1
|
Somaa F, Bokhari FA, Khan A, Podlasek A, Baliyan A. Exploring symptomatology and innovative treatment modalities for prefrontal cortex lesions: a systematic review. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-9. [PMID: 39257373 DOI: 10.1080/23279095.2024.2403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
BACKGROUND Pre-frontal cortex operates a combination of emotional, cognitive and behavioural functions. Understanding the symptoms of pre-frontal cortex lesions serves as paramount for accurate diagnosis and management. AIMS This review aims to determine an association between the causes of prefrontal cortex lesions and the resulting symptoms, as well as the ideal form of treatment. STUDY DESIGN A systematic review through utilisation of 3 databases was done using the keywords "Prefrontal cortex lesions," "dysfunction," "symptoms," &" treatment". METHODOLOGY RCTs, observational studies, and systematic reviews were searched using Cochrane/EMBASE, PubMed/Medline, and Pedro between 1948 and2024. Studies published in English only were included, and two reviewers were involved in the data extraction process. RESULTS Results showed a notable correlation between right-handed individuals and prefrontal cortex lesions with cognition impairment, particularly executive dysfunction, being the most prevalent symptom. Emotional instability followed as the second most common issue, while aphasia remained the primary language deficit. Noninvasive brain stimulation emerged as an effective treatment option for various prefrontal cortex-related disorders. CONCLUSION Further investigation is needed to understand the mechanism linking handedness to lesion occurrence. Noninvasive brain stimulation should be prioritised for treating prefrontal injuries.
Collapse
Affiliation(s)
- Fahad Somaa
- Occupational Therapy Department, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Azka Khan
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Anna Podlasek
- NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
- Clinical Radiology, Queens Medical Centre - Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Asif Baliyan
- Department of Histopathology & Laboratory medicine, QRG Health City, Faridabad, India
| |
Collapse
|
2
|
Williams EER, Sghirripa S, Rogasch NC, Hordacre B, Attrill S. Non-invasive brain stimulation in the treatment of post-stroke aphasia: a scoping review. Disabil Rehabil 2024; 46:3802-3826. [PMID: 37828899 DOI: 10.1080/09638288.2023.2259299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Aphasia is an acquired language impairment that commonly results from stroke. Non-invasive brain stimulation (NIBS) might accelerate aphasia recovery trajectories and has seen mounting popularity in recent aphasia rehabilitation research. The present review aimed to: (1) summarise all existing literature on NIBS as a post-stroke aphasia treatment; and (2) provide recommendations for future NIBS-aphasia research. MATERIALS AND METHODS Databases for published and grey literature were searched using scoping review methodology. 278 journal articles, conference abstracts/posters, and books, and 38 items of grey literature, were included for analysis. RESULTS Quantitative analysis revealed that ipsilesional anodal transcranial direct current stimulation and contralesional 1-Hz repetitive transcranial magnetic stimulation were the most widely used forms of NIBS, while qualitative analysis identified four key themes including: the roles of the hemispheres in aphasia recovery and their relationship with NIBS; heterogeneity of individuals but homogeneity of subpopulations; individualisation of stimulation parameters; and much remains under-explored in the NIBS-aphasia literature. CONCLUSIONS Taken together, these results highlighted systemic challenges across the field such as small sample sizes, inter-individual variability, lack of protocol optimisation/standardisation, and inadequate focus on aphasiology. Four key recommendations are outlined herein to guide future research and refine NIBS methods for post-stroke aphasia treatment.
Collapse
Affiliation(s)
- Ellen E R Williams
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Sabrina Sghirripa
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Nigel C Rogasch
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, The University of South Australia, Adelaide, Australia
| | - Stacie Attrill
- Speech Pathology, School of Allied Health Science and Practice, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Alduais A, Alarifi HS, Alfadda H. Using Biosensors to Detect and Map Language Areas in the Brain for Individuals with Traumatic Brain Injury. Diagnostics (Basel) 2024; 14:1535. [PMID: 39061672 PMCID: PMC11275263 DOI: 10.3390/diagnostics14141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The application of biosensors in neurolinguistics has significantly advanced the detection and mapping of language areas in the brain, particularly for individuals with brain trauma. This study explores the role of biosensors in this domain and proposes a conceptual model to guide their use in research and clinical practice. The researchers explored the integration of biosensors in language and brain function studies, identified trends in research, and developed a conceptual model based on cluster and thematic analyses. Using a mixed-methods approach, we conducted cluster and thematic analyses on data curated from Web of Science, Scopus, and SciSpace, encompassing 392 articles. This dual analysis facilitated the identification of research trends and thematic insights within the field. The cluster analysis highlighted Functional Magnetic Resonance Imaging (fMRI) dominance and the importance of neuroplasticity in language recovery. Biosensors such as the Magnes 2500 watt-hour (WH) neuromagnetometer and microwire-based sensors are reliable for real-time monitoring, despite methodological challenges. The proposed model synthesizes these findings, emphasizing biosensors' potential in preoperative assessments and therapeutic customization. Biosensors are vital for non-invasive, precise mapping of language areas, with fMRI and repetitive Transcranial Magnetic Stimulation (rTMS) playing pivotal roles. The conceptual model serves as a strategic framework for employing biosensors and improving neurolinguistic interventions. This research may enhance surgical planning, optimize recovery therapies, and encourage technological advancements in biosensor precision and application protocols.
