1
|
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol 2018; 16:1018-1035. [PMID: 29676228 PMCID: PMC6120108 DOI: 10.2174/1570159x16666180419121247] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration is a major feature of glaucoma pathology. Neuroprotective approaches that delay or halt the progression of RGC loss are needed to prevent vision loss which can occur even after conventional medical or surgical treatments to lower intraocular pressure. OBJECTIVE The aim of this review was to examine the progress in genetics and cellular mechanisms associated with endoplasmic reticulum (ER) stress, RGC dysfunction and cell death pathways in glaucoma. MATERIALS AND METHODS Here, we review the involvement of neurotrophins like brain derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin receptor kinase (TrkB) in glaucoma. The role of ER stress markers in human and animal retinas in health and disease conditions is also discussed. Further, we analysed the literature highlighting genetic linkage in the context of primary open angle glaucoma and suggested mechanistic insights into potential therapeutic options relevant to glaucoma management. RESULTS The literature review of the neurobiology underlying neurotrophin pathways, ER stress and gene associations provide critical insights into association of RGCs death in glaucoma. Alteration in signalling pathway is associated with increased risk of misfolded protein aggregation in ER promoting RGC apoptosis. Several genes that are linked with neurotrophin signalling pathways have been reported to be associated with glaucoma pathology. CONCLUSION Understanding genetic heterogeneity and involvement of neurotrophin biology in glaucoma could help to understand the complex pathophysiology of glaucoma. Identification of novel molecular targets will be critical for drug development and provide neuroprotection to the RGCs and optic nerve.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Address correspondence to this author at the Faculty of Medicine and Health Sciences, 75, Talavera Road, Macquarie University, Sydney, NSW 2109, Australia; Tel: +61-298502760; E-mail:
| | | | | | | | | | | |
Collapse
|
2
|
Kondkar AA, Azad TA, Almobarak FA, Kalantan H, Sultan T, Al-Obeidan SA, Abu-Amero KK. Polymorphism rs11656696 in GAS7 Is Not Associated with Primary Open Angle Glaucoma in a Saudi Cohort. Genet Test Mol Biomarkers 2017; 21:754-758. [PMID: 29022762 DOI: 10.1089/gtmb.2017.0147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To conduct a case-control study to investigate the association between the polymorphism rs11656696 located in the growth arrest-specific 7 gene (GAS7)on human chromosome 17p13.1 and primary open angle glaucoma (POAG). METHODS The polymorphism rs11656696 was genotyped using the TaqMan® assay in 187 subjects comprising 92 unrelated POAG cases and 95 controls of Saudi Arabian origin. RESULTS Association analysis between cases and controls revealed no significant genotype distribution under additive (p = 0.225), dominant (p = 0.635), or recessive (p = 0.085) models. Moreover, the allele frequency distribution was also nonsignificant (p = 0.70). The minor "A" allele frequency was 0.35 and 0.41 among POAG cases and controls, respectively. In addition, specific clinical indices used to assess severity of glaucoma such as intraocular pressure (IOP), cup/disk ratio, and number of antiglaucoma medications also did not show any significant genotype distribution in POAG cases. Moreover, a binary logistic regression analysis did not show any significant effect of age, sex, or genotype on disease outcome. CONCLUSION Polymorphism rs11656696 is not associated with POAG nor any of its endophenotypic traits such as IOP and cup/disk ratio and is thus not a risk factor for POAG in this Saudi cohort.
