to the activation of the endothelial mesenchymal transition (EMT) pathway via enhanced ROS formation and the modulation of redox-sensitive factors. These findings underscore the potential therapeutic significance of NOX5 inhibition in human DKD. The study proposes that inhibiting NOX5 could be a promising approach for mitigating the progression of DKD and strengthens the case for the development of NOX5-specific inhibitors as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Karin A. M. Jandeleit-Dahm
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Aozhi Dai
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Jaroslawna Meister
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3H 2R9, Canada;
| | - Christopher R. J. Kennedy
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada;
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| |
Collapse
|
12
|
Sakata N. The anti-inflammatory effect of metformin: The molecular targets. Genes Cells 2024; 29:183-191. [PMID: 38311861 PMCID: PMC11448366 DOI: 10.1111/gtc.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Metformin is an anti-diabetic drug. Metformin mainly inhibits gluconeogenesis in the liver and reduces blood sugar. In addition to the anti-diabetic effects, many studies have revealed that metformin has anti-inflammatory effects. Various molecules were suggested to be the target of the metformin's anti-inflammatory effects. However, the conclusion is not clear. Metformin is related to a number of molecules and the identification of the main target in anti-inflammatory effects leads to the understanding of inflammation and metformin. In this article, I discuss each suggested molecule, involved mechanisms, and their relationship with various diseases.
Collapse
|
13
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
14
|
Chen X, Dai W, Li H, Yan Z, Liu Z, He L. Targeted drug delivery strategy: a bridge to the therapy of diabetic kidney disease. Drug Deliv 2023; 30:2160518. [PMID: 36576203 PMCID: PMC9809356 DOI: 10.1080/10717544.2022.2160518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the main complication in diabetes mellitus (DM) and the main cause of end-stage kidney disease worldwide. However, sodium glucose cotransporter 2 (SGLT2) inhibition, glucagon-like peptide-1 (GLP-1) receptor agonist, mineralocorticoid receptor antagonists and endothelin receptor A inhibition have yielded promising effects in DKD, a great part of patients inevitably continue to progress to uremia. Newly effective therapeutic options are urgently needed to postpone DKD progression. Recently, accumulating evidence suggests that targeted drug delivery strategies, such as macromolecular carriers, nanoparticles, liposomes and so on, can enhance the drug efficacy and reduce the undesired side effects, which will be a milestone treatment in the management of DKD. The aim of this article is to summarize the current knowledge of targeted drug delivery strategies and select the optimal renal targeting strategy to provide new therapies for DKD.
Collapse
Affiliation(s)
- Xian Chen
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Wenni Dai
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hao Li
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhe Yan
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Liyu He
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China,CONTACT Liyu He Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan410011, People’s Republic of China
| |
Collapse
|
15
|
Li Y, Gu S, Li X, Huang Q. To identify biomarkers associated with the transfer of diabetes combined with cancer in human genes using bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35080. [PMID: 37713834 PMCID: PMC10508432 DOI: 10.1097/md.0000000000035080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
Currently, the incidence of diabetes mellitus is increasing rapidly, particularly in China, and its pathogenesis is still unclear. The goal of this study was to find meaningful biomarkers of metastasis in patients with diabetes and cancer using bioinformatic analysis in order to predict gene expression and prognostic importance for survival. We used the Differentially Expressed Gene, Database for Annotation Visualization and Integrated Discovery, and Gene Set Enrichment Analyses databases, as well as several bioinformatics tools, to explore the key genes in diabetes. Based on the above database, we ended up with 10 hub genes (FOS, ATF3, JUN, EGR1, FOSB, JUNB, BTG2, EGR2, ZFP36, and NR4A2). A discussion of the 10 critical genes, with extensive literature mentioned to validate the association between the 10 key genes and patients with diabetes and cancer, to demonstrate the importance of gene expression and survival prognosis. This study identifies several biomarkers associated with diabetes and cancer development and metastasis that may provide novel therapeutic targets for diabetes combined with cancer patients.
