1
|
Diao P, Wang X, Jia F, Kimura T, Hu X, Shirotori S, Nakamura I, Sato Y, Nakayama J, Moriya K, Koike K, Gonzalez FJ, Aoyama T, Tanaka N. A saturated fatty acid-rich diet enhances hepatic lipogenesis and tumorigenesis in HCV core gene transgenic mice. J Nutr Biochem 2020; 85:108460. [PMID: 32992072 DOI: 10.1016/j.jnutbio.2020.108460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Previous studies suggested that high consumption of saturated fatty acid (SFA) is a risk factor for liver cancer. However, it remains unclear how dietary SFA affects liver tumorigenesis. This study aimed to investigate the impact of a SFA-rich diet on hepatic tumorigenesis using hepatitis C virus core gene transgenic (HCVcpTg) mice that spontaneously developed hepatic steatosis and tumors with aging. Male HCVcpTg mice were treated for 15 months with a purified control diet or SFA-rich diet prepared by replacing soybean oil in the control diet with hydrogenated coconut oil, and phenotypic changes were assessed. In this special diet, almost all dietary fatty acids were SFA. Long-term feeding of SFA-rich diet to HCVcpTg mice increased hepatic steatosis, liver dysfunction, and the prevalence of liver tumors, likely due to stimulation of de novo lipogenesis, activation of the pro-inflammatory and pro-oncogenic transcription factor nuclear factor-kappa B (NF-κB), enhanced c-Jun N-terminal kinase/activator protein 1 (JNK/AP-1) signaling and induction of the oncogenes cyclin D1 and p62/sequestosome 1. The SFA-rich diet did not affect liver fibrosis or autophagy. Collectively, long-term SFA-rich diet consumption promoted hepatic tumorigenesis mainly through activation of lipogenesis, NF-κB, and JNK/AP-1 signaling. We therefore propose that HCV-infected patients should avoid excessive intake of SFA-rich foods to prevent liver cancer.
Collapse
Affiliation(s)
- Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Xiaojing Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan; Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, People's Republic of China
| | - Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Xiao Hu
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan; Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Saki Shirotori
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ibuki Nakamura
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan; Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
2
|
Ling Q, Huang H, Han Y, Zhang C, Zhang X, Chen K, Wu L, Tang R, Zheng Z, Zheng S, Li L, Wang B. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: From bench to bedside. Am J Transplant 2020; 20:701-713. [PMID: 31654553 DOI: 10.1111/ajt.15665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Tacrolimus (TAC), the mainstay of maintenance immunosuppressive agents, plays a crucial role in new-onset diabetes after transplant (NODAT). Previous studies investigating the diabetogenic effects of TAC have focused on the β cells of islets. In this study, we found that TAC contributed to NODAT through directly affecting hepatic metabolic homeostasis. In mice, TAC-induced hypoglycemia rather than hyperglycemia during starvation via suppressing gluconeogenetic genes, suggesting the limitation of fasting blood glucose in the diagnosis of NODAT. In addition, TAC caused hepatic insulin resistance and triglyceride accumulation through insulin receptor substrate (IRS)2/AKT and sterol regulatory element binding protein (SREBP1) signaling, respectively. Furthermore, we found a pivotal role of CREB-regulated transcription coactivator 2 (CRTC2) in TAC-induced metabolic disorders. The restoration of hepatic CRTC2 alleviated the metabolic disorders through its downstream molecules (eg, PCK1, IRS2, and SREBP1). Consistent with the findings from bench, low CRTC2 expression in graft hepatocytes was an independent risk factor for NODAT (odds ratio = 2.692, P = .023, n = 135). Integrating grafts' CRTC2 score into the clinical model could significantly increase the predictive capacity (areas under the receiver operating characteristic curve: 0.71 vs 0.79, P = .048). Taken together, in addition to its impact on pancreatic cells, TAC induces "hematogenous diabetes" via CRTC2 signaling. Liver-targeted management may be of help to prevent or heal TAC-associated diabetes.