Collapse
Affiliation(s)
- Altaf A Kondkar
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Taif A Azad
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Hatem Kalantan
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Tahira Sultan
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Saleh A Al-Obeidan
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia
| | - Khaled K Abu-Amero
- 1 Department of Ophthalmology, College of Medicine, King Saud University , Riyadh, Saudi Arabia .,2 Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
3
|
Rasnitsyn A, Doucette L, Seifi M, Footz T, Raymond V, Walter MA. FOXC1 modulates MYOC secretion through regulation of the exocytic proteins RAB3GAP1, RAB3GAP2 and SNAP25. PLoS One 2017; 12:e0178518. [PMID: 28575017 PMCID: PMC5456087 DOI: 10.1371/journal.pone.0178518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
The neurodegenerative disease glaucoma is one of the leading causes of blindness in the world. Glaucoma is characterized by progressive visual field loss caused by retinal ganglion cell (RGC) death. Both surgical glaucoma treatments and medications are available, however, they only halt glaucoma progression and are unable to reverse damage. Furthermore, many patients do not respond well to treatments. It is therefore important to better understand the mechanisms involved in glaucoma pathogenesis. Patients with Axenfeld-Rieger syndrome (ARS) offer important insight into glaucoma progression. ARS patients are at 50% risk of developing early onset glaucoma and respond poorly to treatments, even when surgical treatments are combined with medications. Mutations in the transcription factor FOXC1 cause ARS. Alterations in FOXC1 levels cause ocular malformations and disrupt stress response in ocular tissues, thereby contributing to glaucoma progression. In this study, using biochemical and molecular techniques, we show that FOXC1 regulates the expression of RAB3GAP1, RAB3GAP2 and SNAP25, three genes with central roles in both exocytosis and endocytosis, responsible for extracellular trafficking. FOXC1 positively regulates RAB3GAP1 and RAB3GAP2, while either increase or decrease in FOXC1 levels beyond its normal range results in decreased SNAP25. In addition, we found that FOXC1 regulation of RAB3GAP1, RAB3GAP2 and SNAP25 affects secretion of Myocilin (MYOC), a protein associated with juvenile onset glaucoma and steroid-induced glaucoma. The present work reveals that FOXC1 is an important regulator of exocytosis and establishes a new link between FOXC1 and MYOC-associated glaucoma.
Collapse
Affiliation(s)
- Alexandra Rasnitsyn
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lance Doucette
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Morteza Seifi
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vincent Raymond
- Centre Hospitalier de l'Université Laval (CHUL) Quebec City, Québec, Canada
| | - Michael A. Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
4
|
Mitochondrial pathogenic mechanism and degradation in optineurin E50K mutation-mediated retinal ganglion cell degeneration. Sci Rep 2016; 6:33830. [PMID: 27654856 PMCID: PMC5031982 DOI: 10.1038/srep33830] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Mutations in optineurin (OPTN) are linked to the pathology of primary open angle glaucoma (POAG) and amyotrophic lateral sclerosis. Emerging evidence indicates that OPTN mutation is involved in accumulation of damaged mitochondria and defective mitophagy. Nevertheless, the role played by an OPTN E50K mutation in the pathogenic mitochondrial mechanism that underlies retinal ganglion cell (RGC) degeneration in POAG remains unknown. We show here that E50K expression induces mitochondrial fission-mediated mitochondrial degradation and mitophagy in the axons of the glial lamina of aged E50K−tg mice in vivo. While E50K activates the Bax pathway and oxidative stress, and triggers dynamics alteration-mediated mitochondrial degradation and mitophagy in RGC somas in vitro, it does not affect transport dynamics and fission of mitochondria in RGC axons in vitro. These results strongly suggest that E50K is associated with mitochondrial dysfunction in RGC degeneration in synergy with environmental factors such as aging and/or oxidative stress.
Collapse
|
5
|
Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE, Izzotti A. From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev 2016; 29:26-41. [PMID: 27242026 DOI: 10.1016/j.arr.2016.05.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
Abstract
Glaucoma is a degenerative disease of the eye. Both the anterior and posterior segments of the eye are affected, extensive damage being detectable in the trabecular meshwork and the inner retina-central visual pathway complex. Oxidative stress is claimed to be mainly responsible for molecular damage in the anterior chamber. Indeed, oxidation harms the trabecular meshwork, leading eventually to endothelial cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility and (ultimately) increased IOP. Moreover, free radicals are involved in aging and can be produced in the brain (as well as in the eye) as a result of ischemia, leading to oxidation of the surrounding neurons. Glaucoma-related cell death occurs by means of apoptosis, and apoptosis is triggered by oxidative stress via (a) mitochondrial damage, (b) inflammation, (c) endothelial dysregulation and dysfunction, and (d) hypoxia. The proteomics of the aqueous humor is significantly altered in glaucoma as a result of oxidation-induced trabecular damage. Those proteins whose aqueous humor levels are increased in glaucoma are biomarkers of trabecular meshwork impairment. Their diffusion from the anterior to the posterior segment of the eye may be relevant in the cascade of events triggering apoptosis in the inner retinal layers, including the ganglion cells.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- IRCCS San Martino University Hospital, Department of Neuroscience and Sense Organs, San Martino Hospital, Ophthalmology Unit, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alessandro Bagnis
