1
|
Nakazawa A. Biological categories of neuroblastoma based on the international neuroblastoma pathology classification for treatment stratification. Pathol Int 2021; 71:232-244. [PMID: 33657257 DOI: 10.1111/pin.13085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/27/2021] [Indexed: 11/28/2022]
Abstract
The International Neuroblastoma Pathology Classification (INPC), which distinguishes a favorable histology (FH) and an unfavorable histology (UH), is one of the most powerful prognostic factors in patients with neuroblastoma. FH that shows spontaneous regression or age-appropriate tumor differentiation/maturation, is common in infants and has mutual interaction with Schwann cells via the NGF/NTRK1 pathway and gain of whole chromosome 17. In contrast, UH is prevalent in older children and is molecularly heterogeneous. MYCN amplification is the most frequent genomic abnormality in tumors with UH. MYCN-amplified tumors demonstrate characteristic histology, the same as MYC-positive neuroblastoma. Chromosome 1pLOH is often associated with MYCN amplification, but on the other hand, chromosome 11qLOH rarely occurs in combination with MYCN amplification. 11qLOH has an inferior prognostic impact in UH without MYCN amplification. The high expression of ALK protein is a negative prognostic factor in both ALK mutated or amplified tumors and FH, but not in UH. Abnormal maintenance/elongation of telomeres; overexpression of telomerase reverse transcriptase (TERT) and the alternative lengthening of telomeres (ALT) phenotype due to ATRX mutation, are another molecular event in UH. The INPC, incorporating immunohistochemistry for MYCN, MYC, ALK, TERT and ATRX, represents a practical and implementable approach to create the biological category for the future management of patients with this unique disease.
Collapse
Affiliation(s)
- Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
2
|
Kastriti ME, Kameneva P, Adameyko I. Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol Cell Endocrinol 2020; 518:110998. [PMID: 32818585 DOI: 10.1016/j.mce.2020.110998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The mammalian adrenal gland is composed of two main components; the catecholaminergic neural crest-derived medulla, found in the center of the gland, and the mesoderm-derived cortex producing steroidogenic hormones. The medulla is composed of neuroendocrine chromaffin cells with oxygen-sensing properties and is dependent on tissue interactions with the overlying cortex, both during development and in adulthood. Other relevant organs include the Zuckerkandl organ containing extra-adrenal chromaffin cells, and carotid oxygen-sensing bodies containing glomus cells. Chromaffin and glomus cells reveal a number of important similarities and are derived from the multipotent nerve-associated descendants of the neural crest, or Schwann cell precursors. Abnormalities in complex developmental processes during differentiation of nerve-associated and other progenitors into chromaffin and oxygen-sensing populations may result in different subtypes of paraganglioma, neuroblastoma and pheochromocytoma. Here, we summarize recent findings explaining the development of chromaffin and oxygen-sensing cells, as well as the potential mechanisms driving neuroendocrine tumor initiation.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Berbegall AP, Bogen D, Pötschger U, Beiske K, Bown N, Combaret V, Defferrari R, Jeison M, Mazzocco K, Varesio L, Vicha A, Ash S, Castel V, Coze C, Ladenstein R, Owens C, Papadakis V, Ruud E, Amann G, Sementa AR, Navarro S, Ambros PF, Noguera R, Ambros IM. Heterogeneous MYCN amplification in neuroblastoma: a SIOP Europe Neuroblastoma Study. Br J Cancer 2018; 118:1502-1512. [PMID: 29755120 PMCID: PMC5988829 DOI: 10.1038/s41416-018-0098-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows intratumoural heterogeneity (ITH), i.e. coexistence of MYCN-amplified and non-MYCN-amplified tumour cell clones, called heterogeneous MNA (hetMNA). Prognostication and therapy allocation are still unsolved issues. METHODS The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH. RESULTS Patients <18 months (18 m) showed a better outcome in all stages as compared to older patients (5-year OS in localised stages: <18 m: 0.95 ± 0.04, >18 m: 0.67 ± 0.14, p = 0.011; metastatic: <18 m: 0.76 ± 0.15, >18 m: 0.28 ± 0.09, p = 0.084). The genomic 'background', but not MNA clone sizes, correlated significantly with relapse frequency and OS. No relapses occurred in cases of only numerical chromosomal aberrations. Infiltrated bone marrows and relapse tumour cells mostly displayed no MNA. However, one stage 4s tumour with segmental chromosomal aberrations showed a homogeneous MNA in the relapse. CONCLUSIONS This study provides a rationale for the necessary distinction between heterogeneous and homogeneous MNA. HetMNA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing homogeneous MNA.
