1
|
Tamkeen N, Farooqui A, Alam A, Najma, Tazyeen S, Ahmad MM, Ahmad N, Ishrat R. Identification of common candidate genes and pathways for Spina Bifida and Wilm's Tumor using an integrative bioinformatics analysis. J Biomol Struct Dyn 2024; 42:977-992. [PMID: 37051780 DOI: 10.1080/07391102.2023.2199080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Spina Bifida (SB) and Wilm's Tumor (WT) are conditions, both associated with children. Several studies have shown that WT later develops in SB patients, which led us to elucidate common key genes and linked pathways of both conditions, aimed at their concurrent therapeutic management. For this, integrated bioinformatics analysis was employed. A comprehensive manual curation of genes identified 133 and 139 genes associated with SB and WT, respectively, which were used to construct a single protein-protein interaction (PPI) network. Topological parameters analysis of the network showed its scale-free and hierarchical nature. Centrality-based analysis of the network identified 116 hubs, of which, 6 were called the key genes attributed to being common between SB and WT besides being the hubs. Gene enrichment analysis of the 5 most essential modules, identified important biological processes and pathways possibly linking SB to WT. Additionally, miRNA-key gene-transcription factor (TF) regulatory network elucidated a few important miRNAs and TFs that regulate our key genes. In closing, we put forward TP53, DICER1, NCAM1, PAX3, PTCH1, MTHFR; hsa-mir-107, hsa-mir-137, hsa-mir-122, hsa-let-7d; and YY1, SOX4, MYC, STAT3; key genes, miRNAs and TFs, respectively, as the key regulators. Further, MD simulation studies of wild and Glu429Ala forms of MTHFR proteins showed that there is a slight change in MTHFR protein structure due to Glu429Ala polymorphism. We anticipate that the interplay of these three entities will be an interesting area of research to explore the regulatory mechanism of SB and WT and may serve as candidate target molecules to diagnose, monitor, and treat SB and WT, parallelly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naaila Tamkeen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Najma
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Mohd Murshad Ahmad
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Dasargyri A, González Rodríguez D, Rehrauer H, Reichmann E, Biedermann T, Moehrlen U. scRNA-Seq of Cultured Human Amniotic Fluid from Fetuses with Spina Bifida Reveals the Origin and Heterogeneity of the Cellular Content. Cells 2023; 12:1577. [PMID: 37371048 DOI: 10.3390/cells12121577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Amniotic fluid has been proposed as an easily available source of cells for numerous applications in regenerative medicine and tissue engineering. The use of amniotic fluid cells in biomedical applications necessitates their unequivocal characterization; however, the exact cellular composition of amniotic fluid and the precise tissue origins of these cells remain largely unclear. Using cells cultured from the human amniotic fluid of fetuses with spina bifida aperta and of a healthy fetus, we performed single-cell RNA sequencing to characterize the tissue origin and marker expression of cultured amniotic fluid cells at the single-cell level. Our analysis revealed nine different cell types of stromal, epithelial and immune cell phenotypes, and from various fetal tissue origins, demonstrating the heterogeneity of the cultured amniotic fluid cell population at a single-cell resolution. It also identified cell types of neural origin in amniotic fluid from fetuses with spina bifida aperta. Our data provide a comprehensive list of markers for the characterization of the various progenitor and terminally differentiated cell types in cultured amniotic fluid. This study highlights the relevance of single-cell analysis approaches for the characterization of amniotic fluid cells in order to harness their full potential in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Daymé González Rodríguez
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, 8006 Zurich, Switzerland
- Pediatric Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
3
|
Muralidharan N, Murugan A, Raj PA, Jothi M. Restoration of functional PAX3 transcriptional factor enhanced neuronal differentiation in PAX3b isoform-depleted neuroblastoma cells. Cell Tissue Res 2023; 391:55-65. [PMID: 36378335 DOI: 10.1007/s00441-022-03710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Reexpressed PAX3 transcription factor is believed to be responsible for the differentiation defects observed in neuroblastoma. Although the importance of PAX3 in neuronal differentiation is documented how it is involved in the defective differentiation remains unexplored particularly with its isoforms. Here, first we have analyzed PAX3 expression, its functional status, and its correlation with the neuronal marker expression in SH-SY5Y and its parental SK-N-SH cells. We have found that SH-SY5Y cells which expressed more PAX3 showed increased expression of neuronal marker genes (TUBB, MAP2, NEFL, NEUROG2, SYP) and reported PAX3 target genes (MET, TGFA, and NCAM1) than the SK-N-SH cells that had low PAX3 level. Retinoic acid treatment is unable to induce neuronal differentiation in cells (SK-N-SH) with low PAX3 level/activity. Moreover, ectopic expression of PAX3 in SK-N-SH cells neither induces neuronal marker genes nor its target genes. PAX3 isoform expression analysis revealed the expression of PAX3b isoform that contains only paired domain in SK-N-SH cells, whereas in SH-SY5Y cells, we could also observe PAX3c isoform that contains all functional domains. Further, PAX3b depletion in SK-N-SH cells is not induced PAX3 target genes, and the cells remain poorly differentiated. Interestingly, ectopic PAX3 expression in PAX3b-depleted SK-N-SH cells enhanced neuronal outgrowth along with neuronal marker gene induction. Collectively, these results showed that the PAX3b isoform may be responsible for the differentiation defect observed in SK-N-SH cells and restoration of functional PAX3 in the absence of PAX3b can induce neurogenesis in these cells.
