1
|
Matsumoto S, Matsumoto K. Clinical Islet Xenotransplantation: Development of Isolation Protocol, Anti-Rejection Strategies, and Clinical Outcomes. Cells 2024; 13:828. [PMID: 38786050 PMCID: PMC11120369 DOI: 10.3390/cells13100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Allogeneic islet transplantation has become a standard therapy for unstable type 1 diabetes. However, considering the large number of type 1 diabetic patients, the shortage of donors is a serious issue. To address this issue, clinical islet xenotransplantation is conducted. The first clinical islet xenotransplantation was performed by a Swedish team using fetal pancreatic tissue. Thereafter, clinical trials of islet xenotransplantation were conducted in New Zealand, Russia, Mexico, Argentina, and China using neonatal pig islets. In clinical trials, fetal or neonatal pancreata are used because of the established reliable islet isolation methods. These trials demonstrate the method's safety and efficacy. Currently, the limited number of source animal facilities is a problem in terms of promoting islet xenotransplantation. This limitation is due to the high cost of source animal facilities and the uncertain future of xenotransplantation. In the United States, the first xenogeneic heart transplantation has been performed, which could promote xenotransplantation. In Japan, to enhance xenotransplantation, the 'Medical Porcine Development Association' has been established. We hope that xenogeneic transplantation will become a clinical reality, serving to address the shortage of donors.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Medical Porcine Development Organization, Kobe 650-0017, Japan
| | - Kyohei Matsumoto
- Second Department of Surgery, Wakayama Medical University, Wakayama 641-0012, Japan;
| |
Collapse
|
2
|
Chiappalupi S, Salvadori L, Borghi M, Mancuso F, Pariano M, Riuzzi F, Luca G, Romani L, Arato I, Sorci G. Grafted Sertoli Cells Exert Immunomodulatory Non-Immunosuppressive Effects in Preclinical Models of Infection and Cancer. Cells 2024; 13:544. [PMID: 38534388 DOI: 10.3390/cells13060544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The Sertoli cells (SeCs) of the seminiferous tubules secrete a multitude of immunoregulatory and trophic factors to provide immune protection and assist in the orderly development of germ cells. Grafts of naked or encapsulated SeCs have been proved to represent an interesting therapeutic option in a plethora of experimental models of diseases. However, whether SeCs have immunosuppressive or immunomodulatory effects, which is imperative for their clinical translatability, has not been demonstrated. We directly assessed the immunopotential of intraperitoneally grafted microencapsulated porcine SeCs (MC-SeCs) in murine models of fungal infection (Aspergillus fumigatus or Candida albicans) or cancer (Lewis lung carcinoma/LLC or B16 melanoma cells). We found that MC-SeCs (i) provide antifungal resistance with minimum inflammatory pathology through the activation of the tolerogenic aryl hydrocarbon receptor/indoleamine 2,3-dioxygenase pathway; (ii) do not affect tumor growth in vivo; and (iii) reduce the LLC cell metastatic cancer spread associated with restricted Vegfr2 expression in primary tumors. Our results point to the fine immunoregulation of SeCs in the relative absence of overt immunosuppression in both infection and cancer conditions, providing additional support for the potential therapeutic use of SeC grafts in human patients.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| |
Collapse
|
3
|
Santacroce L, Imbimbo C, Ballini A, Crocetto F, Scacco S, Cantore S, Di Zazzo E, Colella M, Jirillo E. Testicular Immunity and Its Connection with the Microbiota. Physiological and Clinical Implications in the Light of Personalized Medicine. J Pers Med 2022; 12:1335. [PMID: 36013286 PMCID: PMC9409709 DOI: 10.3390/jpm12081335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Reproduction is a complex process, which is based on the cooperation between the endocrine-immune system and the microbiota. Testicular immunity is characterized by the so-called immune privilege, a mechanism that avoids autoimmune attacks against proteins expressed by spermatozoa. Testicular microbiota is connected with the gut microbiota, the most prevalent site of commensals inthe body. Both microbiotas take part inthe development of the immune system and protection againstpathogen invasion. Dysbiosis is caused by concurrent pathologies, such as obesity, diabetes, infections and trauma. The substitution of beneficial bacteria with pathogens may lead to destruction of spermatozoa directly or indirectly and, ultimately, to male infertility. Novel therapeutic interventions, i.e., nutritional interventions and supplementation of natural products, such as, probiotics, prebiotics, antioxidants and polyphenols, may lead to the restoration of the otherwise-impaired male reproductive potential, even if experimental and clinical results are not always concordant. In this review, the structure and immune function of the testis will be described with special reference to the blood-testisbarrier. The regulatory role of both the gut and testicular microbiota will be illustrated in health and disease, also emphasizing therapeutic attempts with natural products for the correction of male infertility, in the era of personalized medicine.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131Naples, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131Naples, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefania Cantore
- Independent Researcher, Sorriso & Benessere—Ricerca e Clinica, 70129 Bari, Italy
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
4
|
Washburn RL, Hibler T, Kaur G, Dufour JM. Sertoli Cell Immune Regulation: A Double-Edged Sword. Front Immunol 2022; 13:913502. [PMID: 35757731 PMCID: PMC9218077 DOI: 10.3389/fimmu.2022.913502] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
The testis must create and maintain an immune privileged environment to protect maturing germ cells from autoimmune destruction. The establishment of this protective environment is due, at least in part, to Sertoli cells. Sertoli cells line the seminiferous tubules and form the blood-testis barrier (BTB), a barrier between advanced germ cells and the immune system. The BTB compartmentalizes the germ cells and facilitates the appropriate microenvironment necessary for spermatogenesis. Further, Sertoli cells modulate innate and adaptive immune processes through production of immunoregulatory compounds. Sertoli cells, when transplanted ectopically (outside the testis), can also protect transplanted tissue from the recipient’s immune system and reduce immune complications in autoimmune diseases primarily by immune regulation. These properties make Sertoli cells an attractive candidate for inflammatory disease treatments and cell-based therapies. Conversely, the same properties that protect the germ cells also allow the testis to act as a reservoir site for infections. Interestingly, Sertoli cells also have the ability to mount an antimicrobial response, if necessary, as in the case of infections. This review aims to explore how Sertoli cells act as a double-edged sword to both protect germ cells from an autoimmune response and activate innate and adaptive immune responses to fight off infections.