Collapse
Affiliation(s)
- Ahmed Alduais
- Department of Human Sciences (Psychology), University of Verona, 37129 Verona, Italy
| | - Hessah Saad Alarifi
- Department of Educational Administration, College of Education, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hind Alfadda
- Department of Curriculum and Instruction, College of Education, King Saud University, Riyadh 11362, Saudi Arabia;
| |
Collapse
|
4
|
Sun YY, Wang L, Peng JL, Huang YJ, Qiao FQ, Wang P. Effects of repetitive transcranial magnetic stimulation on motor function and language ability in cerebral palsy: A systematic review and meta-analysis. Front Pediatr 2023; 11:835472. [PMID: 36873646 PMCID: PMC9978792 DOI: 10.3389/fped.2023.835472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE This review was conducted to assess the quality of the evidence of effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating motor and language ability of cerebral palsy (CP). METHOD Medline, Cochrane library, Web of Science, Embase, PubMed, and CNKI databases were searched up to July 2021 by two independent reviewers. Randomized controlled trials (RCTs) that were published in English and Chinese and met the following criteria were included. The population comprised patients who met the diagnostic criteria for CP. Intervention included the following: comparison about rTMS and sham rTMS or comparison about rTMS combine with other physical therapy and other physical therapy. Outcomes included motor function, as follows: gross motor function measure (GMFM), Gesell Development Diagnosis Scale, fine motor function measure (FMFM), Peabody developmental motor scale, and Modified Ashworth scale. For language ability, sign-significant relation (S-S) was included. Methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale. RESULTS Finally, 29 studies were included in the meta-analysis. Results of evaluation using the Cochrane Collaborative Network Bias Risk Assessment Scale showed that 19 studies specifically explained randomization, among which two studies described allocation concealment, four studies blinded participants and persons and had low risk of bias, and six studies explained that the assessment of outcome measures was blinded. Significant improvements in motor function were observed. The GMFM of total score was determined by using the random-effect model [I2 = 88%; MD = -1.03; 95% CI (-1.35, -0.71); P < 0.0001] and FMFM was determined by using the fixed-effect model [P = 0.40 and I2 = 3%; SMDs = -0.48, 95% CI (-0.65, -0.30); P < 0.01]. For language ability, the language improvement rate was determined using a fixed-effect model [P = 0.88 and I2 = 0%; MD = 0.37, 95% CI (0.23, 0.57); P < 0.01]. According to the PEDro scale, 10 studies had low-quality, four studies had excellent quality, and the other studies had good quality. Using the GRADEpro GDT online tool, we included a total of 31 outcome indicators, as follows: 22 for low quality, seven for moderate quality, and two for very low quality. CONCLUSION The rTMS could improve the motor function and language ability of patients with CP. However, rTMS prescriptions varied, and the studies had low sample sizes. Studies using rigorous and standard research designs about prescriptions and large samples are needed to collect sufficient evidence about the effectiveness of using rTMS to treat patients with CP.
Collapse
Affiliation(s)
- Ying-Ying Sun
- School of Education and Psychology, University of Jinan, Jinan, China.,Jinan Tongkang Children's Hospital, Jinan, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jin-Lin Peng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yi-Jie Huang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Fu-Qiang Qiao
- School of Education and Psychology, University of Jinan, Jinan, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
5
|
Arheix-Parras S, Barrios C, Python G, Cogné M, Sibon I, Engelhardt M, Dehail P, Cassoudesalle H, Moucheboeuf G, Glize B. A systematic review of repetitive transcranial magnetic stimulation in aphasia rehabilitation: Leads for future studies. Neurosci Biobehav Rev 2021; 127:212-241. [PMID: 33862065 DOI: 10.1016/j.neubiorev.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool that induces neuromodulation in the brain. Several studies have shown that rTMS improves language recovery in patients with post-stroke aphasia. OBJECTIVE This systematic review summarizes the role of rTMS in aphasia rehabilitation. METHODS We searched MEDLINE via PubMed and Scopus on 30October, 2020, for English articles (1996-2020). Eligible studies involved post-stroke aphasia rehabilitation with rTMS. In some of these studies, rTMS was also combined with speech therapy. RESULTS In total, seven meta-analyses and 59studies (23randomized clinical trials) were included in this systematic review. The methods used in these studies were heterogeneous. Only six studies did not find that rTMS had a significant effect on language performance. CONCLUSIONS The evidence from the peer-reviewed literature suggests that rTMS is an effective tool in post-stroke aphasia rehabilitation. However, the precise mechanisms that underlie the effects of rTMS and the reorganization of language networks in patients who have had a stroke remain unclear. We discuss these crucial challenges in the context of future studies.
