1
|
Adolfsson P, Hanas R, Zaharieva DP, Dovc K, Jendle J. Automated Insulin Delivery Systems in Pediatric Type 1 Diabetes: A Narrative Review. J Diabetes Sci Technol 2024; 18:1324-1333. [PMID: 38785359 PMCID: PMC11535396 DOI: 10.1177/19322968241248404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This narrative review assesses the use of automated insulin delivery (AID) systems in managing persons with type 1 diabetes (PWD) in the pediatric population. It outlines current research, the differences between various AID systems currently on the market and the challenges faced, and discusses potential opportunities for further advancements within this field. Furthermore, the narrative review includes various expert opinions on how different AID systems can be used in the event of challenges with rapidly changing insulin requirements. These include examples, such as during illness with increased or decreased insulin requirements and during physical activity of different intensities or durations. Case descriptions give examples of scenarios with added user-initiated actions depending on the type of AID system used. The authors also discuss how another AID system could have been used in these situations.
Collapse
Affiliation(s)
- Peter Adolfsson
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, The Hospital of Halland Kungsbacka, Kungsbacka, Sweden
| | - Ragnar Hanas
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, NU Hospital Group, Uddevalla, Sweden
| | - Dessi P. Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana, Slovenia
| | - Johan Jendle
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
- Diabetes Endocrinology and Metabolism Research Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
de Jong LA, Li X, Emamipour S, van der Werf S, Postma MJ, van Dijk PR, Feenstra TL. Evaluating the Cost-Utility of Continuous Glucose Monitoring in Individuals with Type 1 Diabetes: A Systematic Review of the Methods and Quality of Studies Using Decision Models or Empirical Data. PHARMACOECONOMICS 2024; 42:929-953. [PMID: 38904911 PMCID: PMC11343921 DOI: 10.1007/s40273-024-01388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION This review presents a critical appraisal of differences in the methodologies and quality of model-based and empirical data-based cost-utility studies on continuous glucose monitoring (CGM) in type 1 diabetes (T1D) populations. It identifies key limitations and challenges in health economic evaluations on CGM and opportunities for their improvement. METHODS The review and its documentation adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews. Searches for articles published between January 2000 and January 2023 were conducted using the MEDLINE, Embase, Web of Science, Cochrane Library, and Econlit databases. Published studies using models and empirical data to evaluate the cost utility of all CGM devices used by T1D patients were included in the search. Two authors independently extracted data on interventions, populations, model settings (e.g., perspectives and time horizons), model types and structures, clinical outcomes used to populate the model, validation, and uncertainty analyses. They subsequently met to confirm consensus. Quality was assessed using the Philips checklist for model-based studies and the Consensus Health Economic Criteria (CHEC) checklist for empirical studies. Model validation was assessed using the Assessment of the Validation Status of Health-Economic decision models (AdViSHE) checklist. The extracted data were used to generate summary tables and figures. The study protocol is registered with PROSPERO (CRD42023391284). RESULTS In total, 34 studies satisfied the selection criteria, two of which only used empirical data. The remaining 32 studies applied 10 different models, with a substantial majority adopting the CORE Diabetes Model. Model-based studies often lacked transparency, as their assumptions regarding the extrapolation of treatment effects beyond available evidence from clinical studies and the selection and processing of the input data were not explicitly stated. Initial scores for disagreements concerning checklists were relatively high, especially for the Philips checklist. Following their resolution, overall quality scores were moderate at 56%, whereas model validation scores were mixed. Strikingly, costing approaches differed widely across studies, resulting in little consistency in the elements included in intervention costs. DISCUSSION AND CONCLUSION The overall quality of studies evaluating CGM was moderate. Potential areas of improvement include developing systematic approaches for data selection, improving uncertainty analyses, clearer reporting, and explaining choices for particular modeling approaches. Few studies provided the assurance that all relevant and feasible options had been compared, which is required by decision makers, especially for rapidly evolving technologies such as CGM and insulin administration. High scores for disagreements indicated that several checklists contained questions that were difficult to interpret consistently for quality assessment. Therefore, simpler but comprehensive quality checklists may be needed for model-based health economic evaluation studies.