Collapse
Affiliation(s)
- Rachel L Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
5
|
Dutta S, Sandhu N, Sengupta P, Alves MG, Henkel R, Agarwal A. Somatic-Immune Cells Crosstalk In-The-Making of Testicular Immune Privilege. Reprod Sci 2021; 29:2707-2718. [PMID: 34580844 DOI: 10.1007/s43032-021-00721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/22/2021] [Indexed: 11/27/2022]
Abstract
Immunological infertility contributes significantly to the etiology of idiopathic male infertility. Shielding the spermatogenic cells from systemic immune responses is fundamental to secure normal production of spermatozoa. The body's immune system is tuned with the host self-components since the early postnatal period, while sperm first develops during puberty, thus rendering spermatogenic proteins as 'non-self' or 'antigenic.' Development of antibodies to these antigens elicits autoimmune responses affecting sperm motility, functions, and fertility. Therefore, the testes need to establish a specialized immune-privileged microenvironment to protect the allogenic germ cells by orchestration of various testicular cells and resident immune cells. This is achieved through sequestration of antigenic germ cells by blood-testis barrier and actions of various endocrine, paracrine, immune-suppressive, and immunomodulatory mechanisms. The various mechanisms are very complex and need conceptual integration to disclose the exact physiological scenario, and to facilitate detection and management of immunogenic infertility caused by disruption of testicular immune regulation. The present review aims to (a) discuss the components of testicular immune privilege; (b) explain testicular somatic and immune cell interactions in establishing and maintaining the testicular immune micro-environment; and (c) illustrate the integration of multiple mechanisms involved in the control of immune privilege of the testis.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Narpal Sandhu
- Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Kaur G, Wright K, Mital P, Hibler T, Miranda JM, Thompson LA, Halley K, Dufour JM. Neonatal Pig Sertoli Cells Survive Xenotransplantation by Creating an Immune Modulatory Environment Involving CD4 and CD8 Regulatory T Cells. Cell Transplant 2021; 29:963689720947102. [PMID: 32841048 PMCID: PMC7564626 DOI: 10.1177/0963689720947102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The acute cell-mediated immune response presents a significant barrier to
xenotransplantation. Immune-privileged Sertoli cells (SC) can prolong the
survival of co-transplanted cells including xenogeneic islets, hepatocytes, and
neurons by protecting them from immune rejection. Additionally, SC survive as
allo- and xenografts without the use of any immunosuppressive drugs suggesting
elucidating the survival mechanism(s) of SC could be used to improve survival of
xenografts. In this study, the survival and immune response generated toward
neonatal pig SC (NPSC) or neonatal pig islets (NPI), nonimmune-privileged
controls, was compared after xenotransplantation into naïve Lewis rats without
immune suppression. The NPSC survived throughout the study, while NPI were
rejected within 9 days. Analysis of the grafts revealed that macrophages and T
cells were the main immune cells infiltrating the NPSC and NPI grafts. Further
characterization of the T cells within the grafts indicated that the NPSC grafts
contained significantly more cluster of differentiation 4 (CD4) and cluster of
differentiation 8 (CD8) regulatory T cells (Tregs) at early time points than the
NPI grafts. Additionally, the presence of increased amounts of interleukin 10
(IL-10) and transforming growth factor (TGF) β and decreased levels of tumor
necrosis factor (TNF) α and apoptosis in the NPSC grafts compared to NPI grafts
suggests the presence of regulatory immune cells in the NPSC grafts. The NPSC
expressed several immunoregulatory factors such as TGFβ, thrombospondin-1
(THBS1), indoleamine-pyrrole 2,3-dioxygenase, and galectin-1, which could
promote the recruitment of these regulatory immune cells to the NPSC grafts. In
contrast, NPI grafts had fewer Tregs and increased apoptosis and inflammation
(increased TNFα, decreased IL-10 and TGFβ) suggestive of cytotoxic immune cells
that contribute to their early rejection. Collectively, our data suggest that a
regulatory graft environment with regulatory immune cells including CD4 and
CD8 Tregs in NPSC grafts could be attributed to the prolonged survival of the
NPSC xenografts.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Medical Education, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kandis Wright
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Payal Mital
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan M Miranda
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lea Ann Thompson
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Katelyn Halley
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Medical Education, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
7
|
Washburn RL, Hibler T, Thompson LA, Kaur G, Dufour JM. Therapeutic application of Sertoli cells for treatment of various diseases. Semin Cell Dev Biol 2021; 121:10-23. [PMID: 33910764 DOI: 10.1016/j.semcdb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
Sertoli cells (SCs) are immune privileged cells found in the testis that function to immunologically protect maturing germ cells from immune destruction. This immune protection is due to the blood-testis-barrier, which prevents infiltration of cytotoxic immune cells and antibodies, and SC production of immunomodulatory factors, that favor a tolerogenic environment. The ability of SCs to create an immune privileged environment has led to the exploration of their potential use in the treatment of various diseases. SCs have been utilized to create a tolerogenic ectopic microenvironment, to protect co-grafted cells, and to deliver therapeutic proteins through gene therapy. To date, numerous studies have reported the potential use of SCs for the treatment of diabetes, neurodegenerative disorders, and restoration of spermatogenesis. Additionally, SCs have been investigated as a delivery vehicle for therapeutic products to treat other diseases like Laron syndrome, muscular dystrophy, and infections. This review will provide an overview of these therapeutic applications.
Collapse
Affiliation(s)
- Rachel L Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Lea Ann Thompson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
8
|
Kaur G, Wright K, Verma S, Haynes A, Dufour JM. The Good, the Bad and the Ugly of Testicular Immune Regulation: A Delicate Balance Between Immune Function and Immune Privilege. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:21-47. [PMID: 34453730 DOI: 10.1007/978-3-030-77779-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The testis is one of several immune privilege sites. These sites are necessary to decrease inflammation and immune responses that could be damaging to the host. For example, inflammation in the brain, eye or placenta could result in loss of cognitive function, vision or rejection of the semi-allogeneic fetus, respectively. In the testis, immune privilege is "good" as it is necessary for protection of the developing auto-immunogenic germ cells. However, there is also a downside or "bad" part of immune privilege, where pathogens and cancers can take advantage of this privilege and persist in the testis as a sanctuary site. Even worse, the "ugly" of privilege is how re-emerging viruses, such as Ebola and Zika viruses, can establish persistence in the testes and be sexually transmitted even months after they have been cleared from the bloodstream. In this review, we will discuss the delicate balance within the testis that provides immune privilege to protect the germ cells while still allowing for immune function to fight off pathogens and tumors.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kandis Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Allan Haynes
- Department of Urology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Abstract
Mammalian spermatogenesis is a carefully orchestrated male germ cell differentiation process by which spermatogonia differentiate to spermatozoa in the testis. A highly organized testicular microenvironment is therefore necessary to support spermatogenesis. Regarding immunologic aspects, the testis adapts a specialized immune environment for the protection of male germ cells and testicular functions. The mammalian testis possesses two immunologic features: (1) it is an immunoprivileged organ where immunogenic germ cells do not induce deleterious immune responses under physiologic conditions; and (2) it creates its own effective innate defense system against microbial infection. Various pathologic conditions may disrupt testicular immune homeostasis, thereby resulting in a detrimental immune response and perturbing testicular functions, one of the etiologic factors of male infertility. Understanding the mechanisms underlying immunoregulation in the testis can aid in establishing strategies for the prevention and therapy of immunologic testicular dysfunction and male infertility. This chapter focuses on the mechanisms underlying immune privilege, local innate immunity, and immunologic diseases of the testis.
Collapse
|
10
|
Olaniyan OT, Dare A, Okotie GE, Adetunji CO, Ibitoye BO, Bamidele OJ, Eweoya OO. Testis and blood-testis barrier in Covid-19 infestation: role of angiotensin-converting enzyme 2 in male infertility. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2020-0156. [PMID: 33006953 DOI: 10.1515/jbcpp-2020-0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) that causes COVID-19 infections penetrates body cells by binding to angiotensin-converting enzyme-2 (ACE2) receptors. Evidence shows that SARS-CoV-2 can also affect the urogenital tract. Hence, it should be given serious attention when treating COVID-19-infected male patients of reproductive age group. Other viruses like HIV, mumps, papilloma and Epstein-Barr can induce viral orchitis, germ cell apoptosis, inflammation and germ cell destruction with attending infertility and tumors. The blood-testis barrier (BTB) and blood-epididymis barrier (BEB) are essential physical barricades in the male reproductive tract located between the blood vessel and seminiferous tubules in the testes. Despite the significant role of these barriers in male reproductive function, studies have shown that a wide range of viruses can still penetrate the barriers and induce testicular dysfunctions. Therefore, this mini-review highlights the role of ACE2 receptors in promoting SARS-CoV-2-induced blood-testis/epididymal barrier infiltration and testicular dysfunction.
