1
|
Natale P, Palmer SC, Navaneethan SD, Craig JC, Strippoli GF. Angiotensin-converting-enzyme inhibitors and angiotensin receptor blockers for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev 2024; 4:CD006257. [PMID: 38682786 PMCID: PMC11057222 DOI: 10.1002/14651858.cd006257.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Guidelines suggest that adults with diabetes and kidney disease receive treatment with angiotensin-converting-enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB). This is an update of a Cochrane review published in 2006. OBJECTIVES We compared the efficacy and safety of ACEi and ARB therapy (either as monotherapy or in combination) on cardiovascular and kidney outcomes in adults with diabetes and kidney disease. SEARCH METHODS We searched the Cochrane Kidney and Transplants Register of Studies to 17 March 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included studies evaluating ACEi or ARB alone or in combination, compared to each other, placebo or no treatment in people with diabetes and kidney disease. DATA COLLECTION AND ANALYSIS Two authors independently assessed the risk of bias and extracted data. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS One hundred and nine studies (28,341 randomised participants) were eligible for inclusion. Overall, the risk of bias was high. Compared to placebo or no treatment, ACEi may make little or no difference to all-cause death (24 studies, 7413 participants: RR 0.91, 95% CI 0.73 to 1.15; I2 = 23%; low certainty) and with similar withdrawals from treatment (7 studies, 5306 participants: RR 1.03, 95% CI 0.90 to 1.19; I2 = 0%; low certainty). ACEi may prevent kidney failure (8 studies, 6643 participants: RR 0.61, 95% CI 0.39 to 0.94; I2 = 0%; low certainty). Compared to placebo or no treatment, ARB may make little or no difference to all-cause death (11 studies, 4260 participants: RR 0.99, 95% CI 0.85 to 1.16; I2 = 0%; low certainty). ARB have uncertain effects on withdrawal from treatment (3 studies, 721 participants: RR 0.85, 95% CI 0.58 to 1.26; I2 = 2%; low certainty) and cardiovascular death (6 studies, 878 participants: RR 3.36, 95% CI 0.93 to 12.07; low certainty). ARB may prevent kidney failure (3 studies, 3227 participants: RR 0.82, 95% CI 0.72 to 0.94; I2 = 0%; low certainty), doubling of serum creatinine (SCr) (4 studies, 3280 participants: RR 0.84, 95% CI 0.72 to 0.97; I2 = 32%; low certainty), and the progression from microalbuminuria to macroalbuminuria (5 studies, 815 participants: RR 0.44, 95% CI 0.23 to 0.85; I2 = 74%; low certainty). Compared to ACEi, ARB had uncertain effects on all-cause death (15 studies, 1739 participants: RR 1.13, 95% CI 0.68 to 1.88; I2 = 0%; low certainty), withdrawal from treatment (6 studies, 612 participants: RR 0.91, 95% CI 0.65 to 1.28; I2 = 0%; low certainty), cardiovascular death (13 studies, 1606 participants: RR 1.15, 95% CI 0.45 to 2.98; I2 = 0%; low certainty), kidney failure (3 studies, 837 participants: RR 0.56, 95% CI 0.29 to 1.07; I2 = 0%; low certainty), and doubling of SCr (2 studies, 767 participants: RR 0.88, 95% CI 0.52 to 1.48; I2 = 0%; low certainty). Compared to ACEi plus ARB, ACEi alone has uncertain effects on all-cause death (6 studies, 1166 participants: RR 1.08, 95% CI 0.49 to 2.40; I2 = 20%; low certainty), withdrawal from treatment (2 studies, 172 participants: RR 0.78, 95% CI 0.33 to 1.86; I2 = 0%; low certainty), cardiovascular death (4 studies, 994 participants: RR 3.02, 95% CI 0.61 to 14.85; low certainty), kidney failure (3 studies, 880 participants: RR 1.36, 95% CI 0.79 to 2.32; I2 = 0%; low certainty), and doubling of SCr (2 studies, 813 participants: RR 1.14, 95% CI 0.70 to 1.85; I2 = 0%; low certainty). Compared to ACEi plus ARB, ARB alone has uncertain effects on all-cause death (7 studies, 2607 participants: RR 1.02, 95% CI 0.76 to 1.37; I2 = 0%; low certainty), withdrawn from treatment (3 studies, 1615 participants: RR 0.81, 95% CI 0.53 to 1.24; I2 = 0%; low certainty), cardiovascular death (4 studies, 992 participants: RR 3.03, 95% CI 0.62 to 14.93; low certainty), kidney failure (4 studies, 2321 participants: RR 1.15, 95% CI 0.67 to 1.95; I2 = 29%; low certainty), and doubling of SCr (3 studies, 2252 participants: RR 1.18, 95% CI 0.85 to 1.64; I2 = 0%; low certainty). Comparative effects of different ACEi or ARB and low-dose versus high-dose ARB were rarely evaluated. No study compared different doses of ACEi. Adverse events of ACEi and ARB were rarely reported. AUTHORS' CONCLUSIONS ACEi or ARB may make little or no difference to all-cause and cardiovascular death compared to placebo or no treatment in people with diabetes and kidney disease but may prevent kidney failure. ARB may prevent the doubling of SCr and the progression from microalbuminuria to macroalbuminuria compared with a placebo or no treatment. Despite the international guidelines suggesting not combining ACEi and ARB treatment, the effects of ACEi or ARB monotherapy compared to dual therapy have not been adequately assessed. The limited data availability and the low quality of the included studies prevented the assessment of the benefits and harms of ACEi or ARB in people with diabetes and kidney disease. Low and very low certainty evidence indicates that it is possible that further studies might provide different results.