Collapse
Affiliation(s)
- Sophie Arheix-Parras
- Handicap Activité Cognition Santé, BPH U1219 Inserm, Université de Bordeaux, F-33000, Bordeaux, France; Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, F-33000, Bordeaux, France; Department of physical medicine and rehabilitation, CHU de Bordeaux, F-33000, Bordeaux, France
| | - Charline Barrios
- Handicap Activité Cognition Santé, BPH U1219 Inserm, Université de Bordeaux, F-33000, Bordeaux, France; Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, F-33000, Bordeaux, France; Department of physical medicine and rehabilitation, CHU de Bordeaux, F-33000, Bordeaux, France
| | - Grégoire Python
- Faculté de psychologie, Université de Genève, Geneva, Switzerland
| | - Mélanie Cogné
- Department of Physical Medicine and Rehabilitation, CHU de Rennes, Rennes, France
| | - Igor Sibon
- INCIA, CNRS, UMR5287, University of Bordeaux, F-33400, Talence, France; Stroke Unit, Clinical Neurosciences Department, CHU de Bordeaux, 33076, Bordeaux, France
| | - Mélanie Engelhardt
- Handicap Activité Cognition Santé, BPH U1219 Inserm, Université de Bordeaux, F-33000, Bordeaux, France; Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, F-33000, Bordeaux, France; Department of physical medicine and rehabilitation, CHU de Bordeaux, F-33000, Bordeaux, France
| | - Patrick Dehail
- Handicap Activité Cognition Santé, BPH U1219 Inserm, Université de Bordeaux, F-33000, Bordeaux, France; Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, F-33000, Bordeaux, France; Department of physical medicine and rehabilitation, CHU de Bordeaux, F-33000, Bordeaux, France
| | - Hélène Cassoudesalle
- Handicap Activité Cognition Santé, BPH U1219 Inserm, Université de Bordeaux, F-33000, Bordeaux, France; Department of physical medicine and rehabilitation, CHU de Bordeaux, F-33000, Bordeaux, France
| | - Geoffroy Moucheboeuf
- Handicap Activité Cognition Santé, BPH U1219 Inserm, Université de Bordeaux, F-33000, Bordeaux, France; Department of physical medicine and rehabilitation, CHU de Bordeaux, F-33000, Bordeaux, France
| | - Bertrand Glize
- Handicap Activité Cognition Santé, BPH U1219 Inserm, Université de Bordeaux, F-33000, Bordeaux, France; Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, F-33000, Bordeaux, France; Department of physical medicine and rehabilitation, CHU de Bordeaux, F-33000, Bordeaux, France; Faculté de psychologie, Université de Genève, Geneva, Switzerland; Institute of Neurodegenerative Diseases, CNRS UMR 5293, Université de Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
6
|
Kim JS, Kim DH, Kim HJ, Jung KJ, Hong J, Kim DY. Effect of Repetitive Transcranial Magnetic Stimulation in Post-stroke Patients with Severe Upper-Limb Motor Impairment. BRAIN & NEUROREHABILITATION 2019; 13:e3. [PMID: 36744269 PMCID: PMC9879525 DOI: 10.12786/bn.2020.13.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 11/08/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been known to improve the motor function through modulation of excitability in the cerebral cortex. However, most studies with rTMS were limited to post-stroke patients with mild to moderate motor impairments. The effect of rTMS on severe upper-limb motor impairment remains unclear. Therefore, this study investigated the effects of rTMS on the upper extremity function in post-stroke patients with severe upper-limb motor impairment. Subjects were divided into 3 groups, low-, high-frequency rTMS and control group were received stimulation 10 times for 2 weeks. The motor scale of Fugl-Meyer Assessment (FMA) and cortical excitability on the unaffected hemisphere were measured before and after performing 10 rTMS sessions. The motor scale of upper extremity FMA (UE-FMA) and shoulder component of the UE-FMA were significantly improved in both low- and high-frequency rTMS groups. However, no significant improvement was observed in the wrist and hand components. No significant differences were noted in low- and high-frequency rTMS groups. The amplitude of motor evoked potential on the unaffected hemisphere showed a significant decrease in the low- and high-frequency stimulation groups. rTMS may be helpful in improving upper extremity motor function even in post-stroke patients with severe upper-limb motor impairment.
