1
|
Maagensen H, Hædersdal S, Krogh J, Hansen T, Knop FK, Thuesen ACB, Vilsbøll T. Clinical effects of SGLT2 inhibitors in seven persons with HNF1A-MODY (MODY3). Diabet Med 2024; 41:e15387. [PMID: 38875310 DOI: 10.1111/dme.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Affiliation(s)
- Henrik Maagensen
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
| | - Sofie Hædersdal
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
| | - Jesper Krogh
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Medicine, Clinic for Pituitary Disorders, Zealand University Hospital, Køge, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Cathrine Baun Thuesen
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Broome DT, Mehdi A, Chase C, de Freitas MF, Gregg BE, Oral EA, Herman WH. Use of a Dual GIP/GLP-1 Receptor Agonist in HNF1A-MODY and HNF4A-MODY. Diabetes Care 2024; 47:e65-e66. [PMID: 39008714 PMCID: PMC11362115 DOI: 10.2337/dc24-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Affiliation(s)
- David T. Broome
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Alina Mehdi
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Colby Chase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Maria Foss de Freitas
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Brigid E. Gregg
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Elif A. Oral
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - William H. Herman
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Feng S, Zhang Y, Hou C, Liu Y, Gao Y, Song Y, Luo J. A temperature-responsive dual-hormone foam nanoengine improves rectal absorptivity of insulin-pramlintide for diabetes treatment. SCIENCE ADVANCES 2024; 10:eadn8695. [PMID: 39196940 PMCID: PMC11352908 DOI: 10.1126/sciadv.adn8695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Despite the therapeutic benefits of insulin-pramlintide dual-hormone therapy in diabetes, its application potential has been limited due to a lack of efficient delivery routes. Here, we developed a temperature-responsive dual-hormone foam nanoengine (HormFoam) and combined it with a customized spraying device to further construct an in situ foam-generating system for improving the rectal bioavailability of dual-hormone therapy. To support rapid clinical translation, a continuous microfluidic preparation for HormFoam was proposed, including the power unit of perfluorocarbon nanodroplets and the pharmaceutical components Pluronic F127-functionalized liposomal insulin and pramlintide. We found that HormFoam could consistently generate foams to drive drugs forward after rectal administration, which enhanced intestinal distribution and mucosa absorption, leading to systemic codelivery of insulin-pramlintide. HormFoam reproduced the physiology of endocrine pancreas for glycemic control and induced body weight loss while reversing metabolic disorders in diabetic mice with good biosafety. Therefore, HormFoam represents a state-of-the-art dual-hormone regimen with the potential to address unmet needs in diabetes management.
Collapse
Affiliation(s)
- Shujun Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunyuan Hou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Sharma M, Maurya K, Nautiyal A, Chitme HR. Monogenic Diabetes: A Comprehensive Overview and Therapeutic Management of Subtypes of Mody. Endocr Res 2024:1-11. [PMID: 39106207 DOI: 10.1080/07435800.2024.2388606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Monogenic diabetes often occurs as a result of single-gene mutations. The illness is minimally affected by environmental and behavioral factors, and it constitutes around one to five percent of all cases of diabetes. METHODS Newborn diabetes mellitus (NDM) and maturity-onset diabetes of the young (MODY) are the predominant causes of monogenic diabetes, accounting for a larger proportion of cases, while syndromic diabetes represents a smaller percentage. MODY, a group of inherited non-autoimmune diabetes mellitus disorders, is quite common. However, it remains frequently misdiagnosed despite increasing public awareness. The condition is characterized by insulin resistance, the development of diabetes at a young age (before 25 years), mild high blood sugar levels, inheritance in an autosomal dominant pattern, and the preservation of natural insulin production. RESULTS Currently, there are 14 distinct subtypes of MODY that have been identified. Each subtype possesses distinct characteristics in terms of their frequency, clinical symptoms, severity of diabetes, related complications, and response to medicinal interventions. Due to the clinical similarities, lack of awareness, and high expense of genetic testing, distinguishing between type I (T1D) and type II diabetes mellitus (T2D) can be challenging, resulting in misdiagnosis of this type of diabetes. As a consequence, a significant number of individuals are being deprived of adequate medical attention. Accurate diagnosis enables the utilization of novel therapeutic strategies and enhances the management of therapy in comparison to type II and type I diabetes. CONCLUSION This article offers a concise overview of the clinical subtypes and characteristics of monogenic diabetes. Furthermore, this article discusses the various subtypes of MODY, as well as the process of diagnosing, managing, and treating the condition. It also addresses the difficulties encountered in detecting and treating MODY.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Kajal Maurya
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Anuj Nautiyal
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | |
Collapse
|
5
|
Naylor RN, Patel KA, Kettunen JLT, Männistö JME, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SAW, Hattersley AT, Tuomi T. Precision treatment of beta-cell monogenic diabetes: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:145. [PMID: 39025920 PMCID: PMC11258280 DOI: 10.1038/s43856-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Beta-cell monogenic forms of diabetes have strong support for precision medicine. We systematically analyzed evidence for precision treatments for GCK-related hyperglycemia, HNF1A-, HNF4A- and HNF1B-diabetes, and mitochondrial diabetes (MD) due to m.3243 A > G variant, 6q24-transient neonatal diabetes mellitus (TND) and SLC19A2-diabetes. METHODS The search of PubMed, MEDLINE, and Embase for individual and group level data for glycemic outcomes using inclusion (English, original articles written after 1992) and exclusion (VUS, multiple diabetes types, absent/aggregated treatment effect measures) criteria. The risk of bias was assessed using NHLBI study-quality assessment tools. Data extracted from Covidence were summarized and presented as descriptive statistics in tables and text. RESULTS There are 146 studies included, with only six being experimental studies. For GCK-related hyperglycemia, the six studies (35 individuals) assessing therapy discontinuation show no HbA1c deterioration. A randomized trial (18 individuals per group) shows that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes. Cohort and case studies support SU's effectiveness in lowering HbA1c. Two cross-over trials (each with 15-16 individuals) suggest glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes is limited. Most reported patients with HNF1B-diabetes (N = 293) and MD (N = 233) are on insulin without treatment studies. Limited data support oral agents after relapse in 6q24-TND and for thiamine improving glycemic control and reducing/eliminating insulin requirement in SLC19A2-diabetes. CONCLUSION There is limited evidence, and with moderate or serious risk of bias, to guide monogenic diabetes treatment. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Kashyap A Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L T Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M E Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris, France
| | - Michel Polak
- Inserm U1016 Institut Cochin, Paris, France
- Department of Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université Paris Cité, Paris, France
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen, København, Denmark
| | - Siri A W Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, USA
| | - Andrew T Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Tiinamaija Tuomi
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland.
- Folkhalsan Research Center, Helsinki, Finland.
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland.
- Lund University Diabetes Center, Malmo, Sweden.
| |
Collapse
|
6
|
Zečević K, Volčanšek Š, Katsiki N, Rizzo M, Milardović TM, Stoian AP, Banach M, Muzurović E. Maturity-onset diabetes of the young (MODY) - in search of ideal diagnostic criteria and precise treatment. Prog Cardiovasc Dis 2024; 85:14-25. [PMID: 38513726 DOI: 10.1016/j.pcad.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is a spectrum of clinically heterogenous forms of monogenic diabetes mellitus characterized by autosomal dominant inheritance, onset at a young age, and absence of pancreatic islets autoimmunity. This rare form of hyperglycemia, with clinical features overlapping with type 1 and type 2 diabetes mellitus, has 14 subtypes with differences in prevalence and complications occurrence which tailor therapeutic approach. MODY phenotypes differ based on the gene involved, gene penetrance and expressivity. While MODY 2 rarely leads to diabetic complications and is easily managed with lifestyle interventions alone, more severe subtypes, such as MODY 1, 3, and 6, require an individualized treatment approach to maintain a patient's quality of life and prevention of complications. This review summarizes current evidence on the presentation, diagnosis, and management of MODY, an example of a genetic cause of hyperglycemia that calls for a precision medicine approach.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia; Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Tanja Miličević Milardović
- Internal Medicine Department, Endocrinology, Diabetology, and Metabolism Division, University Hospital of Split, Split, Croatia; University of Split School of Medicine, Split, Croatia
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro; Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
7
|
Bhattacharya S, Pappachan JM. Monogenic diabetes in children: An underdiagnosed and poorly managed clinical dilemma. World J Diabetes 2024; 15:1051-1059. [PMID: 38983823 PMCID: PMC11229976 DOI: 10.4239/wjd.v15.i6.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Monogenic diabetes, constituting 1%-2% of global diabetes cases, arises from single gene defects with distinctive inheritance patterns. Despite over 50 ass-ociated genetic disorders, accurate diagnoses and management of monogenic diabetes remain inadequate, underscoring insufficient clinician awareness. The disease spectrum encompasses maturity-onset diabetes of the young (MODY), characterized by distinct genetic mutations affecting insulin secretion, and neonatal diabetes mellitus (NDM) - a heterogeneous group of severe hyperglycemic disorders in infants. Mitochondrial diabetes, autoimmune monogenic diabetes, genetic insulin resistance and lipodystrophy syndromes further diversify the monogenic diabetes landscape. A tailored approach based on phenotypic and biochemical factors to identify candidates for genetic screening is recommended for suspected cases of MODY. NDM diagnosis warrants immediate molecular genetic testing for infants under six months. Identifying these genetic defects presents a unique opportunity for precision medicine. Ongoing research aimed to develop cost-effective genetic testing methods and gene-based therapy can facilitate appropriate identification and optimize clinical outcomes. Identification and study of new genes offer a valuable opportunity to gain deeper insights into pancreatic cell biology and the pathogenic mechanisms underlying common forms of diabetes. The clinical review published in the recent issue of World Journal of Diabetes is such an attempt to fill-in our knowledge gap about this enigmatic disease.