Collapse
Affiliation(s)
- Narenkumar Muralidharan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Abinayaselvi Murugan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Prabhuraj Andiperumal Raj
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Mathivanan Jothi
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India.
| |
Collapse
|
4
|
Kumar SV, Er PX, Lawlor KT, Motazedian A, Scurr M, Ghobrial I, Combes AN, Zappia L, Oshlack A, Stanley EG, Little MH. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development 2019; 146:dev172361. [PMID: 30846463 PMCID: PMC6432662 DOI: 10.1242/dev.172361] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Kidney organoids have potential uses in disease modelling, drug screening and regenerative medicine. However, novel cost-effective techniques are needed to enable scaled-up production of kidney cell types in vitro We describe here a modified suspension culture method for the generation of kidney micro-organoids from human pluripotent stem cells. Optimisation of differentiation conditions allowed the formation of micro-organoids, each containing six to ten nephrons that were surrounded by endothelial and stromal populations. Single cell transcriptional profiling confirmed the presence and transcriptional equivalence of all anticipated renal cell types consistent with a previous organoid culture method. This suspension culture micro-organoid methodology resulted in a three- to fourfold increase in final cell yield compared with static culture, thereby representing an economical approach to the production of kidney cells for various biological applications.
Collapse
Affiliation(s)
- Santhosh V Kumar
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pei X Er
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Ali Motazedian
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle Scurr
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Irene Ghobrial
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luke Zappia
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
- School of Biosciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
- School of Biosciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15. PLoS One 2016; 11:e0155561. [PMID: 27213811 PMCID: PMC4876997 DOI: 10.1371/journal.pone.0155561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/29/2016] [Indexed: 01/27/2023] Open
Abstract
We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.
Collapse
|
7
|
El-Kares R, Hueber PA, Blumenkrantz M, Iglesias D, Ma K, Jabado N, Bichet DG, Goodyer P. Wilms tumor arising in a child with X-linked nephrogenic diabetes insipidus. Pediatr Nephrol 2009; 24:1313-9. [PMID: 19294427 DOI: 10.1007/s00467-009-1147-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/23/2008] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
We report on a child with X-linked nephrogenic diabetes insipidus (NDI) who developed Wilms tumor (WT). Nephrogenic diabetes insipidus is caused by mutations of the arginine vasopressin receptor (AVPR2) or aquaporin-II (AQP2) genes. Wilms tumor is also genetically heterogeneous and is associated with mutations of WT1 (15-20%), WTX (20-30%) and other loci. The boy presented at 5 months with failure to thrive, polyuria, hypernatremia and abdominal mass. Analysis of leukocyte DNA showed a novel missense mutation (Q174H) of the AVPR2 gene, which was not present in his mother. In cells (WitS) isolated from the tumor, WTX mRNA expression and coding sequence were intact. However, we identified a 44-kb homozygous deletion of the WT1 gene spanning exons 4 to 10. The WT1 deletion was not present in leukocyte DNA from the patient or his mother. We also noted strong beta-catenin (CTNNB1) expression in the tumor cells and identified a heterozygote missense Ser45Cys mutation of exon 3 of CTNNB1. However, the mutation was absent both in the constitutional DNA of the patient and his mother. The concurrence of WT and NDI has not been previously reported and may be unrelated. Nevertheless, this case nicely illustrates the sequence of events leading to sporadic Wilms tumor.
Collapse
Affiliation(s)
- Reyhan El-Kares
- Department of Pediatrics, Montreal Children's Hospital Research Institute, 4060 Ste Catherine west, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|