Collapse
Affiliation(s)
- Yiting Li
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, P.R. China
| | - Shinong Gu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, P.R. China
| | - Xuanwen Li
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Qing Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, P.R. China
| |
Collapse
|
16
|
Blas-García A, Apostolova N. Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants (Basel) 2023; 12:1567. [PMID: 37627562 PMCID: PMC10451738 DOI: 10.3390/antiox12081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic liver disease (CLD) constitutes a growing global health issue, with no effective treatments currently available. Oxidative stress closely interacts with other cellular and molecular processes to trigger stress pathways in different hepatic cells and fuel the development of liver fibrosis. Therefore, inhibition of reactive oxygen species (ROS)-mediated effects and modulation of major antioxidant responses to counteract oxidative stress-induced damage have emerged as interesting targets to prevent or ameliorate liver injury. Although many preclinical studies have shown that dietary supplements with antioxidant properties can significantly prevent CLD progression in animal models, this strategy has not proved effective to significantly reduce fibrosis when translated into clinical trials. Novel and more specific therapeutic approaches are thus required to alleviate oxidative stress and reduce liver fibrosis. We have reviewed the relevant literature concerning the crucial role of alterations in redox homeostasis in different hepatic cell types during the progression of CLD and discussed current pharmacological approaches to ameliorate fibrosis by reducing oxidative stress focusing on selective modulation of enzymatic oxidant sources, antioxidant systems and ROS-mediated pathogenic processes.
Collapse
Affiliation(s)
- Ana Blas-García
- Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Nadezda Apostolova
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Departamento de Farmacología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
17
|
Daehn IS, Ekperikpe US, Stadler K. Redox regulation in diabetic kidney disease. Am J Physiol Renal Physiol 2023; 325:F135-F149. [PMID: 37262088 PMCID: PMC10393330 DOI: 10.1152/ajprenal.00047.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.
Collapse
Affiliation(s)
- Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
18
|
Yuan PP, Li M, Zhang Q, Zeng MN, Ke YY, Wei YX, Fu Y, Zheng XK, Feng WS. 2-phenylacetamide Separated from the seed of Lepidium apetalum Willd. inhibited renal fibrosis via MAPK pathway mediated RAAS and oxidative stress in SHR Rats. BMC Complement Med Ther 2023; 23:207. [PMID: 37353787 DOI: 10.1186/s12906-023-04012-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Renal fibrosis with Renin-angiotensin-aldosterone system (RAAS) activation and oxidative stress are one of the major complications in hypertension. 2-phenylacetamide (PA), a major active component of Lepidium apetalum Willd. (L.A), has numerous pharmacological effects. Its analogues have the effect of anti-renal fibrosis and alleviating renal injury. This study aims to explore the underlying mechanism of PA for regulating the renal fibrosis in SHR based on the MAPK pathway mediated RAAS and oxidative stress. METHODS The SHR rats were used as the hypertension model, and the WKY rats were used as the control group. The blood pressure (BP), urine volume were detected every week. After PA treatment for 4 weeks, the levels of RAAS, inflammation and cytokines were measured by Enzyme-Linked Immunosorbnent Assay (ELISA). Hematoxylin-Eosin staining (HE), Masson and Immunohistochemistry (IHC) were used to observe the renal pathology, collagen deposition and fibrosis. Western blot was used to examine the MAPK pathway in renal. Finally, the SB203580 (p38 MAPK inhibitor) antagonism assay in the high NaCl-induced NRK52e cells was used, together with In-Cell Western (ICW), Flow Cytometry (FCM), High Content Screening (HCS) and ELISA to confirm the potential pharmacological mechanism. RESULTS PA reduced the BP, RAAS, inflammation and cytokines, promoted the urine, and relieved renal pathological injury and collagen deposition, repaired renal fibrosis, decreased the expression of NADPH Oxidase 4 (NOX4), transforming growth factor-β (TGF-β), SMAD3 and MAPK signaling pathway in SHR rats. Meanwhile,,the role of PA could be blocked by p38 antagonist SB203580 effectively in the high NaCl-induced NRK52e cells. Moreover, molecular docking indicated that PA occupied the ligand binding sites of p38 MAPK. CONCLUSION PA inhibited renal fibrosis via MAPK signalling pathway mediated RAAS and oxidative stress in SHR Rats.
Collapse
Affiliation(s)
- Pei-Pei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Meng Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Qi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Meng-Nan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Ying-Ying Ke
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Ya-Xin Wei
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China.