Collapse
Affiliation(s)
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
Crowley MT, Paponette B, Bacon S, Byrne MM. Management of pregnancy in women with monogenic diabetes due to mutations in GCK, HNF1A and HNF4A genes. Front Genet 2024; 15:1362977. [PMID: 38933924 PMCID: PMC11199717 DOI: 10.3389/fgene.2024.1362977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Women with maturity-onset diabetes of the young (MODY) need tailored antenatal care and monitoring of their offspring. Each MODY subtype has different implications for glycaemic targets, treatment choices and neonatal management. Hyperglycaemia of MODY is often first diagnosed in adolescence or early adulthood and therefore is clinically relevant to pregnant women. MODY remains an under-recognised and undiagnosed condition. Pregnancy represents an opportune time to make a genetic diagnosis of MODY and provide precision treatment. This review describes the nuance of antenatal care in women with MODY and the implications for pregnancies affected by a positive paternal genotype. Mutations in hepatic nuclear factor 1-alpha (HNF1A) and 4-alpha (HNF4A) genes are associated with progressive β-cell dysfunction resulting in early onset diabetes. Patients are largely managed with sulphonylureas outside of pregnancy. Macrosomia and persistent neonatal hypoglycaemia are reported in 54% and 15% of HNF4A genotype positive offspring respectively with a median increase in birthweight of 790 g. Close observation of foetal growth in utero allows optimal timing of delivery to minimise peri- and postpartum materno-foetal complications. Glucokinase (GCK)-MODY causes mild fasting hyperglycaemia which does not require treatment outside of pregnancy. Birthweight of offspring of maternal carriers is dependent on foetal genotype; heterozygous mutation carriers are usually normal weight while genotype negative offspring are large for gestational age (600 g heavier). Affected offspring of paternal carriers may be small for gestational age (500 g lighter). Serial growth scans with measurement of the abdominal circumference indirectly differentiate foetal genotype. Measurement of cell free foetal DNA in maternal blood from the late first trimester is superior to traditionally used ultrasound to distinguish foetal genotype. Cost and accessibility may limit its use.
Collapse
Affiliation(s)
- M. T. Crowley
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| | - B. Paponette
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - S. Bacon
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - M. M. Byrne
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Urakami T, Terada H, Mine Y, Aoki M, Suzuki J, Morioka I. Clinical characteristics in children with maturity-onset diabetes of the young detected by urine glucose screening at schools in the Tokyo Metropolitan Area. Clin Pediatr Endocrinol 2024; 33:113-123. [PMID: 38993716 PMCID: PMC11234186 DOI: 10.1297/cpe.2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 07/13/2024] Open
Abstract
This study aimed to examine the clinical characteristics of young children diagnosed with maturity-onset diabetes (MODY) using urine glucose screening at schools. The study participants were 70 non-obese children who were clinically diagnosed with type 2 diabetes through urine glucose screening at schools in Tokyo between 1974 and 2020. Of these children, 55 underwent genetic testing, and 21 were finally diagnosed with MODY: MODY2 in eight, MODY3 in eight, MODY1 in four and MODY5 in one. A family history of diabetes was found in 76.2% of the patients. Fasting plasma glucose levels did not differ between the different MODY subtypes, while patients with MODY 3, 1, and 5 had significantly higher levels of glycosylated hemoglobin and 2-hour glucose in an oral glucose tolerance test than those with MODY2. In contrast, most patients exhibit mild insulin resistance and sustained β-cell function. In the initial treatment, all patients with MODY2 were well controlled with diet and exercise, whereas the majority of those with MODY3, 1, and 5 required pharmacological treatment within one month of diagnosis. In conclusion, urine glucose screening in schools appears to be one of the best opportunities for early detection of the disease and providing appropriate treatment to patients.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Terada
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Mine
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masako Aoki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Suzuki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Cuan K, Bass IR. A Woman With HNF1A-Associated Monogenic Diabetes Treated Successfully With Repaglinide Monotherapy. AACE Clin Case Rep 2024; 10:49-51. [PMID: 38523849 PMCID: PMC10958634 DOI: 10.1016/j.aace.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 03/26/2024] Open
Abstract
Background/Objective Monogenic diabetes is a rare type of diabetes that is commonly misdiagnosed as type 1 or 2 diabetes mellitus, which adversely impacts patient care. Such cases are particularly challenging given the heterogeneity in presentation and overlap with other types of diabetes. As the sole use of meglitinides, especially repaglinide, to treat HNF1A-associated monogenic diabetes has been rarely reported in a few other observational studies, we describe a patient who was treated successfully with repaglinide. Case Report A 38-year-old woman with type 1 diabetes mellitus, congenital deafness, chronic kidney disease, and retinopathy presented with difficulty controlling her blood glucose levels. Although initially treated with insulin, she had periods of noncompliance with insulin without experiencing diabetic ketoacidosis. Although on insulin therapy, she experienced multiple episodes of hypoglycemia. The laboratory tests showed a hemoglobin A1c level of 10.8%, c-peptide level of 2.7 ng/mL (1.1-4.4 ng/mL), glucose level of 192 mg/dL, creatinine level of 1.23 ng/dL, and severely increased microalbumin-to-creatinine ratio of 638 mg/g (normal range, 0-29 mg/g). Pancreatic autoantibodies were negative. Genetic testing revealed a diagnosis of HNF1A-associated monogenic diabetes (c. 1340C>T (p.P447L)). She was ultimately treated with repaglinide after trials of sulfonylureas and dipeptidyl peptidase 4 inhibitors led to frequent hypoglycemia and a significant increase in the hemoglobin A1c level, respectively. Discussion This case highlights the importance of correctly diagnosing monogenic diabetes and reports the successful use of repaglinide to treat HNF1A-associated monogenic diabetes. Conclusion Patients with HNF1A-associated monogenic diabetes who do not achieve euglycemia with sulfonylureas and insulin may be successfully treated with repaglinide monotherapy.
Collapse
Affiliation(s)
- Katherine Cuan
- Department of Medicine, Mount Sinai Morningside and Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ilana R. Bass
- Division of Endocrinology, Department of Medicine, Mount Sinai Morningside and Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
12
|
Mathieu C, Ahmadzai I. Incretins beyond type 2 diabetes. Diabetologia 2023; 66:1809-1819. [PMID: 37552238 DOI: 10.1007/s00125-023-05980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 08/09/2023]
Abstract
Incretin-based therapies, in particular glucagon-like peptide-1 (GLP-1) receptor agonists, have been evaluated in other forms of diabetes, but randomised controlled trials are mainly limited to people living with type 1 diabetes. In this review we present the evidence issuing from these trials and discuss their clinical implications as well as the difficulties in interpreting the data. In type 1 diabetes, the addition of GLP-1 receptor agonists to intensive insulin therapy lowers weight and required insulin doses compared with placebo, but the effects on glucose control (HbA1c, risk of hypoglycaemia) are dependent on the different study protocols. Side effects are limited to the gastrointestinal complaints of nausea, vomiting and diarrhoea. We briefly discuss the potential for using GLP-1 receptor agonists as (adjunct) therapies in other forms of diabetes, where the evidence to date is scarce.
Collapse
Affiliation(s)
- Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium.
| | - Iraj Ahmadzai
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Naylor RN, Patel KA, Kettunen JL, Männistö JM, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SA, Hattersley AT, Tuomi T. Systematic Review of Treatment of Beta-Cell Monogenic Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289807. [PMID: 37214872 PMCID: PMC10197799 DOI: 10.1101/2023.05.12.23289807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Beta-cell monogenic forms of diabetes are the area of diabetes care with the strongest support for precision medicine. We reviewed treatment of hyperglycemia in GCK-related hyperglycemia, HNF1A-HNF4A- and HNF1B-diabetes, Mitochondrial diabetes (MD) due to m.3243A>G variant, 6q24-transient neonatal diabetes (TND) and SLC19A2-diabetes. Methods Systematic reviews with data from PubMed, MEDLINE and Embase were performed for the different subtypes. Individual and group level data was extracted for glycemic outcomes in individuals with genetically confirmed monogenic diabetes. Results 147 studies met inclusion criteria with only six experimental studies and the rest being single case reports or cohort studies. Most studies had moderate or serious risk of bias.For GCK-related hyperglycemia, six studies (N=35) showed no deterioration in HbA1c on discontinuing glucose lowering therapy. A randomized trial (n=18 per group) showed that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes, and cohort and case studies supported SU effectiveness in lowering HbA1c. Two crossover trials (n=15 and n=16) suggested glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes was limited. While some patients with HNF1B-diabetes (n=301) and MD (n=250) were treated with oral agents, most were on insulin. There was some support for the use of oral agents after relapse in 6q24-TND, and for thiamine improving glycemic control and reducing insulin requirement in SLC19A2-diabetes (less than half achieved insulin-independency). Conclusion There is limited evidence to guide the treatment in monogenic diabetes with most studies being non-randomized and small. The data supports: no treatment in GCK-related hyperglycemia; SU for HNF1A-diabetes. Further evidence is needed to examine the optimum treatment in monogenic subtypes.