Collapse
Affiliation(s)
- Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | | | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
2
|
Riis KR, Larsen CB, Medici BR, Jensen CZ, Winther KH, Larsen EL, Ellervik C, la Cour JL, Hegedüs L, Brix TH, Poulsen HE, Knop FK, Nygaard B, Bonnema SJ. Hypothyroid women have persistently higher oxidative stress compared to healthy controls. Eur Thyroid J 2023; 12:e230167. [PMID: 37855410 PMCID: PMC10692686 DOI: 10.1530/etj-23-0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Objective Some studies suggest that hypothyroidism is associated with increased oxidative stress. Urinary excretion of 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) represents whole-body RNA and DNA oxidation, respectively. These biomarkers have only been explored sparsely in patients with thyroid disorders. Methods In 45 Danish women with newly diagnosed hypothyroidism, we compared 8-oxoGuo and 8-oxodG before or shortly after initiating levothyroxine with the excretion rates at euthyroidism. We also compared the excretion of 8-oxoGuo and 8-oxodG in the patients after restored euthyroidism with 18 healthy control subjects. Results Compared with baseline, none of the biomarkers changed significantly in the patients after becoming euthyroid. The geometric mean of 8-oxoGuo was 1.63 (95% CI: 1.49-1.78) nmol/mmol creatinine at baseline and 1.67 nmol/mmol at euthyroidism (95% CI: 1.53-1.83) (P = 0.39), while that of 8-oxodG was 1.28 nmol/mmol creatinine at baseline (95% CI: 1.14-1.44) and 1.32 nmol/mmol at euthyroidism (95% CI: 1.18-1.48), respectively (P = 0.47). The relative mean differences were 0.97 (95% CI: 0.91-1.04) for 8-oxoGuo and 0.97 (95% CI: 0.88-1.06) for 8-oxodG. At baseline, multiple linear regression revealed a positive association between free thyroxine and both biomarkers (8-oxoGuo, P < 0.001; 8-oxodG, P = 0.04). Furthermore, 8-oxoGuo was positively associated with age (P = 0.04) and negatively associated with thyrotropin (P = 0.02). In the control group, the geometric mean of 8-oxoGuo was 1.23 nmol/mmol creatinine (95% CI: 1.07-1.42), while that of 8-oxodG was 1.04 nmol/mmol creatinine (95% CI: 0.88-1.23). Thus, compared with control subjects, euthyroid patients showed a significantly higher level of both 8-oxoGuo (P < 0.001) and 8-oxodG (P = 0.03). Conclusion In hypothyroid women, no significant effect of levothyroxine treatment on the oxidative stress biomarkers 8-oxoGuo and 8-oxodG could be demonstrated. However, the excretion of these biomarkers was significantly higher than in healthy controls.