Collapse
Affiliation(s)
- Olugbemi T Olaniyan
- Laboratory for Reproductive Biology and Developmental Programming, Department of Physiology, Edo University Iyamho, Iyamho, Nigeria
| | - Ayobami Dare
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Gloria E Okotie
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Charles O Adetunji
- Applied Microbiology, Department of Microbiology, Biotechnology and Nanotechnology Laboratory, Edo University Iyamho, Iyamho, Edo State, Nigeria
| | | | - Okoli J Bamidele
- Institute of Chemical and Biotechnology, Faculty of Computer and Applied Sciences, Vaal University of Technology, Southern Gauteng Science and Technology Park, Department of Chemistry, Vanderbijlpark, South Africa
| | - Olugbenga O Eweoya
- Department of Anatomical Sciences, School of Medicine and Allied Health Sciences, University of the Gambia, Banjul, The Gambia
| |
Collapse
|
11
|
Affiliation(s)
- Mehwish Saba Aslam
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Liudi Yuan
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
12
|
The Effect of Sertoli Cells on Xenotransplantation and Allotransplantation of Ventral Mesencephalic Tissue in a Rat Model of Parkinson's Disease. Cells 2019; 8:cells8111420. [PMID: 31718058 PMCID: PMC6912403 DOI: 10.3390/cells8111420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Intra-striatal transplantation of fetal ventral mesencephalic (VM) tissue has a therapeutic effect on patients with Parkinson’s disease (PD). Sertoli cells (SCs) possess immune-modulatory properties that benefit transplantation. We hypothesized that co-graft of SCs with VM tissue can attenuate rejection. Hemi-parkinsonian rats were generated by injecting 6-hydroxydopamine into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats or pigs (rVM or pVM), with/without a co-graft of SCs (rVM+SCs or pVM+SCs). Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small animal-positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. Immunohistochemistry (IHC) examination was used to determine the survival of the grafted dopaminergic neurons in the striatum and to investigate immune-modulatory effects of SCs. The results showed that the rVM+SCs and pVM+SCs groups had significantly improved drug-induced rotational behavior compared with the VM alone groups. PET revealed a significant increase in specific uptake ratios (SURs) of [18F] DOPA and [18F] FE-PE2I in the grafted striatum of the rVM+SCs and pVM+SCs groups as compared to that of the rVM and pVM groups. SC and VM tissue co-graft led to better dopaminergic (DA) cell survival. The co-grafted groups exhibited lower populations of T-cells and activated microglia compared to the groups without SCs. Our results suggest that co-graft of SCs benefit both xeno- and allo-transplantation of VM tissue in a PD rat model. Use of SCs enhanced the survival of the grafted dopaminergic neurons and improved functional recovery. The enhancement may in part be attributable to the immune-modulatory properties of SCs. In addition, [18F]DOPA and [18F]FE-PE2I coupled with PET may provide a feasible method for in vivo evaluation of the functional integrity of the grafted DA cell in parkinsonian rats.
Collapse
|
13
|
Gualdoni GS, Jacobo PV, Sobarzo CM, Pérez CV, Matzkin ME, Höcht C, Frungieri MB, Hill M, Anegon I, Lustig L, Guazzone VA. Role of indoleamine 2,3-dioxygenase in testicular immune-privilege. Sci Rep 2019; 9:15919. [PMID: 31685866 PMCID: PMC6828782 DOI: 10.1038/s41598-019-52192-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Male meiotic germ cell including the spermatozoa represent a great challenge to the immune system, as they appear long after the establishment of normal immune tolerance mechanisms. The capacity of the testes to tolerate autoantigenic germ cells as well as survival of allogeneic organ engrafted in the testicular interstitium have led to consider the testis an immunologically privileged site. Disruption of this immune privilege following trauma, tumor, or autoimmune orchitis often results in male infertility. Strong evidence indicates that indoleamine 2,3-dioxygenase (IDO) has been implicated in fetal and allograft tolerance, tumor immune resistance, and regulation of autoimmune diseases. IDO and tryptophan 2,3-dioxygenase (TDO) catalyze the same rate-limiting step of tryptophan metabolism along a common pathway, which leads to tryptophan starvation and generation of catabolites collectively known as kynurenines. However, the relevance of tryptophan metabolism in testis pathophysiology has not yet been explored. Here we assessed the in vivo role of IDO/TDO in experimental autoimmune orchitis (EAO), a model of autoimmune testicular inflammation and immunologically impaired spermatogenesis. EAO was induced in adult Wistar rats with testicular homogenate and adjuvants. Control (C) rats injected with saline and adjuvants and normal untreated rats (N) were also studied. mRNA expression of IDO decreased in whole testes and in isolated Sertoli cells during EAO. TDO and IDO localization and level of expression in the testis were analyzed by immunostaining and Western blot. TDO is expressed in granulomas from EAO rats, and similar protein levels were observed in N, C, and EAO groups. IDO was detected in mononuclear and endothelial cells and reduced IDO expression was detected in EAO group compared to N and C rats. This phenomenon was concomitant with a significant reduction of IDO activity in EAO testis measured by tryptophan and kynurenine concentrations (HPLC). Finally, in vivo inhibition of IDO with 1-methyl-tryptophan increased severity of the disease, demonstrating down regulation of IDO-based tolerance when testicular immune regulation was disrupted. We present evidence that an IDO-based mechanism is involved in testicular immune privilege.
Collapse
Affiliation(s)
- Gisela S Gualdoni
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Patricia V Jacobo
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Cristian M Sobarzo
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Cecilia V Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Christian Höcht
- Cátedra de Farmacología. Facultad de Farmacia y Bioquímica, UBA, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Marcelo Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, 11800, Montevideo, Uruguay
| | - Ignacio Anegon
- Inserm, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, Nantes, France, INSERM UMR 1064, France
| | - Livia Lustig
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Vanesa A Guazzone
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.
| |
Collapse
|
14
|
Pierucci-Alves F, Midura-Kiela MT, Fleming SD, Schultz BD, Kiela PR. Transforming Growth Factor Beta Signaling in Dendritic Cells Is Required for Immunotolerance to Sperm in the Epididymis. Front Immunol 2018; 9:1882. [PMID: 30166986 PMCID: PMC6105693 DOI: 10.3389/fimmu.2018.01882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023] Open
Abstract
The epididymis exhibits a less restrictive physical blood–tissue barrier than the testis and, while numerous immunosuppressive factors have been identified in the latter, no mechanisms for epididymal immunotolerance have been identified to date. Therefore, data are currently insufficient to explain how the immune system tolerates the extremely large load of novel antigens expressed on sperm, which become present in the male body after puberty, i.e., long after central tolerance was established. This study tested the hypothesis that transforming growth factor beta (TGFβ) signaling in dendritic cells (DCs) is required for immunotolerance to sperm located in the epididymis, and that male mice lacking TGFβ signaling in DCs would develop severe epididymal inflammation. To test this, we employed adult Tgfbr2ΔDC males, which exhibit a significant reduction of Tgfbr2 expression and TGFβ signaling in DCs, as reported previously. Results show that Tgfbr2ΔDC males exhibit sperm-specific immune response and severe epididymal leukocytosis. This phenotype is consistent with epididymal loss of immunotolerance to sperm and suggests that TGFβ signaling in DCs is a factor required for a non-inflammatory steady state in the epididymis, and therefore for male tract homeostasis and function.
Collapse
Affiliation(s)
| | | | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Bruce D Schultz
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
15
|
Steinert EM, Thompson EA, Beura LK, Adam OA, Mitchell JS, Guo M, Breed ER, Sjaastad FV, Vezys V, Masopust D. Cutting Edge: Evidence for Nonvascular Route of Visceral Organ Immunosurveillance by T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:337-342. [PMID: 29875151 PMCID: PMC6039241 DOI: 10.4049/jimmunol.1800279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Lymphocytes enter tissues from blood vessels through a well-characterized three-step process of extravasation. To our knowledge, nonvascular routes of lymphocyte entry have not been described. In this article, we report that Ag-experienced CD8 T cells in mice recirculate from blood through the peritoneal cavity. In the event of infection, Ag-experienced CD8 T cell subsets adhered to visceral organs, indicating potential transcapsular immunosurveillance. Focusing on the male genital tract (MGT), we observed Ag-experienced CD8 T cell migration from the peritoneal cavity directly to the infected MGT across the capsule, which was dependent on the extracellular matrix receptor CD44. We also observed that, following clearance of infection, the MGT retained functional resident memory CD8 T cells. These data suggest that recirculation through body cavities may provide T cells with opportunities for broad immunosurveillance and potential nonvascular mechanisms of entry.