Collapse
Affiliation(s)
- Ju Sun Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
| | - Hyun Jung Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Jae Jung
- Department of Physical Medicine and Rehabilitation, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Juntaek Hong
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Deog Young Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Berthier ML, De-Torres I, Paredes-Pacheco J, Roé-Vellvé N, Thurnhofer-Hemsi K, Torres-Prioris MJ, Alfaro F, Moreno-Torres I, López-Barroso D, Dávila G. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts. Front Hum Neurosci 2017; 11:304. [PMID: 28659776 PMCID: PMC5470532 DOI: 10.3389/fnhum.2017.00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In conclusion, cholinergic potentiation alone and combined with a model-based aphasia therapy improved language deficits by promoting structural plastic changes in right white matter tracts.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain
| | - Irene De-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Unit of Physical Medicine and Rehabilitation, Regional University Hospital, MalagaMalaga, Spain
| | - José Paredes-Pacheco
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Núria Roé-Vellvé
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Karl Thurnhofer-Hemsi
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain.,Department of Computer Languages and Computer Science, Superior Technical School of Engineering in Informatics, University of MalagaMalaga, Spain
| | - María J Torres-Prioris
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Francisco Alfaro
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Ignacio Moreno-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Spanish Language I, University of MalagaMalaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| |
Collapse
|
8
|
Kim DY, Kim YH, Lee J, Chang WH, Kim MW, Pyun SB, Yoo WK, Ohn SH, Park KD, Oh BM, Lim SH, Jung KJ, Ryu BJ, Im S, Jee SJ, Seo HG, Rah UW, Park JH, Sohn MK, Chun MH, Shin HS, Lee SJ, Lee YS, Park SW, Park YG, Paik NJ, Lee SG, Lee JK, Koh SE, Kim DK, Park GY, Shin YI, Ko MH, Kim YW, Yoo SD, Kim EJ, Oh MK, Chang JH, Jung SH, Kim TW, Kim WS, Kim DH, Park TH, Lee KS, Hwang BY, Song YJ. Clinical Practice Guideline for Stroke Rehabilitation in Korea 2016. BRAIN & NEUROREHABILITATION 2017. [DOI: 10.12786/bn.2017.10.e11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Deog Young Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Min-Wook Kim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Korea
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Korea
| | - Ki Deok Park
- Department of Rehabilitation Medicine, Gachon University College of Medicine, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Kang Jae Jung
- Department of Physical Medicine and Rehabilitation, Eulji University Hospital & Eulji University School of Medicine, Korea
| | - Byung-Ju Ryu
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Korea
| | - Sun Im
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Sung Ju Jee
- Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Ueon Woo Rah
- Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Korea
| | - Joo Hyun Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Hee Suk Shin
- Department of Rehabilitation Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Korea
| | - Seong Jae Lee
- Department of Rehabilitation Medicine, College of Medicine Dankook University, Korea
| | - Yang-Soo Lee
- Department of Rehabilitation Medicine, Kyungpook National University School of Medicine, Korea
| | - Si-Woon Park
- Department of Rehabilitation Medicine, Catholic Kwandong University International St Mary's Hospital, Korea
| | - Yoon Ghil Park
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Nam Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Sam-Gyu Lee
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Korea
| | - Ju Kang Lee
- Department of Rehabilitation Medicine, Gachon University College of Medicine, Korea
| | - Seong-Eun Koh
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| | - Don-Kyu Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Yong Il Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Korea
| | - Yong Wook Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Seung Don Yoo
- Department of Physical Medicine and Rehabilitation, Kyung Hee University College of Medicine, Korea
| | - Eun Joo Kim
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Hospital, Korea
| | - Min-Kyun Oh
- Department of Rehabilitation Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Korea
| | - Jae Hyeok Chang
- Department of Rehabilitation Medicine, Pusan National University Hospital, Korea
| | - Se Hee Jung
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Tae-Woo Kim
- TBI rehabilitation center, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Korea
| | - Tai Hwan Park
- Department of Neurology, Seoul Medical Center, Korea
| | - Kwan-Sung Lee
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Byong-Yong Hwang
- Department of Physical Therapy, Yong-In University College of Health & Welfare, Korea
| | - Young Jin Song
- Department of Rehabilitation Medicine, Asan Medical Center, Korea
| |
Collapse
|
9
|
Han JY, Kim JH, Park JH, Song MY, Song MK, Kim DJ, You YN, Park GC, Choi JB, Cho MR, Shin JC, Cho JH. Scalp acupuncture and electromagnetic convergence stimulation for patients with cerebral infarction: study protocol for a randomized controlled trial. Trials 2016; 17:490. [PMID: 27724972 PMCID: PMC5057263 DOI: 10.1186/s13063-016-1611-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scalp acupuncture (SA) and repetitive transcranial magnetic stimulation (rTMS) are effective for treating cerebral infarction. This study aims to examine the efficacy and safety of SA and electromagnetic convergence stimulation (SAEM-CS), which was developed through collaboration between conventional medical physicians and doctors who practice traditional Korean medicine. SAEM-CS was designed to improve function in patients with cerebral infarction, compared to the improvement after conventional stroke rehabilitation, SA, and rTMS therapeutic approaches. METHODS/DESIGN This study is a prospective, outcome assessor-blinded, randomized controlled clinical trial with a 1:1:1:1 allocation ratio. Participants with motion or sensory disabilities caused by a first-time cerebral infarction (n = 60) that had occurred within 1 month of the study onset will be randomly assigned to control, SA, rTMS, or SAEM-CS groups. All groups will receive two sessions of conventional rehabilitation treatment per day. The SA group will receive SA on the upper limb area of MS6 and MS7 (at the lesional hemisphere) for 20 min, the rTMS group will receive low-frequency rTMS (LF-rTMS) treatment on the hot spot of the M1 region (motor cortex at the contralesional hemisphere) for 20 min, and the SAEM-CS group will receive LF-rTMS over the contralesional M1 region hot spot while receiving simultaneous SA stimulation on the lesional upper limb area of MS6 and MS7 for 20 min. SA, rTMS, and SAEM-CS treatments will be conducted once/day, 5 days/week (excluding Saturdays and Sundays) for 3 weeks, for a total of 15 sessions. The primary outcome will be evaluated using the Fugl-Meyer Assessment, while other scales assessing cognitive function, activities of daily living, walking, quality of life, and stroke severity are considered secondary outcome measures. Outcome measurements will be conducted at baseline (before intervention), 3 weeks after the first intervention (end of intervention), and 4 weeks after intervention completion. DISCUSSION This study aims to explore the efficacy and safety of SAEM-CS on cerebral infarction. Collaborative research combined traditional Korean and conventional medicines, which can be useful in developing new treatment technologies. TRIAL REGISTRATION KCT0001768 . Registered on 14 January 2016.