Collapse
Affiliation(s)
- Rochelle N. Naylor
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kashyap A. Patel
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | - Jarno L.T. Kettunen
- Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland; Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Jonna M.E. Männistö
- Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio, Finland; Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Julie Støy
- Steno diabetes center Aarhus, Aarhus university hospital, Aarhus, Denmark
| | - Jacques Beltrand
- APHP Centre Hôpital Necker Enfants Malades Université Paris Cité, Paris France; Inserm U1016 Institut Cochin Paris France
| | - Michel Polak
- Department of pediatric endocrinology gynecology and diabetology, Hôpital Universitaire Necker Enfants Malades, IMAGINE institute, INSERM U1016, Paris, France; Université Paris Cité, Paris, France
| | - ADA/EASD PMDI
- American Diabetes Association/European Association for the Study of Diabetes Precision Medicine Initiative
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen
| | - Siri A.W. Greeley
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA
| | - Andrew T. Hattersley
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Exeter, Devon, UK
| | | |
Collapse
|
14
|
Nakhleh A, Goldenberg-Furmanov M, Goldstein R, Shohat M, Shehadeh N. A beneficial role of GLP-1 receptor agonist therapy in ABCC8-MODY (MODY 12). J Diabetes Complications 2023; 37:108566. [PMID: 37536118 DOI: 10.1016/j.jdiacomp.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is an inherited form of diabetes resulting from a mutation in a single gene. ABCC8-MODY is caused by mutations in the ABCC8 gene, which encodes sulfonylurea receptor 1 (SUR1), a regulatory component of the ATP-sensitive potassium (KATP) channel found in beta cells. In ABCC8-MODY, mutations in the ABCC8 gene interfere with insulin secretion in response to glucose. Recent evidence suggests that therapy with GLP-1 receptor agonists (GLP-1 RAs) may be beneficial in ABCC8-MODY. This report presents a successful treatment of a 49-year-old woman diagnosed with ABCC8-MODY using the GLP-1 RA semaglutide. The patient, who had been previously receiving insulin therapy, experienced significant improvements in glycemic control and weight loss after transitioning to semaglutide. GLP-1 RAs potentially enhance insulin secretion in ABCC8-MODY by activating multiple signaling pathways involved in insulin secretion. The report highlights the potential of GLP-1 RA therapy as an alternative to sulfonylureas and insulin for individuals with ABCC8-MODY. GLP-1 RAs have previously demonstrated benefits in other forms of MODY. Understanding the molecular mechanisms through which GLP-1 RAs promote insulin secretion, including their effects on KATP channels and activation of PKA and Epac signaling, offers valuable insights into their therapeutic effects.
Collapse
Affiliation(s)
- Afif Nakhleh
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa, Israel; Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel; The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | | | - Rayna Goldstein
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | - Mordechai Shohat
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | - Naim Shehadeh
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa, Israel; Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel; The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
15
|
Zhang J, Jiang Y, Li J, Zou H, Yin L, Yang Y, Yang L. Identification and precision therapy for three maturity-onset diabetes of the young (MODY) families caused by mutations in the HNF4A gene. Front Endocrinol (Lausanne) 2023; 14:1237553. [PMID: 37711893 PMCID: PMC10498112 DOI: 10.3389/fendo.2023.1237553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Heterozygous pathogenic variants in HNF4A gene cause maturity-onset diabetes of the young type 1 (MODY1). The mutation carriers for MODY1 have been reported to be relatively rare, in contrast to the most frequently reported forms of MODY2 and MODY3. Methods Whole exome sequencing (WES) and Sanger sequencing were performed for genetic analysis of MODY pedigrees. Tertiary structures of the mutated proteins were predicted using PyMOL software. Results Three heterozygous missense mutations in the HNF4A gene, I159T, W179C, and D260N, were identified in the probands of three unrelated MODY families using WES, one of which (W179C) was novel. Cascade genetic screening revealed that the mutations co-segregated with hyperglycemic phenotypes in their families. The molecular diagnosis of MODY1 has partly transformed its management in clinical practice and improved glycemic control. The proband in family A successfully converted to sulfonylureas and achieved good glycemic control. Proband B responded well to metformin combined with diet therapy because of his higher body mass index (BMI). The proband in family C, with paternal-derived mutations, had markedly defective pancreatic β-cell function due to the superposition effect of T2DM susceptibility genes from the maternal grandfather, and he is currently treated with insulin. In silico analysis using PyMOL showed that the I159T and D260N mutations altered polar interactions with the surrounding residues, and W179C resulted in a smaller side chain. Discussion We identified three heterozygous missense mutations of HNF4A from Chinese MODY families. Structural alterations in these mutations may lead to defects in protein function, further contributing to the hyperglycemic phenotype of mutation carriers.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Yanyan Jiang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Li
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyin Zou
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Li Yin
- Department of Ultrasound Medicine, The 990th Hospital of The People’s Liberation Army, Zhumadian, China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Lei Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
- Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Institute of Cardiovascular and Cerebrovascular Diseases, School of Medicine, Huanghuai University, Zhumadian, China
| |
Collapse
|
16
|
Xie Z, Hu J, Gu H, Li M, Chen J. Comparison of the efficacy and safety of 10 glucagon-like peptide-1 receptor agonists as add-on to metformin in patients with type 2 diabetes: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1244432. [PMID: 37701904 PMCID: PMC10493284 DOI: 10.3389/fendo.2023.1244432] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose This study aimed to perform a network meta-analysis to objectively evaluate the efficacy and safety of 10 Glucagon-like peptide-1 receptor agonists (GLP-1RAs) in combination with metformin that is approved for use worldwide in patients with type 2 diabetes and to provide evidence-based support and reference for the selection of clinical treatment. Methods Three databases (PubMed, Embase, and Cochrane Library) were searched from their respective inception until September 30, 2022. Only randomized controlled trials comparing the efficacy and safety of GLP-1RAs for treating type 2 diabetes (T2D) were included. The 10 GLP-1RAs are exenatide (including exenatide twice daily and once weekly), liraglutide, lixisenatide, dulaglutide, PEX168, semaglutide (subcutaneous and oral semaglutide), tirzepatide and albiglutide. Results 34 RCTs with 10 GLP-1RAs and 12993 patients were included in the Network Meta-Analysis (NMA). According to the NMA, tirzepatide 15 mg, semaglutide 1.0 mg, PEX168-200μg, oral semaglutide 14 and dulaglutide 1.5 mg reduced HbA1c by -2.23%, -1.57%, -1.12%, -1.10%, -1.09% and body weight by -11.33 kg, -5.99 kg, +0.40 kg, -3.95 kg, -1.87 kg, respectively. There was no significant difference in the rate of adverse events for tirzepatide 15 mg, oral-semaglutide 14 mg, and semaglutide 1.0 mg. PEX168-200μg, tirzepatide 15mg, and oral semaglutide 14mg had Surface Under the Cumulative Ranking (SUCRA) values greater than placebo, and only tirzepatide 15mg and oral semaglutide 14mg were significantly different from placebo in the rate of serious adverse events. All GLP-1RA did not lead to increased incidence of hypoglycemia. Albiglutide 30mg and semaglutide 1.0mg significantly differed from placebo in Adverse Event (AE) withdrawal. Finally, the sensitivity analysis and publication bias analysis results indicate that the study results are reliable. Conclusion This study's results showed that GLP-1RAs were effective in lowering HbA1c and reducing body weight without increased incidence of hypoglycemic reactions. In addition, this study may provide reference and evidence-based medical evidence for clinicians to select GLP-1RAs in patients with T2D and high body mass index (BMI). Based on the NMA results, tirzepatide 15mg and semaglutide 1.0mg may be preferred.
Collapse
Affiliation(s)
| | | | | | | | - Jisheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Li M, Popovic N, Wang Y, Chen C, Polychronakos C. Incomplete penetrance and variable expressivity in monogenic diabetes; a challenge but also an opportunity. Rev Endocr Metab Disord 2023; 24:673-684. [PMID: 37165203 DOI: 10.1007/s11154-023-09809-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Monogenic Forms of Diabetes (MFD) account for about 3% of all diabetes, and their accurate diagnosis often results in life-changing therapeutic reassignment for the patients. Like other Mendelian diseases, reduced penetrance and variable expressivity are often seen in several different types of MFD, where symptoms develop only in a portion of the persons who carry the pathogenic variant or vary widely in symptom severity and age of onset. This complicates diagnosis and disease management in MFD. In addition to its clinical importance, knowledge of genetic modifiers that confer penetrance and expressivity variability opens possibilities to identify protective genetic variants which may help probe the mechanisms of more common forms of diabetes and shed light in new therapeutic strategies. In this review, we will mainly address penetrance and expressivity variation in different types of MFD, factors that confer such variations and opportunities that come with such knowledge. Related literature was searched in PubMed, Medline and Embase. Papers with publication year from 1974 to 2023 are included. Data are either sourced from literatures or from OMIM, Clinvar and 1000 genome browser.
Collapse
Affiliation(s)
- Meihang Li
- College of pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong, China.
- Department of Emergency, Department of Endorinology, Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong, China.
- Montreal Children's Hospital and the Endocrine Genetics Laboratory, Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, China.