Collapse
Affiliation(s)
- Elizabeth M Steinert
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Emily A Thompson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Omar A Adam
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Jason S Mitchell
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Mengdi Guo
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Frances V Sjaastad
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Vaiva Vezys
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
16
|
Kaur G, Thompson LA, Babcock RL, Mueller K, Dufour JM. Sertoli Cells Engineered to Express Insulin to Lower Blood Glucose in Diabetic Mice. DNA Cell Biol 2018; 37:680-690. [PMID: 29927618 PMCID: PMC6080125 DOI: 10.1089/dna.2017.3937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long-term survival of allo- and xenotransplanted immune-privileged Sertoli cells (SCs) is well documented suggesting that SCs can be used to deliver foreign proteins for cell-based gene therapy. The aim of this study was to use a lentivirus carrying proinsulin cDNA to achieve stable expression and lowering of blood glucose levels (BGLs). A SC line transduced with the lentivirus (MSC-LV-mI) maintained stable insulin expression in vitro. These MSC-LV-mI cells were transplanted and grafts were analyzed for cell survival, continued proinsulin mRNA, and insulin protein expression. All grafts contained MSC-LV-mI cells that expressed proinsulin mRNA and insulin protein. Transplantation of MSC-LV-mI cells into diabetic mice significantly lowered BGLs for 4 days after transplantation. Interestingly, in three transplanted SCID mice and one transplanted BALB/c mouse, the BGLs again significantly lowered by day 50 and 70, respectively. This is the first time SC transduced with a lentiviral vector was able to stably express insulin and lower BGLs. In conclusion, a SC line can be modified to stably express therapeutic proteins (e.g., insulin), thus taking us one step further in the use of SCs as an immune-privileged vehicle for cell-based gene therapy.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Lea Ann Thompson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Rachel L Babcock
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Karl Mueller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| |
Collapse
|
17
|
Sertoli Cells Avert Neuroinflammation-Induced Cell Death and Improve Motor Function and Striatal Atrophy in Rat Model of Huntington Disease. J Mol Neurosci 2018; 65:17-27. [DOI: 10.1007/s12031-018-1062-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
|
18
|
Luca G, Arato I, Sorci G, Cameron DF, Hansen BC, Baroni T, Donato R, White DGJ, Calafiore R. Sertoli cells for cell transplantation: pre-clinical studies and future perspectives. Andrology 2018; 6:385-395. [DOI: 10.1111/andr.12484] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Affiliation(s)
- G. Luca
- Department of Experimental Medicine; University of Perugia; Perugia Italy
- Division of Medical Andrology and Endocrinology of Reproduction; University of Perugia and Saint Mary Hospital; Terni Italy
| | - I. Arato
- Department of Experimental Medicine; University of Perugia; Perugia Italy
| | - G. Sorci
- Department of Experimental Medicine; University of Perugia; Perugia Italy
- Inter-University Institute of Myology (IIM)
| | - D. F. Cameron
- Department of Pathology and Cell Biology; Morsani College of Medicine; University of South Florida; Tampa FL USA
| | - B. C. Hansen
- Department of Internal Medicine and Pediatrics; Morsani College of Medicine; University of South Florida; Tampa FL USA
| | - T. Baroni
- Department of Experimental Medicine; University of Perugia; Perugia Italy
| | - R. Donato
- Department of Experimental Medicine; University of Perugia; Perugia Italy
- Inter-University Institute of Myology (IIM)
- Centro Universitario per la Ricerca sulla Genomica Funzionale; Perugia Italy
| | - D. G. J. White
- Robarts Research Institute; University of Western Ontario; London ON Canada
| | - R. Calafiore
- Division of Medical Andrology and Endocrinology of Reproduction; University of Perugia and Saint Mary Hospital; Terni Italy
- Department of Medicine; University of Perugia; Perugia Italy
| |
Collapse
|
19
|
Rethinking Phagocytes: Clues from the Retina and Testes. Trends Cell Biol 2018; 28:317-327. [PMID: 29454661 DOI: 10.1016/j.tcb.2018.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/30/2023]
Abstract
Specialized phagocytes are a newly appreciated classification of phagocyte that currently encompasses Sertoli cells (SCs) of the testes and the retinal pigment epithelial cells (RPE) of the retina. While these cells support very different tissues, they have a striking degree of similarity both as phagocytes and in ways that go beyond cell clearance. The clearance of apoptotic germ cells, cell debris, and used photoreceptor outer segments are critical functions of these cells, and the unique nature of their clearance events make specialized phagocytes uniquely suited for studying the larger implications of cell clearance in vivo. The shared functions of specialized phagocytes could provide novel insights into how phagocytosis impacts tissue homeostasis and immune modulation. In this review, we examine the remarkable similarities between SCs and RPE as specialized phagocytes and the physiological effects of cell clearance within a tissue.
Collapse
|
20
|
Employment of Microencapsulated Sertoli Cells as a New Tool to Treat Duchenne Muscular Dystrophy. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Qin J, Arakawa Y, Morita M, Fung JJ, Qian S, Lu L. C-C Chemokine Receptor Type 2-Dependent Migration of Myeloid-Derived Suppressor Cells in Protection of Islet Transplants. Transplantation 2017; 101:1793-1800. [PMID: 27755503 PMCID: PMC5393972 DOI: 10.1097/tp.0000000000001529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Islet transplantation is a promising therapeutic approach to restore the physical response to blood glucose in type 1 diabetes. Current chronic use of immunosuppressive reagents for preventing islet allograft rejection is associated with severe complications. In addition, many of the immunosuppressive drugs are diabetogenic. The induction of transplant tolerance to eliminate the dependency on immunosuppression is ideal, but remains challenging. METHODS Addition of hepatic stellate cells allowed generation of myeloid-derived suppressor cells (MDSC) from precursors in mouse bone marrow. Migration of MDSC was examined in an islet allograft transplant model by tracking the systemic administered MDSC from CD45.1 congenic mice. RESULTS The generated MDSC were expressed C-C chemokine receptor type 2 (CCR2), which was enhanced by exposure to interferon-γ. A single systemic administration of MDSC markedly prolonged survival of islet allografts without requirement of immunosuppression. Tracking the administered MDSC showed that they promptly migrated to the islet graft sites, at which point they exerted potent immune suppressive activity by inhibiting CD8 T cells, enhancing regulatory T cell activity. MDSC generated from CCR2 mice failed to be mobilized and lost tolerogenic activity in vivo, but sustained suppressive activity in vitro. CONCLUSIONS MDSC migration was dependent on expression of CCR2, whereas CCR2 does not directly participate in immune suppression. Expression of CCR2 needs to be closely monitored for quality control purpose when MDSC are generated in vitro for immune therapy.
Collapse
Affiliation(s)
- Jie Qin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yusuke Arakawa
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Miwa Morita
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - John J Fung
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
22
|
Kaur G, Vadala S, Dufour JM. An overview of a Sertoli cell transplantation model to study testis morphogenesis and the role of the Sertoli cells in immune privilege. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx012. [PMID: 29492314 PMCID: PMC5804552 DOI: 10.1093/eep/dvx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 05/29/2023]
Abstract
Advanced testicular germ cells, expressing novel cell surface and intracellular proteins, appear after the establishment of central tolerance and thus are auto-immunogenic. However, due to testis immune privilege these germ cells normally do not evoke a detrimental immune response. The Sertoli cell (SC) barrier (also known as the blood-testis barrier) creates a unique microenvironment required for the completion of spermatogenesis and sequesters the majority of the advanced germ cells from the immune system. Given that an intact SC barrier is necessary for spermatogenesis and that disruption of the SC barrier results in loss of advanced germ cells independent of an immune response, this dual role of the SC barrier makes it difficult to directly test the importance of the SC barrier in immune privilege. The ability of SCs to survive and protect co-grafted cells when transplanted ectopically (outside the testis) across immunological barriers is well-documented. Here, we will discuss the use of a SC transplantation model to investigate the role of SC and the SC barrier in immune privilege. Additionally, the formation of cord/tubule like structures in this model, containing both SCs and myoid cells, further extends its application to study testis morphogenesis. We will also discuss the potential use of this model to study the effects of drugs/environmental toxins on testis morphogenesis, tight junction formation and SC-myoid cell interactions.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Scott Vadala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
23
|
Dufour JM, Gores P, Hemendinger R, Emerich DF, Halberstadt CR. Transgenic Sertoli Cells as a Vehicle for Gene Therapy. Cell Transplant 2017; 13:1-6. [PMID: 15040599 DOI: 10.3727/000000004772664833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gene therapy involves the manipulation of genetic material to replace defective or deficient proteins to restore function in disease states. These genes are introduced into cells by mechanical, chemical, and biological approaches. To date, cell-based gene therapy has been hampered by the lack of an abundant, safe, and immunologically acceptable source of tissue. As an alternative, transgenic animals designed to produce therapeutic proteins could overcome some of the issues facing gene therapy but the problem of immune rejection of the tissue remains. This article reports on recently published work indicating the potential to use transgenic Sertoli cells surviving in an allogeneic host by virtue of their ability to create a locally immunoprivileged environment, thereby providing for the continued delivery of a therapeutic protein to the systemic circulation.