- University of Genoa, Eye Clinic, Department of Neuroscience and Sense Organs, Viale Benedetto XV, 5, 16148 Genoa, Italy
| | - Gianluca Manni
- Dept. of Clinical Science and Translational Medicine, University Tor Vergata, Rome, Italy
| | - Gianluca Damonte
- Dept. of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Carlo Enrico Traverso
- University of Genoa, Eye Clinic, Department of Neuroscience and Sense Organs, Viale Benedetto XV, 5, 16148 Genoa, Italy
| | - Alberto Izzotti
- Mutagenesis Unit, IRCCS San Martino University Hospital, IST National Institute for Cancer Research, Department of Health Sciences, University of Genoa, Via A. Pastore 1, Genoa I-16132, Italy
| |
Collapse
|
6
|
Zhu M, Li A, Chen J, Zhang S, Wu J. Effects of optineurin mutants on SH-SY5Y cell survival. Mol Cell Neurosci 2016; 74:18-24. [DOI: 10.1016/j.mcn.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/17/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022] Open
|
7
|
Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE, Izzotti A. The Outflow Pathway: A Tissue With Morphological and Functional Unity. J Cell Physiol 2016; 231:1876-93. [PMID: 26754581 DOI: 10.1002/jcp.25305] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022]
Abstract
The trabecular meshwork (TM) plays an important role in high-tension glaucomas. Indeed, the TM is a true organ, through which the aqueous humor flows from the anterior chamber to Schlemm's canal (SC). Until recently, the TM, which is constituted by endothelial-like cells, was described as a kind of passive filter. In reality, it is much more. The cells delineating the structures of the collagen framework of the TM are endowed with a cytoskeleton, and are thus able to change their shape. These cells also have the ability to secrete the extracellular matrix, which expresses proteins and cytokines, and are capable of phagocytosis and autophagy. The cytoskeleton is attached to the nuclear membrane and can, in millionths of a second, send signals to the nucleus in order to alter the expression of genes in an attempt to adapt to biomechanical insult. Oxidative stress, as happens in aging, has a deleterious effect on the TM, leading eventually to cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility, and (ultimately) increased IOP. TM failure is the most relevant factor in the cascade of events triggering apoptosis in the inner retinal layers, including ganglion cells. J. Cell. Physiol. 231: 1876-1893, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Neuroscience and Sense Organs, Ophthalmology Unit, IRCCS San Martino University Hospital, San Martino Hospital, Genoa, Italy
| | - Stefano Gandolfi
- Department of Biological, Biotechnological and Translational Sciences, Ophthalmology Unit, University of Parma, Parma, Italy
| | - Alessandro Bagnis
- Department of Neuroscience and Sense Organs, Eye Clinic, University of Genoa, Genoa, Italy
| | - Gianluca Manni
- Department of Clinical Science and Translational Medicine, University Tor Vergata, Rome, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Carlo Enrico Traverso
- Department of Neuroscience and Sense Organs, Eye Clinic, University of Genoa, Genoa, Italy
| | - Alberto Izzotti
- Department of Health Sciences, Mutagenesis Unit, IRCCS San Martino University Hospital, IST National Institute for Cancer Research, University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
Genes, pathways, and animal models in primary open-angle glaucoma. Eye (Lond) 2015; 29:1285-98. [PMID: 26315706 DOI: 10.1038/eye.2015.160] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/27/2015] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is an optic neuropathy characterized by loss of retinal ganglion cells (RGCs) and consequently visual field loss. It is a complex and heterogeneous disease in which both environmental and genetic factors play a role. With the advent of genome-wide association studies (GWASs), the number of loci associated with primary open-angle glaucoma (POAG) have increased greatly. There has also been major progress in understanding the genes determining the vertical cup-disc ratio (VCDR), disc area (DA), cup area (CA), intraocular pressure (IOP), and central corneal thickness (CCT). In this review, we will update and summarize the genetic loci associated so far with POAG, VCDR, DA, CA, IOP, and CCT. We will describe the pathways revealed and supported by genetic association studies, integrating current knowledge from human and experimental data. Finally, we will discuss approaches for functional genomics and clinical translation.