Collapse
Affiliation(s)
- Kamilla R Riis
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Camilla B Larsen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarke R Medici
- Department of Medicine, Copenhagen University Hospital – Herlev and Gentofte, Denmark
| | - Christian Z Jensen
- Department of Medicine, Copenhagen University Hospital – Herlev and Gentofte, Denmark
| | - Kristian H Winther
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Emil L Larsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, United States of America
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
| | - Jeppe L la Cour
- Department of Medicine, Copenhagen University Hospital – Herlev and Gentofte, Denmark
| | - Laszlo Hegedüs
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas H Brix
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Henrik E Poulsen
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, University Hospital Nordsjælland, Hillerød, Denmark
| | - Filip K Knop
- Department of Medicine, Copenhagen University Hospital – Herlev and Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Birte Nygaard
- Department of Medicine, Copenhagen University Hospital – Herlev and Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen J Bonnema
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
4
|
Larsen EL, Weimann A, Poulsen HE. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic Biol Med 2019; 145:256-283. [PMID: 31563634 DOI: 10.1016/j.freeradbiomed.2019.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress is associated with the development and progression of numerous diseases. However, targeting oxidative stress has not been established in the clinical management of any disease. Several methods and markers are available to measure oxidative stress, including direct measurement of free radicals, antioxidants, redox balance, and oxidative modifications of cellular macromolecules. Oxidatively generated nucleic acid modifications have attracted much interest due to the pre-mutagenic oxidative modification of DNA into 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), associated with cancer development. During the last decade, the perception of RNA has changed from that of a 'silent messenger' to an 'active contributor', and, parallelly oxidatively generated RNA modifications measured as 8-oxo-7,8-dihydro-guanosine (8-oxoGuo), has been demonstrated as a prognostic factor for all-caused and cardiovascular related mortality in patients with type 2 diabetes. Several attempts have been made to modify the amount of oxidative nucleic acid modifications. Thus, this review aims to introduce researchers to the measurement of oxidatively generated nucleic acid modifications as well as critically review previous attempts and provide future directions for targeting oxidatively generated nucleic acid modifications.
Collapse
Affiliation(s)
- Emil List Larsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark.
| | - Allan Weimann
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Investigation on potential associations of oxidatively generated DNA/RNA damage with lung, colorectal, breast, prostate and total cancer incidence. Sci Rep 2019; 9:7109. [PMID: 31068619 PMCID: PMC6506483 DOI: 10.1038/s41598-019-42596-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been linked to cancer development in previous studies. However, the association between pre-diagnostic oxidatively generated DNA/RNA damage levels and incident cancer has rarely been investigated. Urinary oxidized guanine/guanosine (OxGua) concentrations, including 8-hydroxy-2′-deoxyguanosine, were assessed in 8,793 older adults in a population-based German cohort. 1,540 incident cancer cases, including 207 lung, 196 colorectal, 218 breast and 245 prostate cancer cases were diagnosed during over 14 years of follow-up. Associations of OxGua levels with cancer outcomes were not observed in the total population in multi-variable adjusted Cox regression models. However, in subgroup analyses, colorectal cancer incidence increased by 8%, 9% and 8% with one standard deviation increase in OxGua levels among current non-smokers, female and non-obese participants, respectively. Additionally, among non-smokers, overall and prostate cancer incidences statistically significantly increased by 5% and 13% per 1 standard deviation increase in OxGua levels, respectively. In contrast, OxGua levels were inversely associated with the risk of prostate cancer among current smokers. However, none of the subgroup analyses had p-values below a threshold for statistical significance after correction for multiple testing. Thus, results need to be validated in further studies. There might be a pattern that oxidatively generated DNA/RNA damage is a weak cancer risk factor in the absence of other strong risk factors, such as smoking, obesity and male sex.
Collapse
|
6
|
Kjær LK, Cejvanovic V, Henriksen T, Petersen KM, Hansen T, Pedersen O, Christensen CK, Torp-Pedersen C, Gerds TA, Brandslund I, Mandrup-Poulsen T, Poulsen HE. Cardiovascular and All-Cause Mortality Risk Associated With Urinary Excretion of 8-oxoGuo, a Biomarker for RNA Oxidation, in Patients With Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 2017; 40:1771-1778. [PMID: 29061564 DOI: 10.2337/dc17-1150] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/14/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cardiovascular mortality risk remains high among patients with type 2 diabetes. Oxidative stress indicated by high urinary excretion of the biomarker for RNA oxidation, 8-oxo-7,8-dihydroguanosine (8-oxoGuo), is associated with an increased risk of death in newly diagnosed and treated patients. We assessed whether 8-oxoGuo is associated with specific cardiovascular and all-cause mortality risk. RESEARCH DESIGN AND METHODS Urinary biomarkers for nucleic acid oxidation were measured in a cohort of patients with type 2 diabetes aged ≥60 years (n = 1,863), along with biochemical measurements, questionnaire findings, and Central Person Registry information to estimate the hazard ratios (HRs) for log2-transformed RNA oxidation using Cox regression. RESULTS During the 5-year follow-up, 173 of 1,863 patients had died (9.3%), including 73 patients who died of cardiovascular disease (42.2%). Doubling of RNA oxidation was associated with an HR of all-cause mortality of 2.10 (95% CI 1.63-2.71; P < 0.001) and an HR of cardiovascular death of 1.82 (95% CI 1.20-2.77; P = 0.005) after multiple adjustments. The 5-year absolute risks (ARs) of all-cause mortality (AR 13.9 [95% CI 10.8-17.0] vs. AR 6.10 [95% CI 4.00-8.30]) and cardiovascular mortality (AR 5.49 [95% CI 3.44-7.55] vs. AR 3.16 [95% CI 1.59-4.73]) were approximately two times higher in the highest quartile of RNA oxidation than in the lowest quartile. CONCLUSIONS We conclude that high RNA oxidation is associated with all-cause and cardiovascular mortality risk in patients with type 2 diabetes. Targeting oxidative stress via interventions with long-term follow-up may reveal the predictive potential of the biomarker 8-oxoGuo.