Collapse
Affiliation(s)
- Lisa A de Jong
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xinyu Li
- Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Sajad Emamipour
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje van der Werf
- Central Medical Library, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten J Postma
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Economics, Econometrics and Finance, Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Peter R van Dijk
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Internal Medicine, Diabetes Center, Isala, Zwolle, The Netherlands
| | - Talitha L Feenstra
- Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
3
|
Gardner D, Lakkad M, Qiu Z, Inoue Y, Rama Chandran S, Wherry K. The Cost-Effectiveness of an Advanced Hybrid Closed-Loop System Compared to Standard Management of Type 1 Diabetes in a Singapore Setting. Diabetes Technol Ther 2024; 26:324-334. [PMID: 38215206 PMCID: PMC11058413 DOI: 10.1089/dia.2023.0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Background: Despite advances in technology, glycemic outcomes in people with type 1 diabetes (T1D) remain suboptimal. The MiniMed 780G (MM780G) advanced hybrid closed-loop (AHCL) system is the latest technology for T1D management with established safety and efficacy. This study explores the cost-effectiveness of MM780G AHCL compared against multiple daily injections (MDI) plus intermittently scanned continuous glucose monitor (isCGM). Methods: A cost-utility analysis was conducted, simulating lifetime outcomes for 1000 T1D individuals, with baseline hemoglobin A1c of 8.4%, using the IQVIA Core Diabetes Model (CDM) v9.5. A Singapore health care payer perspective was taken with 2023 costs applied. Treatment effects were taken from the ADAPT study and treatment-related events from a combination of sources. T1D complication costs were derived from local literature, and health state utilities and disutilities from published literature. Scenario analyses and probabilistic sensitivity analyses (PSAs) explored uncertainty. Cost-effectiveness was assessed based on willingness-to-pay (WTP) thresholds set to Singapore Dollars (SGD) 45,000 (United States Dollars [USD] 33,087) per quality-adjusted life year (QALY) and Singapore's gross domestic product (GDP) per capita of SGD 114,165 (USD 83,941) per QALY. Results: A switch from MDI plus isCGM to MM780G resulted in expected gains in life-years (+0.78) and QALYs (+1.45). Cost savings through reduction in T1D complications (SGD 25,465; USD 18,723) partially offset the higher treatment costs in the AHCL arm (+SGD 74,538; +USD 54,805), resulting in an estimated incremental cost-effectiveness ratio of SGD 33,797 (USD 24,850) per QALY gained. Findings were robust, with PSA outputs indicating 81% and 99% probabilities of cost-effectiveness at the stated WTP thresholds. Conclusion: MM780G is a cost-effective option for people with T1D managed in a Singapore setting.
Collapse
Affiliation(s)
- Daphne Gardner
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | | | - Zhiyu Qiu
- Medtronic Singapore, Singapore, Singapore
| | - Yuta Inoue
- Medtronic Diabetes, Northridge, California, USA
| | | | - Kael Wherry
- Medtronic Diabetes, Northridge, California, USA
| |
Collapse
|
4
|
Fox DS, Ware J, Boughton CK, Allen JM, Wilinska ME, Tauschmann M, Denvir L, Thankamony A, Campbell F, Wadwa RP, Buckingham BA, Davis N, DiMeglio LA, Mauras N, Besser REJ, Ghatak A, Weinzimer SA, Kanapka L, Kollman C, Sibayan J, Beck RW, Hood KK, Hovorka R. Cost-Effectiveness of Closed-Loop Automated Insulin Delivery Using the Cambridge Hybrid Algorithm in Children and Adolescents with Type 1 Diabetes: Results from a Multicenter 6-Month Randomized Trial. J Diabetes Sci Technol 2024:19322968241231950. [PMID: 38494876 PMCID: PMC11571777 DOI: 10.1177/19322968241231950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND/OBJECTIVE The main objective of this study is to evaluate the incremental cost-effectiveness (ICER) of the Cambridge hybrid closed-loop automated insulin delivery (AID) algorithm versus usual care for children and adolescents with type 1 diabetes (T1D). METHODS This multicenter, binational, parallel-controlled trial randomized 133 insulin pump using participants aged 6 to 18 years to either AID (n = 65) or usual care (n = 68) for 6 months. Both within-trial and lifetime cost-effectiveness were analyzed. Analysis focused on the treatment subgroup (n = 21) who received the much more reliable CamAPS FX hardware iteration and their contemporaneous control group (n = 24). Lifetime complications and costs were simulated via an updated Sheffield T1D policy model. RESULTS Within-trial, both groups had indistinguishable and statistically unchanged health-related quality of life, and statistically similar hypoglycemia, severe hypoglycemia, and diabetic ketoacidosis (DKA) event rates. Total health care utilization was higher in the treatment group. Both the overall treatment group and CamAPS FX subgroup exhibited improved HbA1C (-0.32%, 95% CI: -0.59 to -0.04; P = .02, and -1.05%, 95% CI: -1.43 to -0.67; P < .001, respectively). Modeling projected increased expected lifespan of 5.36 years and discounted quality-adjusted life years (QALYs) of 1.16 (U.K. tariffs) and 1.52 (U.S. tariffs) in the CamAPS FX subgroup. Estimated ICERs for the subgroup were £19 324/QALY (United Kingdom) and -$3917/QALY (United States). For subgroup patients already using continuous glucose monitors (CGM), ICERs were £10 096/QALY (United Kingdom) and -$33 616/QALY (United States). Probabilistic sensitivity analysis generated mean ICERs of £19 342/QALY (95% CI: £15 903/QALY to £22 929/QALY) (United Kingdom) and -$28 283/QALY (95% CI: -$59 607/QALY to $1858/QALY) (United States). CONCLUSIONS For children and adolescents with T1D on insulin pump therapy, AID using the Cambridge algorithm appears cost-effective below a £20 000/QALY threshold (United Kingdom) and cost saving (United States).