- MaiDa Gene Technology, Zhoushan, China.
| | - Natalija Popovic
- Montreal Children's Hospital and the Endocrine Genetics Laboratory, Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, China
| | - Ying Wang
- College of pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong, China
| | - Chunbo Chen
- Department of Emergency, Department of Endorinology, Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong, China
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Constantin Polychronakos
- Montreal Children's Hospital and the Endocrine Genetics Laboratory, Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, China
- MaiDa Gene Technology, Zhoushan, China
| |
Collapse
|
18
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Zaitoon H, Lubetzky R, Amir AZ, Moran-Lev H, Sagi L, Yacobi-Bach M, Borger O, Chorna E, Lebenthal Y, Brener A. Glucagon-like peptide-1 analog therapy in rare genetic diseases: monogenic obesity, monogenic diabetes, and spinal muscular atrophy. Acta Diabetol 2023:10.1007/s00592-023-02109-9. [PMID: 37160786 DOI: 10.1007/s00592-023-02109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
AIM Implementing genetic analyses have unraveled rare alterations causing early-onset obesity and complications, in whom treatment is challenging. We aimed to report on the effects of adjuvant off-label therapy with liraglutide, glucagon-like peptide-1 analogue (GLP-1a), in rare genetic diagnoses. METHODS Case scenarios and review of the literature. RESULTS Case 1: Nine-year-old boy with early-onset severe obesity and nonalcoholic fatty liver disease (NAFLD) due to a homozygous mutation in the MC4R gene deteriorated under lifestyle change and metformin therapy [at 10.5 years: body mass index (BMI) 51.2kg/m2, 226% of the 95th percentile, fat percentage (FP) 65% and muscle-to-fat ratio (MFR) z-score of -2.41]. One year of liraglutide treatment halted progressive weight gain [BMI 50.3kg/m2, 212% of the 95th percentile, 63.7% FP and MFR z-score of -2.34], with biochemical improvement. Case 2: Twelve-year-old boy with obesity presented with diabetes and progressive NAFLD. Exome analysis revealed two heterozygous mutations compatible with monogenic diabetes (HNF1A) and familial hypercholesterolemia (LDLR). Lifestyle modifications resulted in clinical and laboratory improvement (BMI 87th percentile, 32.8% FP, MFR z-score of -1.63, HbA1c 5.5%) without the expected recovery in liver transaminases. Liraglutide treatment augmented the improvement in weight status (BMI 68th percentile, 22.6% FP, MFR z-score of -1.13) with normalization of liver transaminases. Case 3: Nineteen-year-old male with spinal muscular atrophy type 3 presented with sarcopenic obesity and comorbidities. Treatment strategy included dietary counseling and multiple drug therapies (metformin, anti-hypertensive and statins). Liraglutide therapy led to a gradual recovery of metabolic complications allowing tapering-down other medications. CONCLUSIONS Considering the pleiotropic effects of GLP1-a beyond BMI reduction, this treatment modality may serve as a game changer in challenging cases.
Collapse
Affiliation(s)
- Hussein Zaitoon
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239-06, Tel Aviv, Israel
| | - Ronit Lubetzky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Achiya Z Amir
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadar Moran-Lev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Liora Sagi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Yacobi-Bach
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ophir Borger
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239-06, Tel Aviv, Israel
- The Nutrition and Dietetics Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Efrat Chorna
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239-06, Tel Aviv, Israel
- Social Services, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Lebenthal
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239-06, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Brener
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St, 64239-06, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Peng H, Li J, Wang Z. De novo HNF1A mutation of young maturity-onset diabetes 3 of a young girl-Case report. BMC Endocr Disord 2023; 23:38. [PMID: 36782183 PMCID: PMC9926701 DOI: 10.1186/s12902-023-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Young maturity-onset diabetes of the young type3(MODY3) as a special type of diabetes, the probability of diagnosis is low. This article reports on a case and reviews the relevant knowledge of the disease. We report an 11-year-and-11-month-old girl whose grandmother died from diabetic complications while the rest of the families were non-diabetes. The proband was initially treated with insulin and metformin but the threatment proved inefficient. After an exome-targeted capture sequencing test, she was diagnosed with mature-onset diabetes of young type 3 (MODY3), and sulfonylureas make sense. The key to mody treatment is a correct and timely diagnosis, which contributes to helping patients overcome the problems of MODY3, especially for blood sugar control.
Collapse
Affiliation(s)
- Haoran Peng
- Chengdu Medical College, 610083 Chengdu, China
| | - Jianbo Li
- Southwest Medical University, 646000 Luzhou, China
| | - Zhang Wang
- Department of Geriatrics, The General Hospital of Western Theater Command, 610083 Chengdu, China
| |
Collapse
|
21
|
Hermann FM, Kjærgaard MF, Tian C, Tiemann U, Jackson A, Olsen LR, Kraft M, Carlsson PO, Elfving IM, Kettunen JLT, Tuomi T, Novak I, Semb H. An insulin hypersecretion phenotype precedes pancreatic β cell failure in MODY3 patient-specific cells. Cell Stem Cell 2023; 30:38-51.e8. [PMID: 36563694 DOI: 10.1016/j.stem.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient-specific HNF1A+/R272C β cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 β cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 β cells. Our findings identify a pathogenic mechanism leading to β cell failure in MODY3.
Collapse
Affiliation(s)
- Florian M Hermann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Maya Friis Kjærgaard
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Chenglei Tian
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Ulf Tiemann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Abigail Jackson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Kraft
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jarno L T Kettunen
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Tiinamaija Tuomi
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Ivana Novak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Semb
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany.
| |
Collapse
|
22
|
Kaser S, Hofer SE, Kazemi-Shirazi L, Festa A, Winhofer Y, Sourij H, Brath H, Riedl M, Resl M, Clodi M, Stulnig T, Ress C, Luger A. [Other specific types of diabetes and exocrine pancreatic insufficiency (update 2023)]. Wien Klin Wochenschr 2023; 135:18-31. [PMID: 37101022 PMCID: PMC10133035 DOI: 10.1007/s00508-022-02123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 04/28/2023]
Abstract
The heterogenous category "specific types of diabetes due to other causes" encompasses disturbances in glucose metabolism due to other endocrine disorders such as acromegaly or hypercortisolism, drug-induced diabetes (e.g. antipsychotic medications, glucocorticoids, immunosuppressive agents, highly active antiretroviral therapy (HAART), checkpoint inhibitors), genetic forms of diabetes (e.g. Maturity Onset Diabetes of the Young (MODY), neonatal diabetes, Down‑, Klinefelter- and Turner Syndrome), pancreatogenic diabetes (e.g. postoperatively, pancreatitis, pancreatic cancer, haemochromatosis, cystic fibrosis), and some rare autoimmune or infectious forms of diabetes. Diagnosis of specific diabetes types might influence therapeutic considerations. Exocrine pancreatic insufficiency is not only found in patients with pancreatogenic diabetes but is also frequently seen in type 1 and long-standing type 2 diabetes.
Collapse
Affiliation(s)
- Susanne Kaser
- Universitätsklinik für Innere Medizin 1, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich.
| | - Sabine E Hofer
- Universitätsklinik für Pädiatrie 1, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Lili Kazemi-Shirazi
- Klinische Abteilung für Gastroenterologie und Hepatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Andreas Festa
- Abteilung für Innere Medizin I, LK Stockerau, Stockerau, Österreich
| | - Yvonne Winhofer
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Harald Sourij
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | - Helmut Brath
- Mein Gesundheitszentrum Favoriten, Österreichische Gesundheitskasse, Wien, Österreich
| | - Michaela Riedl
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Michael Resl
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
| | - Martin Clodi
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
- ICMR - Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Österreich
| | - Thomas Stulnig
- 3. Medizinische Abteilung und Karl Landsteiner Institut für Stoffwechselerkrankungen und Nephrologie, Klinik Hietzing, Wien, Österreich
| | - Claudia Ress
- Universitätsklinik für Innere Medizin 1, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Anton Luger
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
23
|
Abstract
The historical subclassification of diabetes into predominantly types 1 and 2 is well appreciated to inadequately capture the heterogeneity seen in patient presentations, disease course, response to therapy and disease complications. This review summarises proposed data-driven approaches to further refine diabetes subtypes using clinical phenotypes and/or genetic information. We highlight the benefits as well as the limitations of these subclassification schemas, including practical barriers to their implementation that would need to be overcome before incorporation into clinical practice.
Collapse
Affiliation(s)
- Aaron J Deutsch
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Boston, MA, USA
- Program in Metabolism, Broad Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Miriam S Udler
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical & Population Genetics, Broad Institute, Boston, MA, USA.
- Program in Metabolism, Broad Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Bonner C, Saponaro C. Where to for precision treatment of HNF1A-MODY? Diabetologia 2022; 65:1825-1829. [PMID: 35412067 DOI: 10.1007/s00125-022-05696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Caroline Bonner
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.
| | - Chiara Saponaro
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| |
Collapse
|
25
|
Dai C, Zhu W. Effects of GLP-1 receptor agonists on asprosin levels in normal weight or overweight/obesity patients with type 2 diabetes mellitus. Medicine (Baltimore) 2022; 101:e31334. [PMID: 36316938 PMCID: PMC9622638 DOI: 10.1097/md.0000000000031334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asprosin is a newly identified adipokine with glucose-raising and appetite-enhancing effects which acts differently from the known hepatic glucose utilization pathway. This study investigated changes in serum asprosin levels in normal weight or overweight/obese liraglutide-treated patients with type 2 diabetes (T2DM). This study is a non-randomized, prospective observational study. The metabolic parameters and asprosin levels were compared between 90 people with T2DM and 66 people who had normal glucose tolerance (NGT). During the treatment phase, only T2DM patients were given liraglutide at doses of 0.6 mg/d for the first 2 weeks, 1.2 mg/d for the subsequent 4 weeks, and 1.8 mg/d for the following 16 weeks. T2DM patients were separated into a normal weight group and an overweight/obesity group to compare changes in asprosin and parameters pre- and post-treatment. The T2DM group had significantly higher fasting asprosin and 2h-postprandial asprosin levels than the NGT group (all P < .001). Fasting asprosin and postprandial asprosin positively correlated with BMI, 2hPG, HbA1c, TG, and HOMA-IR, and negatively correlated with HDL-C in both the T2DM and NGT groups. Asprosin levels decreased after liraglutide treatment in both normal and overweight/obesity T2DM groups (all P < .001), with significantly reduced body weight and BMI in overweight/obese T2DM patients (all P < .001). Fasting and postprandial serum asprosin concentrations are higher in T2DM patients compared to normal glucose controls. Fasting and postprandial asprosin positively correlated with BMI, 2hPG, HbA1c, TG, and HOMA-IR and negatively correlated with HDL-C in all participants. Liraglutide lowers asprosin levels in T2DM patients and can reduce weight and BMI in overweight or obese type 2 diabetics.