Collapse
Affiliation(s)
- Jae-Young Han
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School and Hospital, 42, Jebong-ro, Dong-gu, Gwangju City, 61469, Republic of Korea
| | - Jae-Hong Kim
- Department of Acupuncture and Moxibustion Medicine, College of Traditional Korean Medicine, Dong-Shin University, 185, Geonjae-ro, Naju City, 58245, Republic of Korea. .,Clinical Research Center, Gwangju Traditional Korean Medicine Hospital of Dong-Shin University, 141, Wolsan-ro, Nam-gu, Gwangju City, 61619, Republic of Korea.
| | - Ju-Hyung Park
- Clinical Research Center, Gwangju Traditional Korean Medicine Hospital of Dong-Shin University, 141, Wolsan-ro, Nam-gu, Gwangju City, 61619, Republic of Korea
| | - Min-Yeong Song
- Department of Korean Medicine Rehabilitation, College of Traditional Korean Medicine, Dong-Shin University, 185, Geonjae-ro, Naju City, 58245, Republic of Korea
| | - Min-Keun Song
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School and Hospital, 42, Jebong-ro, Dong-gu, Gwangju City, 61469, Republic of Korea
| | - Dong-Joo Kim
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School and Hospital, 42, Jebong-ro, Dong-gu, Gwangju City, 61469, Republic of Korea
| | - Young-Nim You
- Clinical Research Center, Gwangju Traditional Korean Medicine Hospital of Dong-Shin University, 141, Wolsan-ro, Nam-gu, Gwangju City, 61619, Republic of Korea
| | - Gwang-Cheon Park
- Clinical Research Center, Gwangju Traditional Korean Medicine Hospital of Dong-Shin University, 141, Wolsan-ro, Nam-gu, Gwangju City, 61619, Republic of Korea
| | - Jin-Bong Choi
- Department of Korean Medicine Rehabilitation, College of Traditional Korean Medicine, Dong-Shin University, 185, Geonjae-ro, Naju City, 58245, Republic of Korea
| | - Myung-Rae Cho
- Department of Acupuncture and Moxibustion Medicine, College of Traditional Korean Medicine, Dong-Shin University, 185, Geonjae-ro, Naju City, 58245, Republic of Korea
| | - Jeong-Cheol Shin
- Department of Acupuncture and Moxibustion Medicine, College of Traditional Korean Medicine, Dong-Shin University, 185, Geonjae-ro, Naju City, 58245, Republic of Korea
| | - Ji-Hyun Cho
- Department of Social Welfare, College of Health and Welfare, Dong-Shin University, 185, Geonjae-ro, Naju City, 58245, Republic of Korea
| |
Collapse
|
10
|
Abstract
RESUMO O objetivo desta revisão foi identificar, avaliar e discutir artigos sobre intervenções e avanços terapêuticos em afasia, publicados periódicos científicos nos últimos cinco anos, em plataformas de livre acesso aos profissionais. Foi realizada uma revisão integrativa nas bases de dados SciELO, LILACS, Periódicos Capes e PubMed, com os descritores em português e inglês: afasia, reabilitação e tratamento. Foram incluídos artigos que descrevessem tratamentos para afasia ou histórias de reabilitação, publicados em inglês ou português. Os estudos que atenderam aos critérios foram lidos e analisados segundo instrumento para revisão integrativa, e posteriormente categorizada. Dos 96 artigos levantados 26 foram incluídos na revisão. Houve predominância de estudos quantitativos. De modo geral, diversas pesquisas que testavam terapias mostraram resultados positivos, confirmando que a afasia é uma condição que responde a uma ampla variedade de tratamentos. Nos estudos cujo foco foi a ativação cerebral, foram encontradas correlações importantes entre a melhora dos pacientes e a ativação de áreas cerebrais relacionadas à linguagem. A partir dos resultados, verificou-se que os tratamentos para afasia descritos não indicam a superioridade de uma abordagem terapêutica sobre outra. A maioria dos estudos revisados não apresentava bom grau de generalidade externa, indicando a necessidade de estudos controlados com amostras mais representativas. A literatura atualizada deve fundamentar as ações dos profissionais, porém esses devem estar atentos às características e limitações dos protocolos testados.