Collapse
|
9
|
Optineurin: The autophagy connection. Exp Eye Res 2015; 144:73-80. [PMID: 26142952 DOI: 10.1016/j.exer.2015.06.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 01/13/2023]
Abstract
Optineurin is a cytosolic protein encoded by the OPTN gene. Mutations of OPTN are associated with normal tension glaucoma and amyotrophic lateral sclerosis. Autophagy is an intracellular degradation system that delivers cytoplasmic components to the lysosomes. It plays a wide variety of physiological and pathophysiological roles. The optineurin protein is a selective autophagy receptor (or adaptor), containing an ubiquitin binding domain with the ability to bind polyubiquitinated cargoes and bring them to autophagosomes via its microtubule-associated protein 1 light chain 3-interacting domain. It is involved in xenophagy, mitophagy, aggrephagy, and tumor suppression. Optineurin can also mediate the removal of protein aggregates through an ubiquitin-independent mechanism. This protein in addition can induce autophagy upon overexpression or mutation. When overexpressed or mutated, the optineurin protein also serves as a substrate for autophagic degradation. In the present review, the multiple connections of optineurin to autophagy are highlighted.
Collapse
|
10
|
Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. BMC Cell Biol 2015; 16:14. [PMID: 25943884 PMCID: PMC4429416 DOI: 10.1186/s12860-015-0060-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Background Optineurin is a gene associated with normal tension glaucoma and amyotrophic lateral sclerosis. It has been reported previously that in cultured RGC5 cells, the turnover of endogenous optineurin involves mainly the ubiquitin-proteasome pathway (UPP). When optineurin is upregulated or mutated, the UPP function is compromised as evidenced by a decreased proteasome β5 subunit (PSMB5) level and autophagy is induced for clearance of the optineurin protein. Results Adeno-associated type 2 viral (AAV2) vectors for green fluorescence protein (GFP) only, GFP-tagged wild-type and Glu50Lys (E50K) mutated optineurin were intravitreally injected into rats for expression in retinal ganglion cells (RGCs). Following intravitreal injections, eyes that received optineurin vectors exhibited retinal thinning, as well as RGC and axonal loss compared to GFP controls. By immunostaining and Western blotting, the level of PSMB5 and autophagic substrate degradation marker p62 was reduced, and the level of autophagic marker microtubule associated protein 1 light chain 3 (LC3) was enhanced. The UPP impairment and autophagy induction evidently occurred in vivo as in vitro. The optineurin level, RGC and axonal counts, and apoptosis in AAV2-E50K-GFP-injected rat eyes were averted to closer to normal limits after treatment with rapamycin, an autophagic enhancer. Conclusions The UPP function was reduced and autophagy was induced when wild-type and E50K optineurin was overexpressed in rat eyes. This study validates the in vitro findings, confirming that UPP impairment and autophagy induction also occur in vivo. In addition, rapamycin is demonstrated to clear the accumulated mutant optineurin. This agent may potentially be useful for rescuing of the adverse optineurin phenotypes in vivo.
Collapse
|
11
|
Paulus JD, Link BA. Loss of optineurin in vivo results in elevated cell death and alters axonal trafficking dynamics. PLoS One 2014; 9:e109922. [PMID: 25329564 PMCID: PMC4199637 DOI: 10.1371/journal.pone.0109922] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in Optineurin have been associated with ALS, glaucoma, and Paget’s disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
Collapse
Affiliation(s)
- Jeremiah D. Paulus
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
12
|
The nerve growth factor signaling and its potential as therapeutic target for glaucoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:759473. [PMID: 25250333 PMCID: PMC4164261 DOI: 10.1155/2014/759473] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Neuroprotective therapies which focus on factors leading to retinal ganglion cells (RGCs) degeneration have been drawing more and more attention. The beneficial effects of nerve growth factor (NGF) on the glaucoma have been recently suggested, but its effects on eye tissue are complex and controversial in various studies. Recent clinical trials of systemically and topically administrated NGF demonstrate that NGF is effective in treating several ocular diseases, including glaucoma. NGF has two receptors named high affinity NGF tyrosine kinase receptor TrkA and low affinity receptor p75NTR. Both receptors exist in cells in retina like RGC (expressing TrkA) and glia cells (expressing p75NTR). NGF functions by binding to TrkA or p75NTR alone or both together. The binding of NGF to TrkA alone in RGC promotes RGC's survival and proliferation through activation of TrkA and several prosurvival pathways. In contrast, the binding of NGF to p75NTR leads to apoptosis although it also promotes survival in some cases. Binding of NGF to both TrkA and p75NTR at the same time leads to survival in which p75NTR functions as a TrkA helping receptor. This review discusses the current understanding of the NGF signaling in retina and the therapeutic implications in the treatment of glaucoma.