Collapse
Affiliation(s)
- Chenggang Dai
- Guangzhou University of Chinese Medicine, Guangzhong, China
- Endocrinology Department, Guangzhou Development District Hospital, Guangzhou, China
- *Correspondence: Chenggang Dai, Guangzhou University of Chinese Medicine, Guangzhou, China (e-mail: )
| | - Weifeng Zhu
- Guangzhou University of Chinese Medicine, Guangzhong, China
| |
Collapse
|
26
|
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J Pers Med 2022; 12:jpm12111762. [PMID: 36573710 PMCID: PMC9697644 DOI: 10.3390/jpm12111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.
Collapse
Affiliation(s)
- Hazar Younis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Arushi Verma
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, Reno, NV 89557, USA
- Correspondence:
| |
Collapse
|
27
|
Colclough K, Patel K. How do I diagnose Maturity Onset Diabetes of the Young in my patients? Clin Endocrinol (Oxf) 2022; 97:436-447. [PMID: 35445424 PMCID: PMC9544561 DOI: 10.1111/cen.14744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes diagnosed in young individuals that lack the typical features of type 1 and type 2 diabetes. The genetic subtype of MODY determines the most effective treatment and this is the driver for MODY genetic testing in diabetes populations. Despite the obvious clinical and health economic benefits, MODY is significantly underdiagnosed with the majority of patients being inappropriately managed as having type 1 or type 2 diabetes. Low detection rates result from the difficulty in identifying patients with a likely diagnosis of MODY from the high background population of young onset type 1 and type 2 diabetes, compounded by the lack of MODY awareness and education in diabetes care physicians. MODY diagnosis can be improved through (1) access to education and training, (2) the use of sensitive and specific selection criteria based on accurate prediction models and biomarkers to identify patients for testing, (3) the development and mainstream implementation of simple criteria-based selection pathways applicable across a range of healthcare settings and ethnicities to select the most appropriate patients for genetic testing and (4) the correct use of next generation sequencing technology to provide accurate and comprehensive testing of all known MODY and monogenic diabetes genes. The creation and public sharing of educational materials, clinical and scientific best practice guidelines and genetic variants will help identify the missing patients so they can benefit from the more effective clinical care that a genetic diagnosis brings.
Collapse
Affiliation(s)
- Kevin Colclough
- Exeter Genomics LaboratoryRoyal Devon & Exeter NHS Foundation TrustExeterUK
| | - Kashyap Patel
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
28
|
Zhou R, Guo L, Gao X, Wang Y, Xu W, Zou Y, Li W, Zhuang Y, Liu G, Liu Y. A phase I study comparing the pharmacokinetics of the biosimilar (RD12014) with liraglutide (Victoza) in healthy Chinese male subjects. Clin Transl Sci 2022; 15:2458-2467. [PMID: 35871497 PMCID: PMC9579399 DOI: 10.1111/cts.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to evaluate the pharmacokinetics (PKs), safety, and immunogenicity of the biosimilar (RD12014) compared to reference liraglutide (Victoza) in healthy Chinese male subjects, so as to provide the basis for the similarity evaluation of the two drugs. Eligible subjects were randomized 1:1 to two sequences (RD12014-Victoza or Victoza-RD12014). Subjects received a single 0.6 mg dose of Victoza or RD12014 by abdominal subcutaneous injection during the first period. After a 7-day washout period, subjects received the alternative drug during the second period. Blood samples were collected at predefined timepoints for PKs and immunogenicity assessment. The primary PK end points were maximum plasma concentration (Cmax ) and area under the concentration-time curve from time zero to the time of the last quantifiable concentration (AUC0-last ). PK bioequivalence was achieved, if the 90% confidence intervals (CIs) of the geometric mean ratio (GMR) of Cmax and AUC0-last were within the range of 80.00-125.00%. Safety was assessed throughout the study. The 90% CIs of the GMR of RD12014 to Victoza for Cmax and AUC0-last were completely within the range of 80.00-125.00%. Thirteen treatment-related adverse events (TRAEs) were reported in 11 subjects (22.4%) in the RD12014 group, compared to 12 TRAEs reported in 12 subjects (24.5%) in the Victoza group. The blood samples of 49 subjects were negative for anti-drug antibody and the neutralizing antibody was not further detected. This study demonstrated PK similarity of RD12014 to Victoza in healthy Chinese male subjects. Safety and immunogenicity profiles were comparable between the two groups.
Collapse
Affiliation(s)
- Ruirui Zhou
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Linfeng Guo
- Sunshine Lake Pharma Co., Ltd.GuangdongChina
| | | | - Yijun Wang
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Wenjing Xu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Yang Zou
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Wenjia Li
- Sunshine Lake Pharma Co., Ltd.GuangdongChina
| | | | - Gangyi Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Yanmei Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| |
Collapse
|
29
|
Cromer SJ, Sella AC, Rosenberg E, Scully K, McDonnell M, Abreu AP, Weil M, Bernstein SN, Quinn M, Powe C, Mitchell DM, Udler MS. Report of Prolonged Neonatal Hypoglycemia in Three Infants of Mothers With Variants in HNF1A. AACE Clin Case Rep 2022; 8:224-230. [PMID: 36189138 PMCID: PMC9508595 DOI: 10.1016/j.aace.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background/Objective Genetic variants in hepatic nuclear factor 1α (HNF1A) cause maturity-onset diabetes of the young (MODY). We sought to examine whether HNF1A MODY variants also cause neonatal hypoglycemia. Case Report We present 3 infants with variants in HNF1A shared with their mothers. The infants experienced neonatal hypoglycemia, 2 extending beyond 1 year and the third resolving by 28 days, and all were large for gestational age (birth weights of >99th percentile). In 2 cases, genetic testing for neonatal hypoglycemia revealed pathogenic variants in HNF1A; 1 mother was previously diagnosed with HNF1A MODY, and the other's genetic testing and ultimate MODY diagnosis were prompted by her child's hypoglycemia workup. In the third case, the infant's persistent hypoglycemia prompted genetic testing, revealing an HNF1A variant of uncertain significance, which was then identified in the mother. Discussion Genetic variants causing HNF1A MODY have not been definitively linked to neonatal hypoglycemia or fetal overgrowth in utero. MODY caused by HNF1A is clinically similar to that caused by HNF4A, for which a causal relationship with neonatal hypoglycemia is more certain. Case reports have previously implicated variants in HNF1A in congenital hyperinsulinism; however, these cases have generally not been in families with MODY. The cases presented here suggest that HNF1A variants causing MODY may also cause neonatal hypoglycemia. Conclusion Although confounding factors make the assessment of neonatal hypoglycemia challenging, these cases offer potential support for single genetic variants in HNF1A causing both MODY and neonatal hypoglycemia, with associated fetal overgrowth in utero.
Collapse
Key Words
- CGM, continuous glucose monitoring
- CHI, congenital hyperinsulinism
- EFW, estimated fetal weight
- HNF1A
- HNF1A, hepatic nuclear factor-1α
- HNF4A, hepatocyte nuclear factor-4α
- HbA1C, hemoglobin A1C
- MODY
- MODY, maturity-onset diabetes of the young
- NICU, neonatal intensive care unit
- T1D, type 1 diabetes
- T2D, type 2 diabetes
- VUS, variant of uncertain significance
- congenital hyperinsulinism
- diabetes
- genetic variants
- macrosomia
Collapse
Affiliation(s)
- Sara Jane Cromer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Boston, Massachusetts
| | - Aluma Chovel Sella
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Emily Rosenberg
- Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Kevin Scully
- Harvard Medical School, Boston, Massachusetts
- Division of Pediatric Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Marie McDonnell
- Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ana Paula Abreu
- Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Brigham Center for Endocrine Genetics, Boston, Massachusetts
| | - Michelle Weil
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sarah N. Bernstein
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Maryanne Quinn
- Harvard Medical School, Boston, Massachusetts
- Division of Pediatric Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Camille Powe
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Boston, Massachusetts
| | - Deborah M. Mitchell
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Miriam S. Udler
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Boston, Massachusetts
| |
Collapse
|
30
|
Tosur M, Philipson LH. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig 2022; 13:1465-1471. [PMID: 35638342 PMCID: PMC9434589 DOI: 10.1111/jdi.13860] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Maturity-onset of diabetes of the young (MODY) are monogenic forms of diabetes characterized by early onset diabetes with autosomal dominant inheritance. Since its first description about six decades ago, there have been significant advancements in our understanding of MODY from clinical presentations to molecular diagnostics and therapeutic responses. The prevalence of MODY is estimated as at least 1.1-6.5% of the pediatric diabetes population with a high degree of geographic variability that might arise from several factors in the criteria used to ascertain cases. GCK-MODY, HNF1A-MODY, and HNF4A-MODY account for >90% of MODY cases. While some MODY forms do not require treatment (i.e., GCK-MODY), some others are highly responsive to oral agents (i.e., HNF1A-MODY). The risk of micro- and macro-vascular complications of diabetes also differ significantly between MODY forms. Despite its high clinical impact, 50-90% of MODY cases are estimated to be misdiagnosed as type 1 or type 2 diabetes. Although there are many clinical features suggestive of MODY diagnosis, there is no single clinical criterion. An online MODY Risk Calculator can be a useful tool for clinicians in the decision-making process for MODY genetic testing in some situations. Molecular genetic tests with a commercial gene panel should be performed in cases with a suspicion of MODY. Unresolved atypical cases can be further studied by exome or genome sequencing in a clinical or research setting, as available.