Collapse
|
11
|
Andrade SM, Santos NA, Fernández-Calvo B, Boggio PS, Oliveira EA, Ferreira JJ, Sobreira A, Morgan F, Medeiros G, Cavalcanti GS, Gadelha ID, Duarte J, Marrocos J, Silva MA, Rufino T, Nóbrega SR. Stroke Treatment Associated with Rehabilitation Therapy and Transcranial DC Stimulation (START-tDCS): a study protocol for a randomized controlled trial. Trials 2016; 17:56. [PMID: 26822418 PMCID: PMC4731905 DOI: 10.1186/s13063-016-1186-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/19/2016] [Indexed: 11/16/2022] Open
Abstract
Background Traditional treatment for motor impairment after stroke includes medication and physical rehabilitation. The transcranial direct current stimulation associated with a standard physical therapy program may be an effective therapeutic alternative for these patients. Methods This study is a sham-controlled, double-blind, randomized clinical trial aiming to evaluate the efficacy of transcranial direct current stimulation in activities of daily living and motor function post subacute stroke. In total there will be 40 patients enrolled, diagnosed with subacute, ischemic, unilateral, non-recurring stroke. Participants will be randomized to two groups, one with active stimulation and the other with a placebo current. Patients and investigators will be blinded. Everyone will receive systematic physical therapy, based on constraint-induced movement therapy. The intervention will be applied for 10 consecutive days. Patients will undergo three functional assessments: at baseline, week 2, and week 4. Neuropsychological tests will be performed at baseline and week 4. Adverse effects will be computed at each session. On completion of the baseline measures, randomization will be conducted using random permuted blocks. The randomization will be concealed until group allocation. Discussion This study will investigate the combined effects of transcranial direct current stimulation and physical therapy on functional improvement after stroke. We tested whether the combination of these treatments is more effective than physical therapy alone when administered in the early stages after stroke. Trial registration NCT02156635 - May 30, 2014. Randomization is ongoing (40 participants randomized as of the end of December 2015).
Collapse
Affiliation(s)
- Suellen M Andrade
- Cognitive Neuroscience and Behavior Program, Federal University of Paraíba, João Pessoa, Brazil.
| | - Natanael A Santos
- Perception, Neurosciences and Behavior Laboratory, Federal University of Paraíba, João Pessoa, Brazil.
| | | | - Paulo S Boggio
- Cognitive Neuroscience Laboratory and Developmental Disorders Program, Mackenzie Presbyterian University, São Paulo, Brazil.
| | - Eliane A Oliveira
- Center for Research in Human Movement Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| | - José J Ferreira
- Study Group of Human Movement, Federal University of Paraíba, João Pessoa, Brazil.
| | - Amanda Sobreira
- Center for Research in Human Movement Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| | - Felipe Morgan
- Center for Research in Human Movement Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| | - Germana Medeiros
- Study Group of Human Movement, Federal University of Paraíba, João Pessoa, Brazil.
| | - Gyovanna S Cavalcanti
- Center for Research in Human Movement Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| | - Ingrid D Gadelha
- Center for Research in Human Movement Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| | - Jader Duarte
- Study Group of Human Movement, Federal University of Paraíba, João Pessoa, Brazil.
| | - Joercia Marrocos
- Center for Research in Human Movement Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| | - Michele A Silva
- Center for Research in Human Movement Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| | - Thatiana Rufino
- Study Group of Human Movement, Federal University of Paraíba, João Pessoa, Brazil.
| | - Sanmy R Nóbrega
- Neuromuscular Adaptations Laboratory, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
12
|
Reti IM, Schwarz N, Bower A, Tibbs M, Rao V. Transcranial magnetic stimulation: A potential new treatment for depression associated with traumatic brain injury. Brain Inj 2015; 29:789-97. [PMID: 25950260 DOI: 10.3109/02699052.2015.1009168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Each year, more than 1.7 million Americans suffer a traumatic brain injury (TBI) and the lifetime prevalence of major depressive disorder following TBI is between 25-50%. There are no validated established strategies to treat TBI depression. Repetitive transcranial magnetic stimulation (rTMS) is a novel putative treatment option for post-TBI depression, which, compared with standard pharmacological agents, may provide a more targeted treatment with fewer side-effects. However, TBI is associated with an increased risk of both early and late spontaneous seizures, a significant consideration in evaluating rTMS as a potential treatment for TBI depression. Whilst the risk of seizure from rTMS is low, underlying neuropathology may somewhat increase that risk. REVIEW This review focuses on the safety aspects of rTMS in TBI patients. The authors review why low frequency rTMS might be less likely to trigger a seizure than high frequency rTMS and propose low frequency rTMS as a safer option in TBI patients. Because there is little data on the safety of rTMS in TBI, the authors also review the safety of rTMS in patients with other brain pathology. CONCLUSION It is concluded that pilot safety and tolerability studies should be first conducted in persons with TBI and neuropsychiatric comorbidities. These results could be used to help design larger randomized controlled trials.