Collapse
Affiliation(s)
- Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Yuqiu Han
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenzhi Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Xueyou Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Kangchen Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Li Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Nakano T, Moriya K, Koike K, Horie T. Hepatitis C virus core protein triggers abnormal porphyrin metabolism in human hepatocellular carcinoma cells. PLoS One 2018; 13:e0198345. [PMID: 29856826 PMCID: PMC5983478 DOI: 10.1371/journal.pone.0198345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022] Open
Abstract
Porphyria cutanea tarda (PCT), the most common of the human porphyrias, arises from a deficiency of uroporphyrinogen decarboxylase. Studies have shown a high prevalence of hepatitis C virus (HCV) infection in patients with PCT. While these observations implicate HCV infection as a risk factor for PCT pathogenesis, the mechanism of interaction between the virus and porphyrin metabolism is unknown. This study aimed to assess the effect of HCV core protein on intracellular porphyrin metabolism to elucidate the link between HCV infection and PCT. The accumulation and excretion of porphyrins after treatment with 5-aminolevulinic acid, a porphyrin precursor, were compared between cells stably expressing HCV core protein and controls. Cells expressing HCV core protein had lower amounts of intracellular protoporphyrin IX and heme and had higher amounts of excreted coproporphyrin III, the oxidized form of coproporphyrinogen III, compared with controls. These observations suggest that HCV core protein affects porphyrin metabolism and facilitates the export of excess coproporphyrinogen III and/or coproporphyrin III, possibly via porphyrin transporters. Real-time PCR analysis revealed that the presence of HCV core protein increased the mRNA expression of porphyrin exporters ABCG2 and FLVCR1. Western blot analysis showed a higher expression level of FLVCR1, but not ABCG2, as well as a higher expression level of mature ALAS1, which is the rate-limiting enzyme in the heme synthesis pathway, in HCV core protein-expressing cells compared with controls. The data indicate that HCV core protein induced abnormal intracellular porphyrin metabolism, with an over-excretion of coproporphyrin III. These findings may partially account for the susceptibility of HCV-infected individuals to PCT development.
Collapse
Affiliation(s)
- Takafumi Nakano
- Biopharmaceutics and Molecular Toxicology Unit, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, Japan
- * E-mail:
| | - Kyoji Moriya
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiharu Horie
- Biopharmaceutics and Molecular Toxicology Unit, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, Japan
| |
Collapse
|
4
|
Mazumder N, Lyn RK, Singaravelu R, Ridsdale A, Moffatt DJ, Hu CW, Tsai HR, McLauchlan J, Stolow A, Kao FJ, Pezacki JP. Fluorescence lifetime imaging of alterations to cellular metabolism by domain 2 of the hepatitis C virus core protein. PLoS One 2013; 8:e66738. [PMID: 23826122 PMCID: PMC3691201 DOI: 10.1371/journal.pone.0066738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/09/2013] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) co-opts hepatic lipid pathways to facilitate its pathogenesis. The virus alters cellular lipid biosynthesis and trafficking, and causes an accumulation of lipid droplets (LDs) that gives rise to hepatic steatosis. Little is known about how these changes are controlled at the molecular level, and how they are related to the underlying metabolic states of the infected cell. The HCV core protein has previously been shown to independently induce alterations in hepatic lipid homeostasis. Herein, we demonstrate, using coherent anti-Stokes Raman scattering (CARS) microscopy, that expression of domain 2 of the HCV core protein (D2) fused to GFP is sufficient to induce an accumulation of larger lipid droplets (LDs) in the perinuclear region. Additionally, we performed fluorescence lifetime imaging of endogenous reduced nicotinamide adenine dinucleotides [NAD(P)H], a key coenzyme in cellular metabolic processes, to monitor changes in the cofactor’s abundance and conformational state in D2-GFP transfected cells. When expressed in Huh-7 human hepatoma cells, we observed that the D2-GFP induced accumulation of LDs correlated with an increase in total NAD(P)H fluorescence and an increase in the ratio of free to bound NAD(P)H. This is consistent with an approximate 10 fold increase in cellular NAD(P)H levels. Furthermore, the lifetimes of bound and free NAD(P)H were both significantly reduced – indicating viral protein-induced alterations in the cofactors’ binding and microenvironment. Interestingly, the D2-expressing cells showed a more diffuse localization of NAD(P)H fluorescence signal, consistent with an accumulation of the co-factor outside the mitochondria. These observations suggest that HCV causes a shift of metabolic control away from the use of the coenzyme in mitochondrial electron transport and towards glycolysis, lipid biosynthesis, and building of new biomass. Overall, our findings demonstrate that HCV induced alterations in hepatic metabolism is tightly linked to alterations in NAD(P)H functional states.
Collapse
Affiliation(s)
- Nirmal Mazumder
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Rodney K. Lyn
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew Ridsdale
- National Research Council of Canada, Ottawa, Ontario, Canada
| | | | - Chih-Wei Hu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Han-Ruei Tsai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - John McLauchlan
- Medical Research Council - University of Glasgow Center for Virus Research, Glasgow, United Kingdom
| | - Albert Stolow
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
| | - Fu-Jen Kao
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (JPP); (FK)
| | - John Paul Pezacki
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (JPP); (FK)
| |
Collapse
|
5
|
Han NR, Moon PD, Kim HM, Jeong HJ. Effect of Pyeongwee-San (KMP6) on 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice. Life Sci 2012; 90:147-53. [DOI: 10.1016/j.lfs.2011.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/17/2011] [Accepted: 10/25/2011] [Indexed: 01/28/2023]
|
6
|
Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral Res 2011; 93:23-9. [PMID: 22027648 DOI: 10.1016/j.antiviral.2011.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/30/2011] [Accepted: 10/10/2011] [Indexed: 01/23/2023]
Abstract
The highly lethal filoviruses, Ebola and Marburg cause severe hemorrhagic fever in humans and non-human primates. To date there are no licensed vaccines or therapeutics to counter these infections. Identifying novel pathways and host targets that play an essential role during infection will provide potential targets to develop therapeutics. Small molecule chemical screening for Ebola virus inhibitors resulted in identification of a compound NSC 62914. The compound was found to exhibit anti-filovirus activity in cell-based assays and in vivo protected mice following challenge with Ebola or Marburg viruses. Additionally, the compound was found to inhibit Rift Valley fever virus, Lassa virus and Venezuelan equine encephalitis virus in cell-based assays. Investigation of the mechanism of action of the compound revealed that it had antioxidant properties. Specifically, compound NSC 62914 was found to act as a scavenger of reactive oxygen species, and to up-regulate oxidative stress-induced genes. However, four known antioxidant compounds failed to inhibit filovirus infection, thus suggesting that the mechanistic basis of the antiviral function of the antioxidant NSC 62914 may involve modulation of multiple signaling pathways/targets.