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou, 450046, China.
| |
Collapse
|
19
|
Structure, regulation, and physiological functions of NADPH oxidase 5 (NOX5). J Physiol Biochem 2023:10.1007/s13105-023-00955-3. [PMID: 36905456 DOI: 10.1007/s13105-023-00955-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
NOX5 is the last member of the NADPH oxidase (NOXs) family to be identified and presents some specific characteristics differing from the rest of the NOXs. It contains four Ca2+ binding domains at the N-terminus and its activity is regulated by the intracellular concentration of Ca2+. NOX5 generates superoxide (O2•-) using NADPH as a substrate, and it modulates functions related to processes in which reactive oxygen species (ROS) are involved. Those functions appear to be detrimental or beneficial depending on the level of ROS produced. For example, the increase in NOX5 activity is related to the development of various oxidative stress-related pathologies such as cancer, cardiovascular, and renal diseases. In this context, pancreatic expression of NOX5 can negatively alter insulin action in high-fat diet-fed transgenic mice. This is consistent with the idea that the expression of NOX5 tends to increase in response to a stimulus or a stressful situation, generally causing a worsening of the pathology. On the other hand, it has also been suggested that it might have a positive role in preparing the body for metabolic stress, for example, by inducing a protective adipose tissue adaptation to the excess of nutrients supplied by a high-fat diet. In this line, its endothelial overexpression can delay lipid accumulation and insulin resistance development in obese transgenic mice by inducing the secretion of IL-6 followed by the expression of thermogenic and lipolytic genes. However, as NOX5 gene is not present in rodents and human NOX5 protein has not been crystallized, its function is still poorly characterized and further extensive research is required.
Collapse
|
20
|
Watanabe K, Sato E, Mishima E, Miyazaki M, Tanaka T. What's New in the Molecular Mechanisms of Diabetic Kidney Disease: Recent Advances. Int J Mol Sci 2022; 24:570. [PMID: 36614011 PMCID: PMC9820354 DOI: 10.3390/ijms24010570] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease, including end-stage kidney disease, and increases the risk of cardiovascular mortality. Although the treatment options for DKD, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, sodium-glucose cotransporter 2 inhibitors, and mineralocorticoid receptor antagonists, have advanced, their efficacy is still limited. Thus, a deeper understanding of the molecular mechanisms of DKD onset and progression is necessary for the development of new and innovative treatments for DKD. The complex pathogenesis of DKD includes various different pathways, and the mechanisms of DKD can be broadly classified into inflammatory, fibrotic, metabolic, and hemodynamic factors. Here, we summarize the recent findings in basic research, focusing on each factor and recent advances in the treatment of DKD. Collective evidence from basic and clinical research studies is helpful for understanding the definitive mechanisms of DKD and their regulatory systems. Further comprehensive exploration is warranted to advance our knowledge of the pathogenesis of DKD and establish novel treatments and preventive strategies.
Collapse
Affiliation(s)
- Kimio Watanabe
- Dialysis Center, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Eikan Mishima
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mariko Miyazaki
- Dialysis Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
21
|
Zhang Z, Sun Y, Xue J, Jin D, Li X, Zhao D, Lian F, Qi W, Tong X. The critical role of dysregulated autophagy in the progression of diabetic kidney disease. Front Pharmacol 2022; 13:977410. [PMID: 36091814 PMCID: PMC9453227 DOI: 10.3389/fphar.2022.977410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the major public health problems in society today. It is a renal complication caused by diabetes mellitus with predominantly microangiopathy and is a major cause of end-stage renal disease (ESRD). Autophagy is a metabolic pathway for the intracellular degradation of cytoplasmic products and damaged organelles and plays a vital role in maintaining homeostasis and function of the renal cells. The dysregulation of autophagy in the hyperglycaemic state of diabetes mellitus can lead to the progression of DKD, and the activation or restoration of autophagy through drugs is beneficial to the recovery of renal function. This review summarizes the physiological process of autophagy, illustrates the close link between DKD and autophagy, and discusses the effects of drugs on autophagy and the signaling pathways involved from the perspective of podocytes, renal tubular epithelial cells, and mesangial cells, in the hope that this will be useful for clinical treatment.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaojiao Xue
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Wenxiu Qi, ; Xiaolin Tong,
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Wenxiu Qi, ; Xiaolin Tong,
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Wenxiu Qi, ; Xiaolin Tong,
| |
Collapse
|