Collapse
Affiliation(s)
- Laura K Kjær
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vanja Cejvanovic
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Kasper M Petersen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cramer K Christensen
- Department of Internal Medicine and Endocrinology, Lillebaelt Hospital, Vejle, Denmark
| | - Christian Torp-Pedersen
- Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Cardiology and Epidemiology/Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Thomas A Gerds
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark.,Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik E Poulsen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Larsen EL, Cejvanovic V, Kjær LK, Vilsbøll T, Knop FK, Rungby J, Poulsen HE. The effect of empagliflozin on oxidative nucleic acid modifications in patients with type 2 diabetes: protocol for a randomised, double-blinded, placebo-controlled trial. BMJ Open 2017; 7:e014728. [PMID: 28490557 PMCID: PMC5623443 DOI: 10.1136/bmjopen-2016-014728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of morbidity and mortality in patients with type 2 diabetes (T2D). Although glycaemic control reduces microvascular complications, the effect of intensive treatment strategies or individual drugs on macrovascular diseases is still debated. RNA oxidation is associated with increased mortality in patients with T2D. Inspired by animal studies showing effect of a sodium-glucose cotransporter-2 (SGLT-2) inhibitor (empagliflozin) on oxidative stress and a recent trial evaluating empagliflozin that demonstrated improved cardiovascular outcomes in patients with T2D at high risk of cardiovascular events, we hypothesise that empagliflozin lowers oxidative stress. METHODS AND ANALYSIS In this randomised, double-blinded and placebo-controlled study, 34 adult males with T2D will be randomised (1:1) to empagliflozin or placebo once daily for 14 days as add-on to ongoing therapy. The primary endpoints will be changes in 24-hour urinary excretion of 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) determined before and after intervention (by ultra-performance liquid chromatography tandem mass-spectrometry). Additionally, fasting levels of malondialdehyde (MDA) will be determined in plasma before and after intervention (by high-performance liquid chromatography). Further, the plasma levels of iron, transferrin, transferrin-saturation, and ferritin are determined to correlate the iron metabolism to the markers of oxidative modifications. ETHICS AND DISSEMINATION The study protocol has been approved by the Regional Committee on Biomedical Research Ethics (approval number H-16017433), the Danish Medicines Agency, and the Danish Data Protection Agency, and will be carried out under the surveillance and guidance of the GCP unit at Bispebjerg Frederiksberg Hospital, University of Copenhagen in compliance with the ICH-GCP guidelines and in accordance with the Declaration of Helsinki. The results of this study will be presented at national and international conferences, and submitted to a peer-reviewed international journal with authorship in accordance with Internation Committee of Medical Journal Editors (ICMJE) Recommendations state. TRIAL REGISTRATION Study name: EMPOX; Pre-results: clinicaltrials.gov (NCT02890745). Protocol version 5.1 - August, 2016.