Collapse
Affiliation(s)
- Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes CenterUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
31
|
Francis Y, Tiercelin C, Alexandre-Heyman L, Larger E, Dubois-Laforgue D. HNF1B-MODY Masquerading as Type 1 Diabetes: A Pitfall in the Etiological Diagnosis of Diabetes. J Endocr Soc 2022; 6:bvac087. [PMID: 35733830 PMCID: PMC9206723 DOI: 10.1210/jendso/bvac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatocyte nuclear factor-1B (HNF1B) maturity-onset diabetes of the young (MODY), also referred to as “renal cysts and diabetes syndrome” or MODY-5, is a rare form of monogenic diabetes that is caused by a deletion or a point mutation in the HNF1B gene, a developmental gene that plays a key role in regulating urogenital and pancreatic development. HNF1B-MODY has been characterized by its association with renal, hepatic and other extrapancreatic features. We present the case of a 39-year-old female patient who was first diagnosed with type 1 diabetes, but then, owing to the absence of anti-islet autoantibodies and to the disease’s progression, was labeled later on as having atypical type 2 diabetes. She was finally recognized as having HNF1B-MODY, a diagnosis that had been suggested by the lack of metabolic syndrome and by the presence of unexplained chronically disturbed liver function tests and hypomagnesemia. There was a 10-year delay between the onset of diabetes and the molecular diagnosis. An atypical form of diabetes, especially in patients with multisystem involvement, should raise suspicion for an alternative etiology. A timely diagnosis of HNF1B-MODY is of utmost importance since it can greatly impact diabetes management and disease progression as well as family history.
Collapse
Affiliation(s)
- Youmna Francis
- Department of Diabetology, Hôpital Cochin, APHP, and Université Paris Cité, Paris, France
| | - Clarisse Tiercelin
- Department of Diabetology, Hôpital Cochin, APHP, and Université Paris Cité, Paris, France
| | - Laure Alexandre-Heyman
- Department of Diabetology, Hôpital Cochin, APHP, and Université Paris Cité, Paris, France
| | - Etienne Larger
- Department of Diabetology, Hôpital Cochin, APHP, and Université Paris Cité, Paris, France
| | | |
Collapse
|
32
|
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int J Mol Sci 2022; 23:ijms23063222. [PMID: 35328643 PMCID: PMC8948720 DOI: 10.3390/ijms23063222] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells.
Collapse
|
33
|
Zhang Y, Hu S, Huang H, Liu J. A case report of Maturity-onset diabetes of the young 12: large fragment deletion in ABCC8 gene with literature review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:378. [PMID: 35434002 PMCID: PMC9011213 DOI: 10.21037/atm-22-807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Background Maturity-onset diabetes of the young (MODY) is one type of monogenic diabetes that is often misdiagnosed. The case refers to a case of maturity-onset diabetes of the young 12 (MODY12) who was misdiagnosed with type 1 diabetes (T1DM), and this was the first case of MODY12 induced by a large deletion of the ATP-binding cassette transporter C8 gene (ABCC8). Additionally, a literature review was conducted regarding the pathological mechanisms, clinical manifestations, diagnosis, and treatment of ABCC8-mutated diabetes. Case Description A 22 years old, male patient had been misdiagnosed with T1DM for 4 years and had experienced poor glucose control with multiple daily insulin injections. Their glycated hemoglobin (HbA1c) was 12.9% at the time of admission and they had been experiencing frequent hypoglycemia. Next-generation sequencing found that the chr11p15.1 region had large fragment heterozygous deletion of exon 17 of the ABCC8 gene. According to the genetic test results, the patient was diagnosed as MODY12, insulin treatment was gradually stopped and converted to glimepiride for oral administration, and HbA1c decreased to 6.1%. After oral treatment for 8 months, the glimepride was stopped; however, HbA1c was 5.9% after 6 months of drug withdrawal and C-peptide level became elevated [fasting C-peptide (FCP) increase from 0.8 to 7.5 ng/mL, and 2 h postprandial C-peptide increase from 0.7 to. 4.1 ng/mL]. Conclusions It is easy for underweight MODY patients to be misdiagnosed with T1DM. For T1DM patients with poor insulin treatment effects, repeated hypoglycemia, and persistent insulin secretion level, ABCC8 or other genes related to monogenic diabetes should be screened. An early diagnosis and transition of treatment can help improve prognosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China.,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Shengzhao Hu
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Haihua Huang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianying Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
35
|
Li J, Wang X, Mao H, Wen L, Deng A, Li Y, Zhang H, Liu C. Precision therapy for three Chinese families with maturity-onset diabetes of the young (MODY12). Front Endocrinol (Lausanne) 2022; 13:858096. [PMID: 35992135 PMCID: PMC9381955 DOI: 10.3389/fendo.2022.858096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is rare monogenic diabetes. However, MODY is often undiagnosed or misdiagnosed. In this study, we aimed to investigate the pathogenic gene for diabetes and provide precise treatment for diabetes patients in three families. Three families with suspected MODY were enrolled and screened for germline mutations using Whole exome sequencing (WES). Candidate pathogenic variants were validated in other family members and non-related healthy controls. Three heterozygous missense mutations in the ABCC8 gene (NM_001287174), c.1555 C>T (p.R519C), c.3706 A>G (p.I1236V), and c.2885 C>T (p.S962L) were found in families A, B, and C, respectively. All mutation sites cosegregated with diabetes, were predicted to be harmful by bioinformatics and were not found in non-related healthy controls. Two probands (onset ages, 8 and 12 years) were sensitive to glimepiride. However, an insufficient dose (2 mg/day) led to ketoacidosis. When the dosage of glimepiride was increased to 4 mg/day, blood sugar remained under control. A dose of 4 mg glimepiride daily also effectively controlled blood sugar in an adult patient 25-year-old. In addition, all patients were sensitive to liraglutide, which could control blood sugar better. These data suggest that ABCC8 was the pathogenic gene in three families with diabetes. Glimepiride (2 mg/day) was not effective in controlling blood sugar in children with ABCC8 mutations, however, 4 mg/daily glimepiride was effective in both adults and children. Moreover, liraglutide was effective in controlling blood sugar in both adults and children with ABCC8 mutations.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Mao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wen
- Department of Traditional Chinese Medicine and Ethnic Medicine, Guangxi Institute for Food and Drug Control, Nanning, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yarong Li
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Hongmei Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| |
Collapse
|
36
|
Sriravindrarajah A, Fernandes A, Wu T, Hocking S. The use of SGLT2 inhibitors in achieving glycaemic control in maturity-onset diabetes of the young type 3. Endocrinol Diabetes Metab Case Rep 2021; 2021:EDM-21-0102. [PMID: 34866061 PMCID: PMC8686174 DOI: 10.1530/edm-21-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
SUMMARY Maturity-onset diabetes of the young type 3 (MODY3) accounts for approximately 50% of cases of MODY. First-line treatment with sulfonylureas has been well established for individuals with MODY3. In contrast, the use of sodium-glucose co-transporter 2 (SGLT2) inhibitors in the treatment of individuals with MODY3 remains unclear. This case illustrates the in vivo effect of an SGLT2 inhibitor in a 30-year-old woman with MODY3 with poor glycaemic control despite the treatment with supramaximal doses of sulfonylurea and metformin. The addition of a SGLT2 inhibitor resulted in a rapid improvement in glycaemic control without any hypoglycaemic episodes. This case suggests that SGLT2 inhibitors may be an effective and potent treatment option in addition to sulfonylureas for individuals with MODY3. LEARNING POINTS Maturity-onset diabetes of the young type 3 (MODY3) arises from mutations in the hepatocyte nuclear factor-1alpha gene, which controls the expression of sodium-glucose co-transporter 2 (SGLT2) in the kidneys. Paradoxically, despite individuals with MODY3 having reduced expression of SGLT2, SGLT2 inhibitors induce higher glycosuria in individuals with MODY3 compared to individuals with type 2 diabetes mellitus. SGLT2 inhibitors may be an effective treatment for achieving glycaemic control in individuals with MODY3.
Collapse
Affiliation(s)
- Arunan Sriravindrarajah
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Amelia Fernandes
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ted Wu
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Samantha Hocking
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Charles Perkins Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Emmelheinz M, Knebel B, Müssig K. Diagnose und Behandlung des Maturity-Onset Diabetes of the Young (MODY). DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-0785-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Markus Emmelheinz
- Endokrinologie, Diabetologie, Diabetes-Zentrum Düsseldorf, Düsseldorf
| | - Birgit Knebel
- Institut für Biometrie und Epidemiologie, Deutsches Diabetes-Zentrum Leibniz-Zentrum fur Diabetes-Forschung, Düsseldorf, Germany
| | - Karsten Müssig
- Franziskus-Hospital Harderberg, Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken GmbH, Georgsmarienhütte, Deutschland
| |
Collapse
|
38
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
39
|
Sjöholm Å. GAD-65 antibodies in a case of HNF1A-Maturity-Onset Diabetes of the Young: Double diabetes? Clin Case Rep 2021; 9:e04151. [PMID: 34194751 PMCID: PMC8222641 DOI: 10.1002/ccr3.4151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Diabetes classification is not as defined as it used to be. A patient with one type of diabetes can have diagnostic criteria of another type, which may affect the course of the disease. Clinicians need to consider that when dealing with patients who do not fit the exact description of their diagnosed type of diabetes.