Collapse
Affiliation(s)
- Irving M Reti
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University , Baltimore, MD , USA
| | | | | | | | | |
Collapse
|
13
|
Lee JH, Kim SB, Lee KW, Kim MA, Lee SJ, Choi SJ. Factors associated with upper extremity motor recovery after repetitive transcranial magnetic stimulation in stroke patients. Ann Rehabil Med 2015; 39:268-76. [PMID: 25932424 PMCID: PMC4414974 DOI: 10.5535/arm.2015.39.2.268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Objective To determine factors associated with motor recovery of the upper extremity after repetitive transcranial magnetic stimulation (rTMS) treatment in stroke patients. Methods Twenty-nine patients with subacute stroke participated in this study. rTMS was applied to the hand motor cortex for 10 minutes at a 110% resting motor threshold and 10 Hz frequency for two weeks. We evaluated the biographical, neurological, clinical, and functional variables, in addition to the motor-evoked potential (MEP) response. The Manual Function Test (MFT) was performed before, immediately after, and two weeks after, the treatment. Patients were divided into a responder and non-responder group according to their respective improvements on the MFT. Data were compared between the two groups. Results Patients with exclusively subcortical stroke, absence of aphasia, the presence of a MEP response, high scores on the Mini-Mental Status Examination, Motricity Index arm score, Functional Independence Measure, and Functional Ambulatory Classification; and a shorter period from stroke onset to rTMS were found to be significantly associated with a response to rTMS. Conclusion The results of this study suggest that rTMS may have a greater effect on upper extremity motor recovery in stroke patients who have a MEP response, suffer an exclusively subcortical stroke, mild paresis, and have good functional status. Applying rTMS early would have additional positive effects in the patients with the identified characteristics.
Collapse
Affiliation(s)
- Jong Hwa Lee
- Department of Physical Medicine & Rehabilitation, Dong-A University College of Medicine, Busan, Korea. ; Regional Cardiocerebrovascular Center, Dong-A University Hospital, Busan, Korea
| | - Sang Beom Kim
- Department of Physical Medicine & Rehabilitation, Dong-A University College of Medicine, Busan, Korea. ; Regional Cardiocerebrovascular Center, Dong-A University Hospital, Busan, Korea
| | - Kyeong Woo Lee
- Department of Physical Medicine & Rehabilitation, Dong-A University College of Medicine, Busan, Korea. ; Regional Cardiocerebrovascular Center, Dong-A University Hospital, Busan, Korea
| | - Min Ah Kim
- Department of Physical Medicine & Rehabilitation, Dong-A University College of Medicine, Busan, Korea. ; Regional Cardiocerebrovascular Center, Dong-A University Hospital, Busan, Korea
| | - Sook Joung Lee
- Department of Physical Medicine & Rehabilitation, Dong-A University College of Medicine, Busan, Korea. ; Regional Cardiocerebrovascular Center, Dong-A University Hospital, Busan, Korea
| | - Su Jin Choi
- Department of Physical Medicine & Rehabilitation, Dong-A University College of Medicine, Busan, Korea. ; Regional Cardiocerebrovascular Center, Dong-A University Hospital, Busan, Korea
| |
Collapse
|
14
|
Costa V, Giglia G, Brighina F, Indovino S, Fierro B. Ipsilesional and contralesional regions participate in the improvement of poststroke aphasia: a transcranial direct current stimulation study. Neurocase 2015; 21:479-88. [PMID: 24957199 DOI: 10.1080/13554794.2014.927508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the past few years, noninvasive cerebral stimulations have been used to modulate language task performance in healthy and aphasic patients. In this study, a dual transcranial direct current stimulation (tDCS) on anterior and posterior language areas was applied for 2 weeks to a patient with a possible crossed aphasia following a right hemisphere stroke. Inhibitory cathodal stimulation of the right Brodmann areas (BA) 44/45 and simultaneous anodal stimulation of the left BA 44/45 improved the patient's performance in picture naming. Conversely, the same bilateral montage on BA 39/40 did not produce any significant improvement; finally, electrode polarity inversion over BA 39/40 yielded a further improvement compared with the first anterior stimulation. Our findings suggest that ipsilesional and contralesional areas could be useful in poststroke functional reorganization and provide new evidences for the therapeutic value of tDCS in aphasia.