Collapse
Affiliation(s)
- Emil List Larsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Vanja Cejvanovic
- Laboratory of Clinical Pharmacology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Kofoed Kjær
- Laboratory of Clinical Pharmacology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark
| | - Filip Krag Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jørgen Rungby
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Endocrinology, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Waris S, Winklhofer-Roob BM, Roob JM, Fuchs S, Sourij H, Rabbani N, Thornalley PJ. Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. J Diabetes Res 2015; 2015:915486. [PMID: 25950009 PMCID: PMC4408631 DOI: 10.1155/2015/915486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023] Open
Abstract
AIM The aim of this study was to assess the changes of markers of DNA damage by glycation and oxidation in patients with type 2 diabetes and the association with diabetic nephropathy. METHODOLOGY DNA oxidation and glycation adducts were analysed in plasma and urine by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. DNA markers analysed were as follows: the oxidation adduct 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OxodG) and glycation adducts of glyoxal and methylglyoxal--imidazopurinones GdG, MGdG, and N2-(1,R/S-carboxyethyl)deoxyguanosine (CEdG). RESULTS Plasma 8-OxodG and GdG were increased 2-fold and 6-fold, respectively, in patients with type 2 diabetes, with respect to healthy volunteers. Median urinary excretion rates of 8-OxodG, GdG, MGdG, and CEdG were increased 28-fold, 10-fold, 2-fold, and 2-fold, respectively, in patients with type 2 diabetes with respect to healthy controls. In patients with type 2 diabetes, nephropathy was associated with increased plasma 8-OxodG and increased urinary GdG and CEdG. In a multiple logistic regression model for diabetic nephropathy, diabetic nephropathy was linked to systolic blood pressure and urinary CEdG. CONCLUSION DNA oxidative and glycation damage-derived nucleoside adducts are increased in plasma and urine of patients with type 2 diabetes and further increased in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Sahar Waris
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Brigitte M. Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center Graz, Institute of Molecular Biosciences, Karl Franzens University, 8010 Graz, Austria
| | - Johannes M. Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Sebastian Fuchs
- Human Nutrition & Metabolism Research and Training Center Graz, Institute of Molecular Biosciences, Karl Franzens University, 8010 Graz, Austria
| | - Harald Sourij
- Clinical Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Naila Rabbani
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK
- *Naila Rabbani:
| | - Paul J. Thornalley
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Müllner E, Brath H, Pleifer S, Schiermayr C, Baierl A, Wallner M, Fastian T, Millner Y, Paller K, Henriksen T, Poulsen HE, Forster E, Wagner KH. Vegetables and PUFA-rich plant oil reduce DNA strand breaks in individuals with type 2 diabetes. Mol Nutr Food Res 2012; 57:328-38. [PMID: 23148048 DOI: 10.1002/mnfr.201200343] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/23/2012] [Accepted: 09/15/2012] [Indexed: 12/30/2022]
Abstract
SCOPE Type 2 diabetes is a multifactorial disease associated with increased oxidative stress, which may lead to increased DNA damage. The aim of this study was to investigate the effect of a healthy diet on DNA oxidation in diabetics and nondiabetics. METHODS AND RESULTS Seventy-six diabetic and 21 nondiabetic individuals participated in this study. All subjects received information about the benefits of a healthy diet, while subjects randomly assigned to the intervention group received additionally 300 g of vegetables and 25 mL PUFA-rich plant oil per day. DNA damage in mononuclear cells (Comet Assay), urinary excretion of 8-oxo-7-hydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and glycated hemoglobin (HbA1c) were measured at baseline, after 4, 8 (end of intervention), and 16 weeks. The intervention with vegetables and PUFA-rich oil led to a significant increase in plasma antioxidant concentrations. Diabetic individuals of the intervention group showed a significant reduction in HbA1c and DNA strand breaks. Levels of HbA1c were also improved in diabetics of the information group, but oxidative damage to DNA was not altered. Urinary 8-oxodG and 8-oxoGuo excretion remained unchanged in both groups. CONCLUSIONS This study provides evidence that a healthy diet rich in antioxidants reduces levels of DNA strand breaks in diabetic individuals.
Collapse
Affiliation(s)
- Elisabeth Müllner
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Poulsen HE, Specht E, Broedbaek K, Henriksen T, Ellervik C, Mandrup-Poulsen T, Tonnesen M, Nielsen PE, Andersen HU, Weimann A. RNA modifications by oxidation: a novel disease mechanism? Free Radic Biol Med 2012; 52:1353-61. [PMID: 22306201 DOI: 10.1016/j.freeradbiomed.2012.01.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 12/28/2022]
Abstract
The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes, but the oxidation results in ribosomal stalling and dysfunction, followed by decreased levels of functional protein as well as the production of truncated proteins that do not undergo proper folding and may result in protein aggregation within the cell. Ribosomal dysfunction may also signal apoptosis by p53-independent pathways. There are very few reports on interventions that reduce RNA oxidation, one interesting observation being a reduction in RNA oxidation by ingestion of raw olive oil. High urinary excretion of 8-oxo-guanosine, a biomarker for RNA oxidation, is highly predictive of death in newly diagnosed type 2 diabetics; this demonstrates the clinical relevance of RNA oxidation. Taken collectively the available data suggest that RNA oxidation is a contributing factor in several diseases such as diabetes, hemochromatosis, heart failure, and β-cell destruction. The mechanism involves free iron and hydrogen peroxide from mitochondrial dysfunction that together lead to RNA oxidation that in turn gives rise to truncated proteins that may cause aggregation. Thus RNA oxidation may well be an important novel contributing mechanism for several diseases.
Collapse
Affiliation(s)
- Henrik E Poulsen
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|