Collapse
Affiliation(s)
- Jannette M Dufour
- Surgical-Medical Research Institute, Department of Surgery, University of Alberta, Edmonton T6G 2N8, Canada
| | | | | | | | | |
Collapse
|
24
|
Yang H, Al-Jazaeri A, Wright JR. The Immunoprotective Effect of Sertoli Cells Coencapsulated with Islet Xenografts is Not Dependent upon Fas Ligand Expression. Cell Transplant 2017. [DOI: 10.3727/000000002783985288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Coencapsulation with Sertoli-enriched testicular cell fractions prolongs islet graft survival time compared with islet encapsulation alone in a highly discordant tilapia (fish)-to-mouse xenotransplantation model. Here we investigate whether Fas ligand (Fas-L) expression by testicular Sertoli cells is responsible for this additional protective effect. Sertoli-enriched testicular cell fractions (7 × 106 cells) harvested from either Fas-L-defective (group I) or Fas-L-positive (group II) mice were coencapsulated in alginate gel spheres with fish islets and then transplanted into streptozotocin-diabetic Balb/c recipients. Group III mice received encapsulated islets without coencapsulated Sertoli cells. After transplantation, blood glucose levels were monitored three times per week. Mean graft survival times for the three groups were: group I = 35.6 ± 10.2 days (n = 9), group II = 31.3 ± 9.4 days (n = 7), and group III = 23.3 ± 2.2 days (n = 6) (ANOVA, p = 0.043). Coencapsulation, regardless of the Fas-L status of the Sertoli cell donors, modestly prolonged graft survival. There was no significant difference between Fas-L-deficient and Fas-L-positive donors. Our results suggest that Fas/Fas-L interaction is not responsible for the additional protection afforded to encapsulated discordant islet xenografts by coencapsulation with Sertoli cells.
Collapse
Affiliation(s)
- Hua Yang
- Departments of Pathology and Surgery, IWK Health Centre and Dalhousie University Faculty of Medicine and School of Biomedical Engineering, Dalhousie University Faculties of Medicine and Engineering, Halifax, Nova Scotia, Canada B3H 1V7
| | - Ayman Al-Jazaeri
- Departments of Pathology and Surgery, IWK Health Centre and Dalhousie University Faculty of Medicine and School of Biomedical Engineering, Dalhousie University Faculties of Medicine and Engineering, Halifax, Nova Scotia, Canada B3H 1V7
| | - James R. Wright
- Departments of Pathology and Surgery, IWK Health Centre and Dalhousie University Faculty of Medicine and School of Biomedical Engineering, Dalhousie University Faculties of Medicine and Engineering, Halifax, Nova Scotia, Canada B3H 1V7
| |
Collapse
|
25
|
Emerich DF, Sanberg PR. Article Commentary: Novel Means to Selectively Identify Sertoli Cell Transplants. Cell Transplant 2017. [DOI: 10.3727/000000002783985594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Dwaine F. Emerich
- Sertoli Technologies, Inc., 766 Laten Knight Road, Cranston, RI 02921
| | - Paul R. Sanberg
- Center for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC-78, Tampa, FL 33612
| |
Collapse
|
26
|
Shamekh R, El-Badri NS, Saporta S, Pascual C, Sanberg PR, Cameron DF. Sertoli Cells Induce Systemic Donor-Specific Tolerance in Xenogenic Transplantation Model. Cell Transplant 2017; 15:45-53. [PMID: 16700329 DOI: 10.3727/000000006783982205] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell therapy is a potentially powerful tool in the treatment of many grave disorders including leukemia, immune deficiencies, autoimmune diseases, and diabetes. However, finding matched donors is challenging and recipients may suffer from the severe complications of systemic immune suppression. Sertoli cells, when cotransplanted with both allo- and xenograft tissues, promote graft acceptance in the absence of systemic immunosuppression. How Sertoli cells do this is not, as yet, clearly defined. We have examined the ability of Sertoli cells to produce systemic immune tolerance. For this purpose, Sertoli cells were injected into an otherwise normal C57/BL6 mouse host via the lateral tail vein. No other immunosuppressive protocols were applied. Six to 8 weeks posttransplantation, blood was collected for analysis of cytokine levels. Tolerance to donor cells was determined by mixed lymphocytic culture, and production of T-cell-dependent antibody was determined by an in vitro anti-sheep red blood cell plaque-forming assay. Results showed a marked modulation of immune cytokines in the transplanted mouse host and donor-specific transplantation tolerance was achieved. Tolerant mouse lymphocytes maintained a competent humoral antibody response. Additionally, C57/BL6 mice transplanted with rat Sertoli cells tolerated rat skin grafts significantly longer than control non-Sertoli cell transplanted mice. We conclude that systemic administration of rat Sertoli cells across xenogenic barrier induces transplantation tolerance without altering systemic immune competence. These data suggest that Sertoli cells may be used as a novel and potentially powerful tool in cell transplantation therapy.
Collapse
Affiliation(s)
- R Shamekh
- Department of Anatomy, University of South Florida, College of Medicine,Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
27
|
Luca G, Calvitti M, Nastruzzi C, Macchiarulo G, Becchetti E, Neri LM, Capitani S, Basta G, Brunetti P, Calafiore R, Cameron DF. Effects of Simulated Microgravity on the Morphology and Function of Neonatal Porcine Cell Clusters Cultured with and without Sertoli Cells. Cell Transplant 2017; 15:55-65. [PMID: 16700330 DOI: 10.3727/000000006783982223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human islet allografts are well known to induce full and sustained remission of hyperglycemia, with complete normalization of key metabolic parameters. Nevertheless, acquiring human islets, even from cadaveric human donor pancreases, remains a significant impediment to successful transplantation therapy for diabetes. To overcome this difficulty, neonatal porcine cell clusters (NPCCs) have been considered for human islet substitutes because they are easily obtained by collagenase digestion of the neonatal piglet pancreas. Currently, the major hurdle in using NPCCs for xenograft is the delay (time lag) in achieving the posttransplant normalization of blood glucose levels in animal diabetic recipients. The present work is the first attempt to evaluate whether incubation of NPCCs in simulated microgravity, in the presence or absence of Sertoli cells (SC), may reduce the maturation time lag of β-cells by differentiation acceleration in vitro, thereby expediting production, viability, and acquisition of functional competence of pretransplantation β-cell-enriched islets. Following a 3-day incubation period, NPCCs maintained in conventional culture, NPCCs incubated in simulated microgravity in the HARV biochamber, and NPCCs plus co-incubated SC in simulated microgravity were examined for viability, morphology, and insulin secretion. Results show that NPCCs grown alone in the HARV biochamber are superior in quality, both in terms of viability and functional competence, when compared to other culture pretreatment protocols. This finding strongly suggests that NPCC pretreatment in simulated microgravity may enhance the transplantation success of NPCCs in the diabetic recipient.
Collapse
Affiliation(s)
- G Luca
- Department of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
29
|
Tung KSK, Harakal J, Qiao H, Rival C, Li JCH, Paul AGA, Wheeler K, Pramoonjago P, Grafer CM, Sun W, Sampson RD, Wong EWP, Reddi PP, Deshmukh US, Hardy DM, Tang H, Cheng CY, Goldberg E. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest 2017; 127:1046-1060. [PMID: 28218625 DOI: 10.1172/jci89927] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
Autoimmune responses to meiotic germ cell antigens (MGCA) that are expressed on sperm and testis occur in human infertility and after vasectomy. Many MGCA are also expressed as cancer/testis antigens (CTA) in human cancers, but the tolerance status of MGCA has not been investigated. MGCA are considered to be uniformly immunogenic and nontolerogenic, and the prevailing view posits that MGCA are sequestered behind the Sertoli cell barrier in seminiferous tubules. Here, we have shown that only some murine MGCA are sequestered. Nonsequestered MCGA (NS-MGCA) egressed from normal tubules, as evidenced by their ability to interact with systemically injected antibodies and form localized immune complexes outside the Sertoli cell barrier. NS-MGCA derived from cell fragments that were discarded by spermatids during spermiation. They egressed as cargo in residual bodies and maintained Treg-dependent physiological tolerance. In contrast, sequestered MGCA (S-MGCA) were undetectable in residual bodies and were nontolerogenic. Unlike postvasectomy autoantibodies, which have been shown to mainly target S-MGCA, autoantibodies produced by normal mice with transient Treg depletion that developed autoimmune orchitis exclusively targeted NS-MGCA. We conclude that spermiation, a physiological checkpoint in spermatogenesis, determines the egress and tolerogenicity of MGCA. Our findings will affect target antigen selection in testis and sperm autoimmunity and the immune responses to CTA in male cancer patients.