Collapse
Affiliation(s)
- D. Steven Fox
- Department of Pharmaceutical and Health Economics, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Julia Ware
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Charlotte K Boughton
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Diabetes & Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Janet M. Allen
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Malgorzata E Wilinska
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Martin Tauschmann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Louise Denvir
- Department of Paediatric Diabetes and Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ajay Thankamony
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Fiona Campbell
- Department of Paediatric Diabetes, Leeds Children's Hospital, Leeds, UK
| | - R. Paul Wadwa
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruce A. Buckingham
- Stanford University School of Medicine, Stanford Diabetes Research Center, Stanford, CA, USA
| | - Nikki Davis
- Department of Paediatric Endocrinology and Diabetes, Southampton Children's Hospital, Southampton General Hospital, Southampton, UK
| | - Linda A. DiMeglio
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nelly Mauras
- Nemours Children's Health, Jacksonville, FL, USA
| | - Rachel E. J. Besser
- Oxford University Hospitals NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | | | | | - Judy Sibayan
- The Jaeb Center for Health Research, Tampa, FL, USA
| | - Roy W. Beck
- The Jaeb Center for Health Research, Tampa, FL, USA
| | - Korey K. Hood
- Stanford University School of Medicine, Stanford Diabetes Research Center, Stanford, CA, USA
| | - Roman Hovorka
- Department of Pharmaceutical and Health Economics, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Mathieu C, Ahmed W, Gillard P, Cohen O, Vigersky R, de Portu S, Ozdemir Saltik AZ. The Health Economics of Automated Insulin Delivery Systems and the Potential Use of Time in Range in Diabetes Modeling: A Narrative Review. Diabetes Technol Ther 2024; 26:66-75. [PMID: 38377319 DOI: 10.1089/dia.2023.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Intensive therapy with exogenous insulin is the treatment of choice for individuals living with type 1 diabetes (T1D) and some with type 2 diabetes, alongside regular glucose monitoring. The development of systems allowing (semi-)automated insulin delivery (AID), by connecting glucose sensors with insulin pumps and algorithms, has revolutionized insulin therapy. Indeed, AID systems have demonstrated a proven impact on overall glucose control, as indicated by effects on glycated hemoglobin (HbA1c), risk of severe hypoglycemia, and quality of life measures. An alternative endpoint for glucose control that has arisen from the use of sensor-based continuous glucose monitoring is the time in range (TIR) measure, which offers an indication of overall glucose control, while adding information on the quality of control with regard to blood glucose level stability. A review of literature on the health-economic value of AID systems was conducted, with a focus placed on the growing place of TIR as an endpoint in studies involving AID systems. Results showed that the majority of economic evaluations of AID systems focused on individuals with T1D and found AID systems to be cost-effective. Most studies incorporated HbA1c, rather than TIR, as a clinical endpoint to determine treatment effects on glucose control and subsequent quality-adjusted life year (QALY) gains. Likely reasons for the choice of HbA1c as the chosen endpoint is the use of this metric in most validated and established economic models, as well as the limited publicly available evidence on appropriate methodologies for TIR data incorporation within conventional economic evaluations. Future studies could include the novel TIR metric in health-economic evaluations as an additional measure of treatment effects and subsequent QALY gains, to facilitate a holistic representation of the impact of AID systems on glycemic control. This would provide decision makers with robust evidence to inform future recommendations for health care interventions.