Collapse
Affiliation(s)
- Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
- Ciberonc, Madrid, Spain
| | - Dominik Bogen
- Department of Tumour Biology CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria
| | - Ulrike Pötschger
- S2IRP: Studies and Statistics for Integrated Research and Projects CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria
| | - Klaus Beiske
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, 0372, Oslo, Norway
| | - Nick Bown
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Valérie Combaret
- Centre Léon Bérard, Laboratoire de Recherche Translationnelle, 28 rue Laennec, Lyon, 69008, France
| | - Raffaella Defferrari
- Department of Pathology, Gaslini Institute, Largo G. Gaslini 5, 16147, Genoa, Italy
| | - Marta Jeison
- Cancer Cytogenetic and Molecular Cytogenetic Laboratory, Schneider Children's Medical Center of Israel, 49202, Petach Tikva, Israel
| | - Katia Mazzocco
- Department of Pathology, Gaslini Institute, Largo G. Gaslini 5, 16147, Genoa, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Gaslini Institute, Largo G. Gaslini 5, 16147, Genoa, Italy
| | - Ales Vicha
- Department of Pediatric Hematology and Oncology, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, 15006, Prague, Czech Republic
| | - Shifra Ash
- Department of Paediatric Haematology-Oncology, Schneider Children's Medical Center of Israel, 49202, Petach Tikva, Israel
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | - Carole Coze
- Department of Paediatric Haematology-Oncology, Aix-Marseille University and APHM, Hôpital d' Enfants de La Timone, 13385, Marseille, France
| | - Ruth Ladenstein
- S2IRP: Studies and Statistics for Integrated Research and Projects CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria
- St Anna Children's Hospital and Department of Paediatrics of the Medical University, 1090, Vienna, Austria
| | - Cormac Owens
- Our Lady's Children's Hospital, Crumlin, Dublin, D12 N512, Ireland
| | - Vassilios Papadakis
- Department of Paediatric Haematology-Oncology, Agia Sofia Children's Hospital Athens, 11528, Athens, Greece
| | - Ellen Ruud
- Department of Paediatric Medicine, Rikshospitalet, Oslo University Hospital, 0372, Oslo, Norway
| | - Gabriele Amann
- Institute of Clinical Pathology, Medical University Vienna, Vienna, Austria
| | - Angela R Sementa
- Department of Pathology, Gaslini Institute, Largo G. Gaslini 5, 16147, Genoa, Italy
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia/INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
- Ciberonc, Madrid, Spain
| | - Peter F Ambros
- Department of Tumour Biology CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria
- Department of Paediatrics, Medical University Vienna, Vienna, Austria
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.
- Ciberonc, Madrid, Spain.
| | - Inge M Ambros
- Department of Tumour Biology CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Tran L, Fitzpatrick C, Cohn SL, Pytel P. Composite tumor with pheochromocytoma and immature neuroblastoma: report of two cases with cytogenetic analysis and discussion of current terminology. Virchows Arch 2017; 471:553-557. [PMID: 28864906 PMCID: PMC5614909 DOI: 10.1007/s00428-017-2225-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Lily Tran
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, USA
| | - Carrie Fitzpatrick
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, USA
| | - Peter Pytel
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, USA.