Collapse
|
30
|
Steinhoff M, Naqvi R, Burlak C. Xenotransplantation literature update, November/December 2016. Xenotransplantation 2017; 24. [PMID: 28160329 DOI: 10.1111/xen.12290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Raza Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
31
|
Sun Z, Nie Q, Zhang L, Niu R, Wang J, Wang S. Fluoride reduced the immune privileged function of mouse Sertoli cells via the regulation of Fas/FasL system. CHEMOSPHERE 2017; 168:318-325. [PMID: 27810530 DOI: 10.1016/j.chemosphere.2016.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Previous investigations have demonstrated the adverse impacts of fluoride on Sertoli cells (SCs), such as oxidative stress and apoptosis. SCs are the crucial cellular components that can create the immune privileged environment in testis. However, the effect of fluoride on SCs immune privilege is unknown. In this study, mouse SCs were exposed to sodium fluoride with varying concentrations of 10-5, 10-4, and 10-3 mol/L to establish the model of fluoride-treated SCs (F-SCs) in vitro. After 48 h of incubation, F-SCs were transplanted underneath the kidney capsule of mice for 21 days, or cocultured with spleen lymphocytes for another 48 h. Immunohistochemical analysis of GATA4 in SCs grafts underneath kidney capsule presented less SCs distribution and obvious immune cell infiltration in F-SCs groups. In addition, the levels of FasL protein and mRNA in non-cocultured F-SCs decreased with the increase of fluoride concentration. When cocultured with F-SCs, lymphocytes presented significantly high cell viability and low apoptosis in F-SCs groups. Protein and mRNA expressions of FasL in cocultured F-SCs and Fas in lymphocytes were reduced, and the caspase 8 and caspase 3 mRNA levels were also decreased in fluoride groups in a dose-dependent manner. These findings indicated that fluoride influenced the testicular immune privilege through disturbing the Fas/FasL system.
Collapse
Affiliation(s)
- Zilong Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Qingli Nie
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Lianjie Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Ruiyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
32
|
|
33
|
Chen Q, Deng T, Han D. Testicular immunoregulation and spermatogenesis. Semin Cell Dev Biol 2016; 59:157-165. [DOI: 10.1016/j.semcdb.2016.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
|
34
|
Staels W, De Groef S, Heremans Y, Coppens V, Van Gassen N, Leuckx G, Van de Casteele M, Van Riet I, Luttun A, Heimberg H, De Leu N. Accessory cells for β-cell transplantation. Diabetes Obes Metab 2016; 18:115-24. [PMID: 26289770 DOI: 10.1111/dom.12556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 12/16/2022]
Abstract
Despite recent advances, insulin therapy remains a treatment, not a cure, for diabetes mellitus with persistent risk of glycaemic alterations and life-threatening complications. Restoration of the endogenous β-cell mass through regeneration or transplantation offers an attractive alternative. Unfortunately, signals that drive β-cell regeneration remain enigmatic and β-cell replacement therapy still faces major hurdles that prevent its widespread application. Co-transplantation of accessory non-islet cells with islet cells has been shown to improve the outcome of experimental islet transplantation. This review will highlight current travails in β-cell therapy and focuses on the potential benefits of accessory cells for islet transplantation in diabetes.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cell Separation/trends
- Cells, Cultured
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/surgery
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Endothelial Progenitor Cells/cytology
- Endothelial Progenitor Cells/immunology
- Endothelial Progenitor Cells/pathology
- Endothelial Progenitor Cells/transplantation
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/prevention & control
- Graft Survival
- Humans
- Immune Tolerance
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/transplantation
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Mesenchymal Stem Cell Transplantation/adverse effects
- Mesenchymal Stem Cell Transplantation/trends
- Neural Crest/cytology
- Neural Crest/immunology
- Neural Crest/pathology
- Neural Crest/transplantation
- Stem Cell Transplantation/adverse effects
- Stem Cell Transplantation/trends
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- T-Lymphocytes, Regulatory/transplantation
- Transplantation, Autologous/adverse effects
- Transplantation, Autologous/trends
- Transplantation, Heterotopic/adverse effects
- Transplantation, Heterotopic/trends
- Transplantation, Homologous/adverse effects
- Transplantation, Homologous/trends
Collapse
Affiliation(s)
- W Staels
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - S De Groef
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Y Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - V Coppens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - N Van Gassen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - G Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - M Van de Casteele
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - I Van Riet
- Department Hematology Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - A Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - H Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - N De Leu
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Endocrinology, UZ Brussel, Brussels, Belgium
- Department of Endocrinology, ASZ Aalst, Aalst, Belgium
| |
Collapse
|
35
|
Morita M, Joyce D, Miller C, Fung JJ, Lu L, Qian S. Rejection triggers liver transplant tolerance: Involvement of mesenchyme-mediated immune control mechanisms in mice. Hepatology 2015; 62:915-31. [PMID: 25998530 PMCID: PMC4549241 DOI: 10.1002/hep.27909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/19/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Liver tolerance was initially recognized by the spontaneous acceptance of liver allografts in many species. The underlying mechanisms are not completely understood. However, liver transplant (LT) tolerance absolutely requires interferon (IFN)-γ, a rejection-associated inflammatory cytokine. In this study, we investigated the rejection of liver allografts deficient in the IFN-γ receptor and reveal that the liver graft is equipped with machineries capable of counterattacking the host immune response through a mesenchyme-mediated immune control (MMIC) mechanism. MMIC is triggered by T effector (Tef) cell-derived IFN-γ that drives expression of B7-H1 on graft mesenchymal cells leading to Tef cell apoptosis. We describe the negative feedback loop between graft mesenchymal and Tef cells that ultimately results in LT tolerance. Comparable elevations of T-regulatory cells and myeloid-derived suppressor cells were observed in both rejection and tolerance groups and were not dependent on IFN-γ stimulation, suggesting a critical role of Tef cell elimination in tolerance induction. We identify potent MMIC activity in hepatic stellate cells and liver sinusoidal endothelial cells. MMIC is unlikely exclusive to the liver, given that spontaneous acceptance of kidney allografts has been reported, although less commonly, probably reflecting variance in MMIC activity. CONCLUSION MMIC may represent an important homeostatic mechanism that supports peripheral tolerance and could be a target for the prevention and treatment of transplant rejection. This study highlights that the graft is an active participant in the equipoise between tolerance and rejection and warrants more attention in the search for tolerance biomarkers.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Daniel Joyce
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Charles Miller
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - John J. Fung
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| |
Collapse
|
36
|
Fijak M, Damm LJ, Wenzel JP, Aslani F, Walecki M, Wahle E, Eisel F, Bhushan S, Hackstein H, Baal N, Schuler G, Konrad L, Rafiq A, O'Hara L, Smith LB, Meinhardt A. Influence of Testosterone on Inflammatory Response in Testicular Cells and Expression of Transcription Factor Foxp3 in T Cells. Am J Reprod Immunol 2015; 74:12-25. [DOI: 10.1111/aji.12363] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/02/2015] [Indexed: 01/31/2023] Open
Affiliation(s)
- Monika Fijak
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Lara-Jil Damm
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Jan-Per Wenzel
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Ferial Aslani
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Magdalena Walecki
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Eva Wahle
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Florian Eisel
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine; Justus-Liebig-University; Giessen Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine; Justus-Liebig-University; Giessen Germany
| | - Gerhard Schuler
- Clinic for Obstetrics; Gynecology and Andrology of Large and Small Animals; Faculty of Veterinary Medicine; Justus-Liebig-University; Giessen Germany
| | - Lutz Konrad
- Department of Obstetrics and Gynaecology; Faculty of Medicine; Justus-Liebig-University; Giessen Germany
| | - Amir Rafiq
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Laura O'Hara
- MRC Centre for Reproductive Health; University of Edinburgh; Edinburgh UK
| | - Lee B. Smith
- MRC Centre for Reproductive Health; University of Edinburgh; Edinburgh UK
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| |
Collapse
|
37
|
|
38
|
Wang X, Qin J, Zhao RC, Zenke M. Reduced immunogenicity of induced pluripotent stem cells derived from Sertoli cells. PLoS One 2014; 9:e106110. [PMID: 25166861 PMCID: PMC4148392 DOI: 10.1371/journal.pone.0106110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022] Open
Abstract
Sertoli cells constitute the structural framework in testis and provide an immune-privileged environment for germ cells. Induced pluripotent stem cells (iPS cells) resemble embryonic stem cells (ES cells) and are generated from somatic cells by expression of specific reprogramming transcription factors. Here, we used C57BL/6 (B6) Sertoli cells to generate iPS cells (Ser-iPS cells) and compared the immunogenicity of Ser-iPS cells with iPS cells derived from mouse embryonic fibroblast (MEF-iPS cells). Ser-iPS cells were injected into syngeneic mice to test for their in vivo immunogenicity in teratoma assay. Teratoma assay allows assessing in vivo immunogenicity of iPS cells and of their differentiated progeny simultaneously. We observed that early-passage Ser-iPS cells formed more teratomas with less immune cell infiltration and tissue damage and necrosis than MEF-iPS cells. Differentiating Ser-iPS cells in embryoid bodies (EBs) showed reduced T cell activation potential compared to MEF-iPS cells, which was similar to syngeneic ES cells. However, Ser-iPS cells lost their reduced immunogenicity in vivo after extended passaging in vitro and late-passage Ser-iPS cells exhibited an immunogenicity similar to MEF-iPS cells. These findings indicate that early-passage Ser-iPS cells retain some somatic memory of Sertoli cells that impacts on immunogenicity of iPS cells and iPS cell-derived cells in vivo and in vitro. Our data suggest that immune-privileged Sertoli cells might represent a preferred source for iPS cell generation, if it comes to the use of iPS cell-derived cells for transplantation.