Collapse
Affiliation(s)
- Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, Leuven, Belgium
| | - Waqas Ahmed
- Covalence Research Ltd, Harpenden, United Kingdom
| | - Pieter Gillard
- Department of Endocrinology, UZ Gasthuisberg, Leuven, Belgium
| | - Ohad Cohen
- Medtronic International Trading Sarl, Tolochenaz, Switzerland
| | | | - Simona de Portu
- Medtronic International Trading Sarl, Tolochenaz, Switzerland
| | | |
Collapse
|
6
|
Nimri R, Phillip M, Clements MA, Kovatchev B. Closed-Loop Control, Artificial Intelligence-Based Decision-Support Systems, and Data Science. Diabetes Technol Ther 2024; 26:S68-S89. [PMID: 38441444 DOI: 10.1089/dia.2024.2505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Affiliation(s)
- Revital Nimri
- Diabetes Technology Center, Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Phillip
- Diabetes Technology Center, Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mark A Clements
- Division of Pediatric Endocrinology, Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Boris Kovatchev
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Lingen K, Maahs D, Bellini N, Isaacs D. Removing Barriers, Bridging the Gap, and the Changing Role of the Health Care Professional with Automated Insulin Delivery Systems. Diabetes Technol Ther 2024; 26:45-52. [PMID: 38377318 DOI: 10.1089/dia.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
As all people with type 1 diabetes (T1D) and some with type 2 diabetes (T2D) require insulin, there is a need to develop management methods that not only achieve glycemic targets but also reduce the burden of living with diabetes. After insulin pumps and continuous glucose monitors, the next step in the evolution of diabetes technology is automated insulin delivery (AID) systems, which have transformed intensive insulin management over the past decade, as these systems address the shortcomings of previous management options. However, AID use remains fairly limited, and access represents a major barrier to use for many people with diabetes, despite these systems being standard of care. Therefore, the future of AID will necessitate addressing barriers related to social determinants of health, finances, and an expansion of the number and type of health care professionals (HCPs) prescribing AID systems. These crucial steps will be essential to ensure that everyone with intensively managed diabetes can use AID systems. The impact of implementing these changes will create a shift in the future of diabetes care that will result in achievement of more targeted glycemia and psychosocial outcomes for all people with diabetes and an expansion of the role of all HCPs in AID-related diabetes care. Even more importantly, by addressing social determinants of health and clinical inertia related to AID, the field can address disparities in outcomes across countries, race, gender, socioeconomic status, and insurance status. Furthermore, the increased use of AID system will provide more time during appointments for a shift in the discussion away from fine tuning insulin dosing and toward a focus on more topics related to behavior and conversations about general health. This will include psychosocial outcomes, and quality of life. In addition, these changes can hopefully allow for time to discuss more general issues, such as cardiovascular health, obesity prevention, diabetes-related complications, and other health-related concerns.
Collapse
Affiliation(s)
| | - David Maahs
- Division of Pediatric Endocrinology, Lucille Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie Bellini
- Department of Endocrinology, University Hospitals Cleveland, Cleveland, Ohio, USA
| | - Diana Isaacs
- Endocrinology and Metabolism Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
8
|
Ng SM, Wright NP, Yardley D, Campbell F, Randell T, Trevelyan N, Ghatak A, Hindmarsh PC. Real world use of hybrid-closed loop in children and young people with type 1 diabetes mellitus-a National Health Service pilot initiative in England. Diabet Med 2023; 40:e15015. [PMID: 36424877 DOI: 10.1111/dme.15015] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
AIMS Hybrid closed-loop (HCL) systems are characterised by integrating continuous glucose monitoring (CGM) with insulin pumps that automate insulin delivery via specific algorithms and user-initiated insulin delivery. The aim of the study was to evaluate effectiveness of HCLs on HbA1c, time-in-range (TIR), hypoglycaemia frequency and quality of life measures in children and young people (CYP) with T1D, and their carers. METHODS Patients were recruited prospectively into the National Health Service (NHS) England real-world HCL observational study from the 1st of August 2021 to the 10th of December 2022 from eight paediatric diabetes centres in England. RESULTS There were 251 CYP (147 males, 58%) with T1DM recruited with a mean age at recruitment of 12.3 (SD 3.5) (range 2-19) years. Eighty nine per cent of the CYP were of white ethnicity, 3% Asian, 4% black and 3% mixed ethnicity, and 1% were recorded as others. The HCL systems used in the study were: (1) Tandem Control-IQ AP system, which uses the Tandem t:slim X2 insulin pump (Tandem Diabetes Care, San Diego, CA) with the Dexcom G6® CGM (Dexcom, San Diego, CA) sensor; (2) Medtronic MiniMed™ 780G (Medtronic, Northridge, CA) and (3) CamAPS FX (CamDiab, Cambridge, UK.) All systems were fully funded by the national health service. CONCLUSIONS The results of the NHS England Closed Loop Study in Children and Young People showed improvements in glycaemic control, TIR, frequency of hypoglycaemia, hypoglycaemia fear and quality of sleep for children and young people when using HCL for 6 months. Hypoglycaemia fear and quality of sleep were also improved for their parents and carers at 6 months.