Collapse
|
7
|
Miyoshi H, Moriya K, Tsutsumi T, Shinzawa S, Fujie H, Shintani Y, Fujinaga H, Goto K, Todoroki T, Suzuki T, Miyamura T, Matsuura Y, Yotsuyanagi H, Koike K. Pathogenesis of lipid metabolism disorder in hepatitis C: polyunsaturated fatty acids counteract lipid alterations induced by the core protein. J Hepatol 2011; 54:432-8. [PMID: 21093950 DOI: 10.1016/j.jhep.2010.07.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/08/2010] [Accepted: 07/05/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Disturbance in lipid metabolism is one of the features of chronic hepatitis C, being a crucial determinant of the progression of liver fibrosis. Experimental studies have revealed that the core protein of hepatitis C virus (HCV) induces steatosis. METHODS The activities of fatty acid metabolizing enzymes were determined by analyzing the fatty acid compositions in HepG2 cells with or without core protein expression. RESULTS There was a marked accumulation of triglycerides in core-expressing HepG2 cells. While the oleic/stearic acid (18:1/18:0) and palmitoleic/palmitic acid ratio (16:1/16:0) were comparable in both the core-expressing and the control cells, there was a marked accumulation of downstream product, 5,8,11-eicosatrienoic acid (20:3(n-9)) in the core-expressing HepG2 cells. The addition of eicosatetraynoic acid, which inhibits delta-6 desaturase activity which is inherently high in HepG2 cells, led to a marked accumulation of oleic and palmitoleic acids in the core-expressing cells, showing that delta-9 desaturase was activated by the core protein. Eicosapentaenoic acid (20:5(n-3)) or arachidonic acid (20:4(n-6)) administration significantly decreased delta-9 desaturase activity, the concentration of 20:3(n-9), and triglyceride accumulation. This lipid metabolism disorder was associated with NADH accumulation due to mitochondrial dysfunction, and was reversed by the addition of pyruvate through NADH utilization. CONCLUSIONS The fatty acid enzyme, delta-9 desaturase, was activated by HCV core protein and polyunsaturated fatty acids counteracted this impact of the core protein on lipid metabolism. These results may open up new insights into the mechanism of lipid metabolism disorder associated with HCV infection and provide clues for the development of new therapeutic devices.
Collapse
Affiliation(s)
- Hideyuki Miyoshi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li YR, Ling W, Chen FX, Fan XL. Correlation of plasma lipid levels with serum hepatitis C virus RNA load and liver histopathological changes in patients with chronic hepatitis C. Shijie Huaren Xiaohua Zazhi 2010; 18:1820-1823. [DOI: 10.11569/wcjd.v18.i17.1820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship among plasma lipid levels, serum hepatitis C virus (HCV) RNA load, and liver histopathological changes in patients with chronic hepatitis C (CHC).
METHODS: Seventy-five CHC patients were included in the study. Serum HCV RNA levels were measured by fluorescent quantitative polymerase chain. The levels of plasma TG, CHO, LDL, HDL, ApoA, and ApoB were measured using a biochemical autoanalyzer. A liver biopsy was performed in 62 patients, and liver histopathological changes in these patients were evaluated by HE staining under a light microscope and scored according to the grade of hepatic necroinflammatory activity and the stage of liver fibrosis and liver steatosis.
RESULTS: Significant differences were noted in the levels of LDL and ApoB among the three groups (HCV RNA: < 105 copies/mL, 105-107 copies/mL, and > 107 copies/mL). The levels of plasma LDL and ApoB were negatively correlated with HCV RNA load (r = -0.305, -0.417; P = 0.011, 0.001). Approximately 67.7% of CHC patients had liver steatosis. There were significant differences in HCV RNA load among the three groups. HCV RNA load was positively correlated with the degree of liver steatosis.
CONCLUSION: The levels of plasma LDL and ApoB are associated with HCV load but not with the degree of liver injury and fibrosis in patients with chronic hepatitis C.
Collapse
|