| |
Collapse
|
5
|
Marrano P, Irwin MS, Thorner PS. Heterogeneity of MYCN amplification in neuroblastoma at diagnosis, treatment, relapse, and metastasis. Genes Chromosomes Cancer 2016; 56:28-41. [PMID: 27465929 DOI: 10.1002/gcc.22398] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
Amplification of the MYCN gene in neuroblastoma is associated with a poor prognosis and is considered to remain unchanged in post-treatment specimens and metastases. While heterogeneity of MYCN copy number in tumor cells has been reported, serial samples have only been studied in a limited way, and the biologic relevance of this finding is not well understood. We used in situ hybridization on paraffin sections of 102 specimens from 30 patients with MYCN-amplified neuroblastoma to determine MYCN copy number in the primary tumor, pre- and post-treatment, and in metastatic samples. Nineteen cases (63%) showed diffuse MYCN amplification in all samples tested. Nine cases (30%) showed a reduction in MYCN copy number: five cases with diffuse amplification subsequently showed focal amplification, one case with diffuse MYCN amplification showed MYCN gain after treatment, and three focally amplified cases were non-amplified in later specimens. In two cases (7%), focal amplification became diffuse in subsequent samples. Histology was not predictive of the temporal or spatial pattern of MYCN amplification for a particular tumor. If extent of amplification (focal vs. diffuse) is not considered, 26/30 (87%) of cases were consistently MYCN-amplified. However, our data suggest that MYCN status can be heterogeneous between tumor sites, during tumor progression or following treatment, challenging the notion that MYCN copy number does not change for a particular neuroblastoma. Assessing the biologic significance of MYCN heterogeneity will require larger studies of clinically annotated tumor samples, and will depend on interpreting heterogeneity in MYCN status in combination with other genetic changes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula Marrano
- Department of Pediatric Laboratory Medicine, the Hospital for Sick Children, Toronto, Canada
| | - Meredith S Irwin
- Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Paul S Thorner
- Department of Pediatric Laboratory Medicine, the Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Navarro S, Piqueras M, Villamón E, Yáñez Y, Balaguer J, Cañete A, Noguera R. New prognostic markers in neuroblastoma. ACTA ACUST UNITED AC 2012; 6:555-67. [PMID: 23480837 DOI: 10.1517/17530059.2012.704018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The hallmark of neuroblastoma is its clinical and biological heterogeneity, with the likelihood of cure varying widely according to age at diagnosis, extent of disease and tumor biology. We hope this review will be useful for understanding part of the unfamiliar neuroblastoma codex. AREAS COVERED In the first part of this review, the authors summarize the currently used prognostic factors for risk-adapted therapy, with the focus on clinical management of neuroblastoma patients. In the second part, the authors discuss the evolving prognostic factors for future treatment schemes. A search of online medical research databases was undertaken focusing especially on literature published in the last six years. EXPERT OPINION Harnessing the synergy of the various forms of data, including clinical variables and biomarker profiles, would allow mathematical predictive models to be built for the individual patient, which could eventually become molecular targets of specific therapies.
Collapse
Affiliation(s)
- Samuel Navarro
- Department of Pathology, Medical School, University of Valencia , Avda. Blasco Ibañez 15 Valencia 46010 , Spain +34 96 3864146 ; +34 96 3864173 ;
| | | | | | | | | | | | | |
Collapse
|
8
|
Theissen J, Boensch M, Spitz R, Betts D, Stegmaier S, Christiansen H, Niggli F, Schilling F, Schwab M, Simon T, Westermann F, Berthold F, Hero B. Heterogeneity of the MYCN oncogene in neuroblastoma. Clin Cancer Res 2009; 15:2085-90. [PMID: 19276282 DOI: 10.1158/1078-0432.ccr-08-1648] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE MYCN amplification is an important therapy-stratifying marker in neuroblastoma. Fluorescence in situ hybridization with signal detection on the single-cell level allows a critical judgement of MYCN intratumoral heterogeneity. EXPERIMENTAL DESIGN The MYCN status was investigated by fluorescence in situ hybridization at diagnosis and relapse. Heterogeneity was defined as the simultaneous presence of amplified cells (>/=5 cells per slide) and nonamplified cells within one tumor or sequential change of the amplification status during the course of the disease. Likewise, heterogeneity can be detected between primary tumor and metastasis. RESULTS From 1,341 patients analyzed, 1,071 showed no amplification, 250 showed homogeneous amplification, and 20 patients showed MYCN heterogeneity. Of the patients with heterogeneity, 12 of 20 had clusters of MYCN amplifications, 3 of 20 had amplified single cells, 3 of 20 showed MYCN amplifications in the bone marrow but not in the primary tumor, and 2 of 20 acquired MYCN amplification during the course of the disease. All stage 4 patients were treated according to high-risk protocols; 7 of 8 later progressed. Four patients with localized disease were treated according to high-risk protocol because of MYCN-amplified clusters; 1 of 4 later progressed. One patient treated with mild chemotherapy experienced progression. Seven patients with localized/4S disease underwent no chemotherapy: 4 of 5 patients with MYCN heterogeneity at diagnosis remained disease-free, and 1 of 5 experienced local progression. Two patients had normal MYCN status at diagnosis but acquired MYCN amplification during the course of the disease. CONCLUSION MYCN heterogeneity is rare. Our results suggest that small amounts of MYCN-amplified cells are not correlated to adverse outcomes. More patients with heterogeneity are warranted to clarify the role of MYCN heterogeneity for risk classification.
Collapse
Affiliation(s)
- Jessica Theissen
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|