Collapse
Affiliation(s)
- Sze May Ng
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Paediatric Department, Southport and Ormskirk NHS Trust, Ormskirk, UK
| | | | - Diana Yardley
- Children's Diabetes Team, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Fiona Campbell
- Children's Diabetes Centre, Leeds Children's Hospital, Leeds, UK
| | - Tabitha Randell
- Department of Paediatric Endocrinology, Nottingham Children's Hospital, Nottingham, UK
| | | | | | - Peter C Hindmarsh
- Children and Young People's Diabetes Service, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Pease AJ, Zoungas S, Callander E, Jones TW, Johnson SR, Holmes-Walker DJ, Bloom DE, Davis EA, Zomer E. Nationally Subsidized Continuous Glucose Monitoring: A Cost-effectiveness Analysis. Diabetes Care 2022; 45:2611-2619. [PMID: 36162008 DOI: 10.2337/dc22-0951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The Continuous Glucose Monitoring (CGM) Initiative recently introduced universal subsidized CGM funding for people with type 1 diabetes under 21 years of age in Australia. We thus aimed to evaluate the cost-effectiveness of this CGM Initiative based on national implementation data and project the economic impact of extending the subsidy to all age-groups. RESEARCH DESIGN AND METHODS We used a patient-level Markov model to simulate disease progression for young people with type 1 diabetes and compared government-subsidized access to CGM with the previous user-funded system. Three years of real-world clinical input data were sourced from analysis of the Australasian Diabetes Data Network and National Diabetes Services Scheme registries. Costs were considered from the Australian health care system's perspective. An annual discount rate of 5% was applied to future costs and outcomes. Uncertainty was evaluated with probabilistic and deterministic sensitivity analyses. RESULTS Government-subsidized CGM funding for young people with type 1 diabetes compared with a completely user-funded model resulted in an incremental cost-effectiveness ratio (ICER) of AUD 39,518 per quality-adjusted life-year (QALY) gained. Most simulations (85%) were below the commonly accepted willingness-to-pay threshold of AUD 50,000 per QALY gained in Australia. Sensitivity analyses indicated that base-case results were robust, though strongly impacted by the cost of CGM devices. Extending the CGM Initiative throughout adulthood resulted in an ICER of AUD 34,890 per QALY gained. CONCLUSIONS Providing subsidized access to CGM for people with type 1 diabetes was found to be cost-effective compared with a completely user-funded model in Australia.
Collapse
Affiliation(s)
- Anthony J Pease
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Monash Health, Melbourne, Victoria, Australia
| | - Sophia Zoungas
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Monash Health, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia
| | - Emily Callander
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Timothy W Jones
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Western Australia, Australia.,Division of Paediatrics, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Stephanie R Johnson
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - D Jane Holmes-Walker
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - David E Bloom
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Elizabeth A Davis
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Western Australia, Australia.,Division of Paediatrics, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Ella Zomer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Ware J, Hovorka R. Closed-loop insulin delivery: update on the state of the field and emerging technologies. Expert Rev Med Devices 2022; 19:859-875. [PMID: 36331211 PMCID: PMC9780196 DOI: 10.1080/17434440.2022.2142556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Over the last five years, closed-loop insulin delivery systems have transitioned from research-only to real-life use. A number of systems have been commercialized and are increasingly used in clinical practice. Given the rapidity of new developments in the field, understanding the capabilities and key similarities and differences of current systems can be challenging. This review aims to provide an update on the state of the field of closed-loop insulin delivery systems, including emerging technologies. AREAS COVERED We summarize key clinical safety and efficacy evidence of commercial and emerging insulin-only hybrid closed-loop systems for type 1 diabetes. A literature search was conducted and clinical trials using closed-loop systems during free-living conditions were identified to report on safety and efficacy data. We comment on emerging technologies and adjuncts for closed-loop systems, as well as non-technological priorities in closed-loop insulin delivery. EXPERT OPINION Commercial hybrid closed-loop insulin delivery systems are efficacious, consistently improving glycemic control when compared to standard therapy. Challenges remain in widespread adoption due to clinical inertia and the lack of resources to embrace technological developments by health care professionals.
Collapse
Affiliation(s)
- Julia Ware
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Pediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Pediatrics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|