Collapse
Affiliation(s)
- Vanessa Costa
- a Department of Experimental BioMedicine and Clinical Neurosciences (BioNeC) , University of Palermo , Palermo , Italy
| | | | | | | | | |
Collapse
|
15
|
Sasaki N, Kakuda W, Abo M. Bilateral high- and low-frequency rTMS in acute stroke patients with hemiparesis: a comparative study with unilateral high-frequency rTMS. Brain Inj 2014; 28:1682-6. [PMID: 25140931 DOI: 10.3109/02699052.2014.947626] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND High- and low-frequency repetitive transcranial magnetic stimulation (HF-rTMS and LF-rTMS) has been shown to be beneficial for upper limb hemiparesis in patients with acute stroke. However, no study has examined the usefulness of bilateral application of HF- and LF-rTMS (BL-rTMS). METHODS Fifty-eight hemiparetic patients with acute stroke were randomly assigned into two groups: HF-rTMS group and BL-rTMS group. All patients were scheduled to receive five sessions of either HF-rTMS over the lesional hemisphere or BL-rTMS over both hemispheres for 5 days. Motor function of the affected upper limb was evaluated using the Brunnstrom Recovery Stage (BRS) for upper-limb and hand-fingers, grip strength and tapping frequency, before the first session and after the last session of rTMS. RESULTS Improvement of BRS for the upper limb and hand/finger was significantly greater in the BL-rTMS group than the HF-rTMS group (p < 0.01). Improvement in grip strength and tapping frequency was also greater in the BL-rTMS group, although the differences were not statistically significant. CONCLUSIONS The proposed BL-rTMS is safe and feasible and showed a greater improvement of BRS of the affected upper limb compared to HF-rTMS. This novel rTMS approach may be a useful intervention for hemiparetic patients with acute stroke.
Collapse
Affiliation(s)
- Nobuyuki Sasaki
- Department of Rehabilitation Medicine, Tokyo Metropolitan Bokutoh Hospital , Tokyo , Japan and
| | | | | |
Collapse
|
16
|
Ayache SS, Farhat WH, Zouari HG, Hosseini H, Mylius V, Lefaucheur JP. Stroke rehabilitation using noninvasive cortical stimulation: motor deficit. Expert Rev Neurother 2014; 12:949-72. [DOI: 10.1586/ern.12.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Martin PI, Treglia E, Naeser MA, Ho MD, Baker EH, Martin EG, Bashir S, Pascual-Leone A. Language improvements after TMS plus modified CILT: Pilot, open-protocol study with two, chronic nonfluent aphasia cases. Restor Neurol Neurosci 2014; 32:483-505. [PMID: 25015701 PMCID: PMC4592134 DOI: 10.3233/rnn-130365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE The purpose of this study was to investigate: 1) the feasibilty of administering a modified CILT (mCILT) treatment session immediately after TMS; and 2) if this combined therapy could improve naming and elicited propositional speech in chronic, nonfluent aphasia. METHODS Two chronic stroke patients with nonfluent aphasia (mild-moderate and severe) each received twenty minutes of rTMS to suppress the right pars triangularis, followed immediately by three hours of mCILT (5 days/week, 2 weeks). (Each patient had received TMS alone, 2-6 years prior.) Language evaluations were performed pre- TMS+mCILT, and post- at 1-2 months, and 6 or 16 months. RESULTS Both patients showed significant improvements in naming pictures, and elicited propositional speech at 1-2 months post- TMS+mCILT. The improved naming was still present at 6 months post- TMS+mCILT for P2; but not at 16 months post- TMS+mCILT for P1. CONCLUSIONS It is feasible to administer mCILT for three hours immediately after a TMS session. It is unknown if the significant improvements in naming pictures, and elicited propositional speech were associated with the second series of TMS, or this first series of mCILT, or a combination of both. A larger, sham controlled clinical trial is warranted.
Collapse
Affiliation(s)
- Paula I Martin
- Veterans Affairs Boston Healthcare System and the Harold Goodglass Boston University Aphasia Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Ethan Treglia
- Veterans Affairs Boston Healthcare System and the Harold Goodglass Boston University Aphasia Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Margaret A Naeser
- Veterans Affairs Boston Healthcare System and the Harold Goodglass Boston University Aphasia Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael D Ho
- Veterans Affairs Boston Healthcare System and the Harold Goodglass Boston University Aphasia Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Errol H Baker
- Veterans Affairs Boston Healthcare System and the Harold Goodglass Boston University Aphasia Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth G Martin
- Veterans Affairs Boston Healthcare System and the Harold Goodglass Boston University Aphasia Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Shahid Bashir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Institut Universitari de Neurorehabilitació Guttmann-UAB, Badalona, Spain
| |
Collapse
|
18
|
Kim YH. Noninvasive brain stimulation: repetitive transcranial magnetic stimulation and transcranial direct current stimulation. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2013. [DOI: 10.5124/jkma.2013.56.1.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stroke and Cerebrovascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Liu A, Fregni F, Hummel F, Pascual-Leone A. Therapeutic Applications of Transcranial Magnetic Stimulation/Transcranial Direct Current Stimulation in Neurology. TRANSCRANIAL BRAIN STIMULATION 2012. [DOI: 10.1201/b14174-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Cotelli M, Fertonani A, Miozzo A, Rosini S, Manenti R, Padovani A, Ansaldo AI, Cappa SF, Miniussi C. Anomia training and brain stimulation in chronic aphasia. Neuropsychol Rehabil 2011; 21:717-41. [DOI: 10.1080/09602011.2011.621275] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|