Collapse
Affiliation(s)
- Xiaoying Wang
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jie Qin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Peking Union Medical College Hospital, Beijing, China
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
39
|
Mojibian M, Lam AWY, Fujita Y, Asadi A, Grassl GA, Dickie P, Tan R, Cheung AT, Kieffer TJ. Insulin-producing intestinal K cells protect nonobese diabetic mice from autoimmune diabetes. Gastroenterology 2014; 147:162-171.e6. [PMID: 24662331 DOI: 10.1053/j.gastro.2014.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Type 1 diabetes is caused by an aberrant response against pancreatic β cells. Intestinal K cells are glucose-responsive endocrine cells that might be engineered to secrete insulin. We generated diabetes-prone non-obese diabetic (NOD) mice that express insulin, via a transgene, in K cells. We assessed the effects on immunogenicity and diabetes development. METHODS Diabetes incidence and glucose homeostasis were assessed in NOD mice that expressed mouse preproinsulin II from a transgene in K cells and nontransgenic NOD mice (controls); pancreas and duodenum tissues were collected and analyzed by histology. We evaluated T cell responses to insulin, levels of circulating autoantibodies against insulin, and the percentage of circulating antigen-specific T cells. Inflammation of mesenteric and pancreatic lymph node cells was also evaluated. RESULTS The transgenic mice tended to have lower blood levels of glucose than control mice, associated with increased plasma levels of immunoreactive insulin and proinsulin. Fewer transgenic mice developed diabetes than controls. In analyses of pancreas and intestine tissues from the transgenic mice, insulin-producing K cells were not affected by the immune response and the mice had reduced destruction of endogenous β cells. Fewer transgenic mice were positive for insulin autoantibodies compared with controls. Cells isolated from mesenteric lymph nodes of the transgenic mice had significantly lower rates of proliferation and T cells from transgenic mice tended to secrete lower levels of inflammatory cytokines than from controls. At 15 weeks, transgenic mice had fewer peripheral CD8(+) T cells specific for NRP-V7 than control mice. CONCLUSIONS NOD mice with intestinal K cells engineered to express insulin have reduced blood levels of glucose, are less likely to develop diabetes, and have reduced immunity against pancreatic β cells compared with control NOD mice. This approach might be developed to treat patients with type 1 diabetes.
Collapse
Affiliation(s)
- Majid Mojibian
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ada W Y Lam
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yukihiro Fujita
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guntram A Grassl
- Institute for Experimental Medicine, Christian Albrechts University Kiel, Kiel, Germany
| | - Peter Dickie
- University of Alberta, Edmonton, Alberta, Canada
| | - Rusung Tan
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| | | | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Nguyen PV, Kafka JK, Ferreira VH, Roth K, Kaushic C. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell Mol Immunol 2014; 11:410-27. [PMID: 24976268 DOI: 10.1038/cmi.2014.41] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022] Open
Abstract
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections.
Collapse
|
41
|
Zhao S, Zhu W, Xue S, Han D. Testicular defense systems: immune privilege and innate immunity. Cell Mol Immunol 2014; 11:428-37. [PMID: 24954222 DOI: 10.1038/cmi.2014.38] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/03/2014] [Accepted: 05/04/2014] [Indexed: 01/12/2023] Open
Abstract
The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation.
Collapse
|
42
|
Sertoli cells--immunological sentinels of spermatogenesis. Semin Cell Dev Biol 2014; 30:36-44. [PMID: 24603046 DOI: 10.1016/j.semcdb.2014.02.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Abstract
Testicular germ cells, which appear after the establishment of central tolerance, express novel cell surface and intracellular proteins that can be recognized as 'foreign antigens' by the host's immune system. However, normally these germ cells do not evoke an auto-reactive immune response. The focus of this manuscript is to review the evidence that the blood-testis-barrier (BTB)/Sertoli cell (SC) barrier along with the SCs ability to modulate the immune response is vital for protecting auto-antigenic germ cells. In normal testis, the BTB/SC barrier protects the majority of the auto-antigenic germ cells by limiting access by the immune system and sequestering these 'new antigens'. SCs also modulate testis immune cells (induce regulatory immune cells) by expressing several immunoregulatory factors, thereby creating a local tolerogenic environment optimal for survival of nonsequesetred auto-antigenic germ cells. Collectively, the fortress created by the BTB/SC barrier along with modulation of the immune response is pivotal for completion of spermatogenesis and species survival.
Collapse
|
43
|
Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 2013; 13:206-18. [PMID: 23435332 DOI: 10.1038/nri3391] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complex barriers separate immune-privileged tissues from the circulation. Here, we propose that cell entry to immune-privileged sites through barriers composed of tight junction-interconnected endothelium is associated with destructive inflammation, whereas border structures comprised of fenestrated vasculature enveloped by tightly regulated epithelium serve as active and selective immune-skewing gates in the steady state. Based on emerging knowledge of the central nervous system and information from other immune-privileged sites, we propose that these sites are endowed either with absolute endothelial-based barriers and epithelial gates that enable selective and educative transfer of trafficking leukocytes or with selective epithelial gates only.
Collapse
Affiliation(s)
- Ravid Shechter
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
44
|
Li N, Wang T, Han D. Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol 2012; 3:152. [PMID: 22701457 PMCID: PMC3371599 DOI: 10.3389/fimmu.2012.00152] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/23/2012] [Indexed: 11/17/2022] Open
Abstract
The testis presents a special immunological environment, considering its property of immune privilege that tolerates allo- and auto-antigens. Testicular immune privilege was once believed to be mainly based on the sequestration of antigens from the immune system by the blood–testis barrier in the seminiferous epithelium. Substantial evidence supports the view that the combination of physical structure, testicular cells, and cytokines controls immune responses in the testis to preserve the structural and functional integrity of testicular immune privilege. Both systemic immune tolerance and local immunosuppression help maintain the immune privilege status. Constitutive expression of anti-inflammatory factors in testicular cells is critical for local immunosuppression. However, the testis locally generates an efficient innate immune system against pathogens. Disruption of these mechanisms may lead to orchitis and impair fertility. This review article highlights the current understanding of structural, cellular, and molecular mechanisms underlying the unique immune environment of the testis, particularly its immune privilege status.