Collapse
Affiliation(s)
- Åke Sjöholm
- Division of Endocrinology and DiabetologyDepartment of Internal MedicineGävle HospitalGävleSweden
- University of GävleGävleSweden
| |
Collapse
|
40
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
41
|
Cirelli T, Nepomuceno R, Goveia JM, Orrico SRP, Cirelli JA, Theodoro LH, Barros SP, Scarel-Caminaga RM. Association of type 2 diabetes mellitus and periodontal disease susceptibility with genome-wide association-identified risk variants in a Southeastern Brazilian population. Clin Oral Investig 2021; 25:3873-3892. [PMID: 33392810 DOI: 10.1007/s00784-020-03717-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) and literature have identified polymorphisms in the KCNJ11, HNF1A, IRS1, TCF7L2, CDKAL1, CDKN2B, RPSAP52, GPR45 HHEX, IL18, and RUNX2 genes associated with type 2 diabetes mellitus (T2DM) and/or periodontitis (P) in diverse populations, and we sought to evaluate them as genetic risk variants for these diseases in the Brazilian population. MATERIAL AND METHODS Periodontal, glycemic, and lipid data were obtained from 931 individuals divided into: control (n = 334), periodontitis (P; n = 358), and periodontitis associated with T2DM (P + T2DM; n = 239). After genotyping, associations between polymorphisms and pathologies were tested by multiple logistic and linear regressions, adjusting for age, sex, and smoking habits. RESULTS Considering the studied subjects, the increased risk to develop periodontitis in the periodontitis P + T2DM group was found for HNF1A-rs7957197-TA, CDKAL1-rs7754840-CG, RPSAP52-rs1531343-GC, TCF7L2-rs7903146-TT, and CDKN2B-rs7018475-GG. The association of these genetic variants for TCF7L2 and CDKN2B was confirmed for female, never smokers, and poorly controlled P + T2DM. CDKN2B-rs7018475 was associated with worse glycemic condition and periodontal parameters. CONCLUSION These five reported genetic variants were associated in the studied Southeastern Brazilian population as genetic risk variants of periodontitis and T2DM associated to periodontitis as comorbidity. Gene-phenotype associations with sex and smoking habits and the CDKN2B-rs7018475 with the poor glycemic control and more severe periodontal conditions should be further investigated. CLINICAL RELEVANCE Polymorphisms in the CDKAL1-rs7754840, HNF1A-rs7957197, RPSAP52-rs1531343, TCF7L2-rs7903146, and CDKN2B-rs7018475 might predispose to periodontitis and T2DM associated with periodontitis. These findings may be useful in public health genomics and future advanced clinical practice, since genetic carriage can be measured before disease onset, being of potential great benefit for treatment planning and prognosis in early disease stages.
Collapse
Affiliation(s)
- Thamiris Cirelli
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil.,Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Rafael Nepomuceno
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil.,Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Jéssica Marina Goveia
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Silvana R P Orrico
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil.,Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, SP, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Letícia Helena Theodoro
- Department of Surgery and Integrated Clinic, São Paulo State University - UNESP, School of Dentistry at Araçatuba, Araçatuba, SP, Brazil
| | - Silvana P Barros
- Department of Comprehensive Oral Health - Periodontology, University of North Carolina at Chapel Hill - UNC, School of Dentistry, Chapel Hill, NC, USA
| | - Raquel M Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil.
| |
Collapse
|
42
|
Broome DT, Pantalone KM, Kashyap SR, Philipson LH. Approach to the Patient with MODY-Monogenic Diabetes. J Clin Endocrinol Metab 2021; 106:237-250. [PMID: 33034350 PMCID: PMC7765647 DOI: 10.1210/clinem/dgaa710] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED Maturity-onset diabetes of the young, or MODY-monogenic diabetes, is a not-so-rare collection of inherited disorders of non-autoimmune diabetes mellitus that remains insufficiently diagnosed despite increasing awareness. These cases are important to efficiently and accurately diagnose, given the clinical implications of syndromic features, cost-effective treatment regimen, and the potential impact on multiple family members. Proper recognition of the clinical manifestations, family history, and cost-effective lab and genetic testing provide the diagnosis. All patients must undergo a thorough history, physical examination, multigenerational family history, lab evaluation (glycated hemoglobin A1c [HbA1c], glutamic acid decarboxylase antibodies [GADA], islet antigen 2 antibodies [IA-2A], and zinc transporter 8 [ZnT8] antibodies). The presence of clinical features with 3 (or more) negative antibodies may be indicative of MODY-monogenic diabetes, and is followed by genetic testing. Molecular genetic testing should be performed before attempting specific treatments in most cases. Additional testing that is helpful in determining the risk of MODY-monogenic diabetes is the MODY clinical risk calculator (>25% post-test probability in patients not treated with insulin within 6 months of diagnosis should trigger genetic testing) and 2-hour postprandial (after largest meal of day) urinary C-peptide to creatinine ratio (with a ≥0.2 nmol/mmol to distinguish HNF1A- or 4A-MODY from type 1 diabetes). Treatment, as well as monitoring for microvascular and macrovascular complications, is determined by the specific variant that is identified. In addition to the diagnostic approach, this article will highlight recent therapeutic advancements when patients no longer respond to first-line therapy (historically sulfonylurea treatment in many variants). LEARNING OBJECTIVES Upon completion of this educational activity, participants should be able to. TARGET AUDIENCE This continuing medical education activity should be of substantial interest to endocrinologists and all health care professionals who care for people with diabetes mellitus.
Collapse
Affiliation(s)
- David T Broome
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
- Correspondence and Reprint Requests: David T. Broome, MD, Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail code: F-20, Cleveland, OH 44195, USA. E-mail:
| | - Kevin M Pantalone
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sangeeta R Kashyap
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Louis H Philipson
- Kovler Diabetes Center, Departments of Medicine and Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
43
|
The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol 2020; 6:20. [PMID: 33292863 PMCID: PMC7640483 DOI: 10.1186/s40842-020-00112-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background The most common type of monogenic diabetes is maturity-onset diabetes of the young (MODY), a clinically and genetically heterogeneous group of endocrine disorders that affect 1–5% of all patients with diabetes mellitus. MODY is characterized by autosomal dominant inheritance but de novo mutations have been reported. Clinical features of MODY include young-onset hyperglycemia, evidence of residual pancreatic function, and lack of beta cell autoimmunity or insulin resistance. Glucose-lowering medications are the main treatment options for MODY. The growing recognition of the clinical and public health significance of MODY by clinicians, researchers, and governments may lead to improved screening and diagnostic practices. Consequently, this review article aims to discuss the epidemiology, pathogenesis, diagnosis, and treatment of MODY based on relevant literature published from 1975 to 2020. Main body The estimated prevalence of MODY from European cohorts is 1 per 10,000 in adults and 1 per 23,000 in children. Since little is known about the prevalence of MODY in African, Asian, South American, and Middle Eastern populations, further research in non-European cohorts is needed to help elucidate MODY’s exact prevalence. Currently, 14 distinct subtypes of MODY can be diagnosed through clinical assessment and genetic analysis. Various genetic mutations and disease mechanisms contribute to the pathogenesis of MODY. Management of MODY is subtype-specific and includes diet, oral antidiabetic drugs, or insulin. Conclusions Incidence and prevalence estimates for MODY are derived from epidemiologic studies of young people with diabetes who live in Europe, Australia, and North America. Mechanisms involved in the pathogenesis of MODY include defective transcriptional regulation, abnormal metabolic enzymes, protein misfolding, dysfunctional ion channels, or impaired signal transduction. Clinicians should understand the epidemiology and pathogenesis of MODY because such knowledge is crucial for accurate diagnosis, individualized patient management, and screening of family members.
Collapse
|
44
|
Christensen AS, Hædersdal S, Støy J, Storgaard H, Kampmann U, Forman JL, Seghieri M, Holst JJ, Hansen T, Knop FK, Vilsbøll T. Efficacy and Safety of Glimepiride With or Without Linagliptin Treatment in Patients With HNF1A Diabetes (Maturity-Onset Diabetes of the Young Type 3): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial (GLIMLINA). Diabetes Care 2020; 43:2025-2033. [PMID: 32661107 PMCID: PMC7440905 DOI: 10.2337/dc20-0408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/13/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Sulfonylureas are first-line treatment of hepatocyte nuclear factor 1-α (HNF1A) diabetes (maturity-onset diabetes of the young type 3), but many patients do not achieve optimal glycemic control without episodes of hypoglycemia. We investigated the combination of the sulfonylurea glimepiride and the dipeptidyl peptidase 4 inhibitor linagliptin versus glimepiride monotherapy with respect to glycemic variability, glycemic control, and risk of hypoglycemia. RESEARCH DESIGN AND METHODS In a randomized, double-blinded, crossover trial, patients with HNF1A diabetes (n = 19; mean ± SD age 43 ± 14 years, BMI 24.8 ± 2.8 kg/m2, and glycated hemoglobin [HbA1c] 7.4 ± 0.2% [57.1 ± 7.3 mmol/mol]) were randomly assigned to treatment with glimepiride + linagliptin 5 mg (16 weeks), washout (4 weeks), and glimepiride + placebo (16 weeks) (or vice versa). Glimepiride was titrated targeting a fasting plasma glucose of 4.5-6.0 mmol/L without hypoglycemia. Treatments were evaluated by continuous glucose monitoring (CGM), HbA1c, and meal test. RESULTS Compared with glimepiride + placebo, glimepiride + linagliptin did not significantly improve the primary end point, mean amplitude of glycemic excursions (MAGE) (mean difference -0.7 mmol/L, P = 0.1540), but displayed significant reductions in coefficient of variation on CGM (-3.6%, P = 0.0401), HbA1c (-0.5%, P = 0.0048), and glimepiride dose (-0.7 mg/day, P = 0.0099). β-cell glucose sensitivity (assessed as C-peptide-to-glucose ratio) during meal test improved with glimepiride + linagliptin. Incidences of hypoglycemia were similar with both treatments. CONCLUSIONS Linagliptin as add-on treatment to glimepiride improved glycemic variability and control without increasing risk of hypoglycemia in patients with HNF1A diabetes.
Collapse
Affiliation(s)
- Alexander S Christensen
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Sofie Hædersdal
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Julie Støy
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Heidi Storgaard
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Seghieri
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Diabetes Unit, USL Toscana Centro, Florence, Italy
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark .,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Christensen AS, Hædersdal S, Storgaard H, Rose K, Hansen NL, Holst JJ, Hansen T, Knop FK, Vilsbøll T. GIP and GLP-1 Potentiate Sulfonylurea-Induced Insulin Secretion in Hepatocyte Nuclear Factor 1α Mutation Carriers. Diabetes 2020; 69:1989-2002. [PMID: 32518064 PMCID: PMC7458039 DOI: 10.2337/db20-0074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/31/2020] [Indexed: 01/18/2023]
Abstract
Sulfonylureas (SUs) provide an efficacious first-line treatment in patients with hepatocyte nuclear factor 1α (HNF1A) diabetes, but SUs have limitations due to risk of hypoglycemia. Treatment based on the incretin hormones glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide 1 (GLP-1) is characterized by their glucose-dependent insulinotropic actions without risk of hypoglycemia. The effect of SUs together with GIP or GLP-1, respectively, on insulin and glucagon secretion in patients with HNF1A diabetes is currently unknown. To investigate this, 10 HNF1A mutation carriers and 10 control subjects without diabetes were recruited for a double-blinded, placebo-controlled, crossover study including 6 experimental days in a randomized order involving 2-h euglycemic-hyperglycemic clamps with coadministration of: 1) SU (glimepiride 1 mg) or placebo, combined with 2) infusions of GIP (1.5 pmol/kg/min), GLP-1 (0.5 pmol/kg/min), or saline (NaCl). In HNF1A mutation carriers, we observed: 1) hypoinsulinemia, 2) insulinotropic effects of both GIP and GLP-1, 3) additive to supra-additive effects on insulin secretion when combining SU+GIP and SU+GLP-1, respectively, and 4) increased fasting and arginine-induced glucagon levels compared with control subjects without diabetes. Our study suggests that a combination of SU and incretin-based treatment may be efficacious in patients with HNF1A diabetes via potentiation of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Alexander S Christensen
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Sofie Hædersdal
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Heidi Storgaard
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kathrine Rose
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Hansen
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Delvecchio M, Pastore C, Giordano P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther 2020; 11:1667-1685. [PMID: 32583173 PMCID: PMC7376807 DOI: 10.1007/s13300-020-00864-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is an unusual form of diabetes with specific features that distinguish it from type 1 and type 2 diabetes. There are 14 known subtypes of MODY, and mutations in three genes (HNF1A, HNF4A, GCK) account for about 95% of all MODY cases. Diagnosis usually occurs before the age of 25 years, although less frequent forms may occur more often-but not necessarily-later in life. The molecular diagnosis may tailor the choice of the most appropriate treatment, with the aim to optimize blood glucose control, reduce the risk of hypoglycemic events and long-term complications, and enable proper genetic counseling. Treatment is usually unnecessary for patients with mutations in the GCK gene, while oral hypoglycemic agents (generally sulphonylureas) are recommended for patients with mutations in the HNF4A and HNF1A genes. More recent data show that other glucose-lowering agents can be effective in the latter patients, and additional and alternative therapies have been proposed. Proper management guidelines during pregnancy have been developed for carriers of GCK gene mutations, but such guidelines are still a subject of debate in other cases, although some recommendations are available. The other subtypes of MODY are even more rare, and very little data are available in the literature. In this review we summarize the most pertinent findings and recommendations on the treatment of patients with the different subtypes of MODY. Our aim is to provide the reader with an easy-to-read update that can be used to drive the clinician's therapeutical approach to these patients after the molecular diagnosis.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Metabolic Disorders and Diabetes Unit, "Giovanni XXIII" Children's Hospital, A.O.U. Policlinico di Bari, Bari, Italy.
| | - Carmela Pastore
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
47
|
Broome DT, Tekin Z, Pantalone KM, Mehta AE. Novel Use of GLP-1 Receptor Agonist Therapy in HNF4A-MODY. Diabetes Care 2020; 43:e65. [PMID: 32265191 PMCID: PMC7245355 DOI: 10.2337/dc20-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/04/2020] [Indexed: 02/03/2023]
Affiliation(s)
- David T Broome
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic Foundation, Cleveland, OH
| | - Zehra Tekin
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin M Pantalone
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic Foundation, Cleveland, OH
| | - Adi E Mehta
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
48
|
Affiliation(s)
- Miriam S Udler
- From the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Massachusetts General Hospital, and the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Harvard Medical School - both in Boston
| | - Camille E Powe
- From the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Massachusetts General Hospital, and the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Harvard Medical School - both in Boston
| | - Christina A Austin-Tse
- From the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Massachusetts General Hospital, and the Departments of Medicine (M.S.U., C.E.P.) and Pathology (C.A.A.-T.), Harvard Medical School - both in Boston
| |
Collapse
|
49
|
Li M, Wang S, Xu K, Chen Y, Fu Q, Gu Y, Shi Y, Zhang M, Sun M, Chen H, Han X, Li Y, Tang Z, Cai L, Li Z, Shi Y, Yang T, Polychronakos C. High Prevalence of a Monogenic Cause in Han Chinese Diagnosed With Type 1 Diabetes, Partly Driven by Nonsyndromic Recessive WFS1 Mutations. Diabetes 2020; 69:121-126. [PMID: 31658956 DOI: 10.2337/db19-0510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022]
Abstract
It is estimated that ∼1% of European ancestry patients clinically diagnosed with type 1 diabetes (T1D) actually have monogenic forms of the disease. Because of the much lower incidence of true T1D in East Asians, we hypothesized that the percentage would be much higher. To test this, we sequenced the exome of 82 Chinese Han patients clinically diagnosed with T1D but negative for three autoantibodies. Analysis focused on established or proposed monogenic diabetes genes. We found credible mutations in 18 of the 82 autoantibody-negative patients (22%). All mutations had consensus pathogenicity support by five algorithms. As in Europeans, the most common gene was HNF1A (MODY3), in 6 of 18 cases. Surprisingly, almost as frequent were diallelic mutations in WFS1, known to cause Wolfram syndrome but also described in nonsyndromic cases. Fasting C-peptide varied widely and was not predictive. Given the 27.4% autoantibody negativity in Chinese and 22% mutation rate, we estimate that ∼6% of Chinese with a clinical T1D diagnosis have monogenic diabetes. Our findings support universal sequencing of autoantibody-negative cases as standard of care in East Asian patients with a clinical T1D diagnosis. Nonsyndromic diabetes with WSF1 mutations is not rare in Chinese. Its response to alternative treatments should be investigated.
Collapse
Affiliation(s)
- Meihang Li
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Zhejiang MaiDa Gene Tech Co., Ltd., Zhoushan, China
| | - Sihua Wang
- Zhejiang MaiDa Gene Tech Co., Ltd., Zhoushan, China
| | - Kuanfeng Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Gu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Shi
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuqun Han
- Zhejiang MaiDa Gene Tech Co., Ltd., Zhoushan, China
| | - Yangxi Li
- Zhejiang MaiDa Gene Tech Co., Ltd., Zhoushan, China
- The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Zhoukai Tang
- Zhejiang MaiDa Gene Tech Co., Ltd., Zhoushan, China
| | - Lejing Cai
- Zhejiang MaiDa Gene Tech Co., Ltd., Zhoushan, China
| | - Zhiqiang Li
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yongyong Shi
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Constantin Polychronakos
- Zhejiang MaiDa Gene Tech Co., Ltd., Zhoushan, China
- The Research Institute of the McGill University Health Centre, Montreal, Canada
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Fantasia KL, Steenkamp DW. Optimal Glycemic Control in a Patient With HNF1A MODY With GLP-1 RA Monotherapy: Implications for Future Therapy. J Endocr Soc 2019; 3:2286-2289. [PMID: 31737858 PMCID: PMC6846329 DOI: 10.1210/js.2019-00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
We present the case of a 27-year-old woman with inadequately controlled HNF1A maturity-onset diabetes of the young (MODY) who was successfully transitioned from sulfonylurea therapy to once-weekly monotherapy with dulaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1 RA). More than a decade from diabetes diagnosis, she has maintained optimal glycemic control without hypoglycemia for >12 months while receiving GLP-1 RA therapy alone. This case illustrates the potential for successful use of GLP-1 RA monotherapy in patients with HNF1A MODY.
Collapse
Affiliation(s)
- Kathryn L Fantasia
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Devin W Steenkamp
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|