Collapse
Affiliation(s)
- Nan Li
- Department of Cell Biology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
45
|
Protection of porcine islet xenografts in mice using sertoli cells and monoclonal antibodies. Transplantation 2012; 92:1309-15. [PMID: 22037619 DOI: 10.1097/tp.0b013e3182384ab0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To remedy the shortage of human donor islets, xenotransplantation of neonatal porcine islets (NPI) provides an attractive alternative source of donor tissue so long as graft rejection can be circumvented. Thus, in this study, we sought to determine whether cotransplantation of NPI with Sertoli cells (SC) combined with a short-course treatment of monoclonal antibody (mAb) could provide long-term islet xenograft survival. METHODS NPI alone or NPI cotransplanted with neonatal porcine SC were transplanted into diabetic C57BL/6 mice. These mice were left untreated or were treated with a short course of antileukocyte function associated antigen-1 (LFA-1), anti-CD154, or anti-CD45RB mAb. Blood glucose levels were monitored twice a week to assess graft function. At more than 100 days posttransplantation or on the day of rejection, graft-bearing kidneys were collected for characterization using immunohistochemistry. RESULTS None of the untreated control mice transplanted with NPI alone (0/5) or NPI cotransplanted with SC (0/8) achieved normoglycemia. However, of the mice receiving NPI alone, 3 of 7 treated with anti-LFA-1 mAb, 2 of 7 treated with anti-CD154 mAb, and 1 of 7 treated with anti-CD45RB mAb achieved long-term graft survival (>100 days). These proportions improved considerably when NPI were cotransplanted with SC, as 15 of 15 mice treated with anti-LFA-1 mAb, 7 of 8 mice treated with anti-CD154 mAb, and 4 of 9 mice treated with anti-CD45RB mAb achieved long-term graft survival. CONCLUSIONS These results show that transient administration of anti-LFA-1 mAb or anti-CD154 mAb is efficacious in prolonging NPI xenograft survival when islets are cotransplanted with SC. Interleukin-4 and Serpina3n may be important mediators of protection observed in this model.
Collapse
|
46
|
Charles R, Lu L, Qian S, Fung JJ. Stromal cell-based immunotherapy in transplantation. Immunotherapy 2012; 3:1471-85. [PMID: 22091683 DOI: 10.2217/imt.11.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Organs are composed of parenchymal cells that characterize organ function and nonparenchymal cells that are composed of cells in transit, as well as tissue connective tissue, also referred to as tissue stromal cells. It was originally thought that these tissue stromal cells provided only structural and functional support for parenchymal cells and were relatively inert. However, we have come to realize that tissue stromal cells, not restricted to in the thymus and lymphoid organs, also play an active role in modulating the immune system and its response to antigens. The recognition of these elements and the elucidation of their mechanisms of action have provided valuable insight into peripheral immune regulation. Extrapolation of these principles may allow us to utilize their potential for clinical application. In this article, we will summarize a number of tissue stromal elements/cell types that have been shown to induce hyporesponsiveness to transplants. We will also discuss the mechanisms by which these stromal cells create a tolerogenic environment, which in turn results in long-term allograft survival.
Collapse
Affiliation(s)
- Ronald Charles
- Department of General Surgery, Transplantation Center, Digestive Disease Institute, Cleveland, OH, USA
| | | | | | | |
Collapse
|
47
|
Doyle TJ, Kaur G, Putrevu SM, Dyson EL, Dyson M, McCunniff WT, Pasham MR, Kim KH, Dufour JM. Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege. Biol Reprod 2012; 86:1-14. [PMID: 21900683 DOI: 10.1095/biolreprod.110.089425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary Sertoli cells isolated from mouse testes survive when transplanted across immunological barriers and protect cotransplanted allogeneic and xenogeneic cells from rejection in rodent models. In contrast, the mouse Sertoli cell line (MSC-1) lacks immunoprotective properties associated with primary Sertoli cells. In this study, enriched primary Sertoli cells or MSC-1 cells were transplanted as allografts into the renal subcapsular area of naive BALB/c mice, and their survival in graft sites was compared. While Sertoli cells were detected within the grafts with 100% graft survival throughout the 20-day study, MSC-1 cells were rejected between 11 and 14 days, with 0% graft survival at 20 days posttransplantation. Nonetheless, the mechanism for primary Sertoli cell survival and immunoprotection remains unresolved. To identify immune factors or functional pathways potentially responsible for immune privilege, gene expression profiles of enriched primary Sertoli cells were compared with those of MSC-1 cells. Microarray analysis identified 2369 genes in enriched primary Sertoli cells that were differentially expressed at ±4-fold or higher levels than in MSC-1 cells. Ontological analyses identified multiple immune pathways, which were used to generate a list of 340 immune-related genes. Three functions were identified in primary Sertoli cells as potentially important for establishing immune privilege: suppression of inflammation by specific cytokines and prostanoid molecules, slowing of leukocyte migration by controlled cell junctions and actin polymerization, and inhibition of complement activation and membrane-associated cell lysis. These results increase our understanding of testicular immune privilege and, in the long-term, could lead to improvements in transplantation success.
Collapse
Affiliation(s)
- Timothy J Doyle
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bhatt S, Fung JJ, Lu L, Qian S. Tolerance-inducing strategies in islet transplantation. Int J Endocrinol 2012; 2012:396524. [PMID: 22675353 PMCID: PMC3366204 DOI: 10.1155/2012/396524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/08/2012] [Indexed: 12/12/2022] Open
Abstract
Allogeneic islet transplantation is a promising approach for restoring normoglycemia in type 1 diabetic patients. Current use of immunosuppressive therapies for management of islet transplant recipients can be counterintuitive to islet function and can lead to complications in the long term. The induction of donor-specific tolerance eliminates the dependency on immunosuppression and allows recipients to retain responses to foreign antigens. The mechanisms by which tolerance is achieved involve the deletion of donor-reactive T cells, induction of T-cell anergy, immune deviation, and generation of regulatory T cells. This review will outline the various methods used for inducing donor-specific tolerance in islet transplantation and will highlight the previously unforeseen potential of tissue stromal cells in promoting islet engraftment.
Collapse
Affiliation(s)
- Sumantha Bhatt
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John J. Fung
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- *Shiguang Qian:
| |
Collapse
|
49
|
Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp (Warsz) 2011; 59:421-9. [PMID: 21984594 DOI: 10.1007/s00005-011-0143-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. In recent years, the proportion of patients achieving initial insulin independence has improved, but longer term outcomes remain poor compared to those for whole pancreas transplants. This review article will discuss factors affecting islet yield and viability leading up to transplantation and in the immediate post-transplant period.
Collapse
|
50
|
Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. ACTA ACUST UNITED AC 2011; 32:625-40. [PMID: 21764900 PMCID: PMC7166903 DOI: 10.2164/jandrol.111.012989] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of spermatogenic cells to evade the host immune system and the ability of systemic inflammation to inhibit male reproductive function represent two of the most intriguing conundrums of male reproduction. Clearly, an understanding of the underlying immunology of the male reproductive tract is crucial to resolving these superficially incompatible observations. One important consideration must be the very different immunological environments of the testis, where sperm develop, and the epididymis, where sperm mature and are stored. Compared with the elaborate blood-testis barrier, the tight junctions of the epididymis are much less effective. Unlike the seminiferous epithelium, immune cells are commonly observed within the epithelium, and can even be found within the lumen, of the epididymis. Crucially, there is little evidence for extended allograft survival (immune privilege) in the epididymis, as it exists in the testis, and the epididymis is much more susceptible to loss of immune tolerance. Moreover, the incidence of epididymitis is considerably greater than that of orchitis in humans, and susceptibility to sperm antibody formation after damage to the epididymis or vas deferens increases with increasing distance of the damage from the testis. Although we still know relatively little about testicular immunity, we know less about the interactions between the epididymis and the immune system. Given that the epididymis appears to be more susceptible to inflammation and immune reactions than the testis, and thereby represents the weaker link in protecting developing sperm from the immune system, it is probably time this imbalance in knowledge was addressed.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, 27-31 Wright St, Clayton, Victoria, Australia.
| |
Collapse
|