Collapse
|
13
|
Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 2014; 71:2197-218. [PMID: 24142347 PMCID: PMC11113507 DOI: 10.1007/s00018-013-1493-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
Primary open-angle glaucoma is a multifactorial disease that affects the retinal ganglion cells, but currently its therapy is to lower the eye pressure. This indicates a definite involvement of the trabecular meshwork, key region in the pathogenesis of glaucoma. This is the first target of glaucoma, and its functional complexity is a real challenge to search. Its functions are those to allow the outflow of aqueous humor and not the reflux. This article describes the morphological and functional changes that happen in anterior chamber. The "primus movens" is oxidative stress that affects trabecular meshwork, particularly its endothelial cells. In these develops a real mitochondriopaty. This leads to functional impotence, the trabecular meshwork altering both motility and cytoarchitecture. Its cells die by apoptosis, losing barrier functions and altering the aqueous humor outflow. All the morphological alterations occur that can be observed under a microscope. Intraocular pressure rises and the malfunctioning trabecular meshwork endotelial cells express proteins that completely alter the aqueous humor. This is a liquid whose functional proteomics complies with the conditions of the trabecular meshwork. Indeed, in glaucoma, it is possible detect the presence of proteins which testify to what occurs in the anterior chamber. There are six classes of proteins which confirm the vascular endothelium nature of the anterior chamber and are the result of the morphofunctional trabecular meshwork decay. It is possible that, all or in part, these proteins can be used as a signal to the posterior pole.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Ophthalmology Unit, Department of Head and Neck Pathologies, St Martino Hospital, Viale Benedetto XV, 16132, Genoa, Italy,
| | | |
Collapse
|
14
|
Turturro S, Shen X, Shyam R, Yue BY, Ying H. Effects of mutations and deletions in the human optineurin gene. SPRINGERPLUS 2014; 3:99. [PMID: 24683533 PMCID: PMC3967732 DOI: 10.1186/2193-1801-3-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023]
Abstract
Optineurin is a gene associated with normal tension glaucoma (NTG) and amyotrophic lateral sclerosis (ALS). Foci formation and functional consequences including Golgi fragmentation, impairment of vesicle trafficking and apoptosis were observed previously upon overexpression and/or mutation of optineurin. In the current study, a total of 15 GFP tagged constructs that included NTG (E50K and 2 bp-AG insertion), ALS (exon 5 deletion, R96L, Q398X, and E478G) and non-disease (L157A and D474N) associated mutants and a series of deletion fragments were cloned into mammalian expression vectors and transfected into RGC5 and/or Neuro2A cells to evaluate whether their expression confer the optineurin phenotypes. The cells were monitored for foci formation and stained by immunofluorescence with anti-GM130 to analyze the Golgi integrity. Transferrin uptake experiments were performed to evaluate the protein trafficking process and apoptosis was assessed with the active caspase 3/7 detection kit. We demonstrated that cells expressing E50K and R96L optineurin exhibited all of the optineurin phenotypes. Q398X mutant did not induce foci formation, but triggered Golgi fragmentation, impairment of transferrin uptake and increase in apoptosis. The 2 bp-AG insertion mutant had a nuclear localization, compromised the transferrin uptake and strongly induced apoptosis. The foci formation, which might not predict the rest of the phenotypes, appeared to require both the leucine zipper and ubiquitin binding domains of the optineurin sequence. Interactions of optineurin with proteins including Rab8, myosin VI, huntingtin and transferrin receptor might directly determine whether the Golgi and protein trafficking phenotypes would be manifested. Examination of mutants and deletion fragments located at various sites of optineurin gene provide clues as to what regions of the gene may play a critical role in the development of pathologic consequences.
Collapse
Affiliation(s)
- Sanja Turturro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Beatrice Yjt Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| |
Collapse
|
15
|
Abstract
Intracellular membrane trafficking requires the complex interplay of several classes of trafficking proteins. Rab proteins, the largest subfamily of the Ras superfamily of small G-proteins, are central regulators of all aspects of intracellular trafficking processes including vesicle budding and uncoating, motility, tethering and fusion. In the present paper, we discuss the discovery, evolution and characterization of the Rab GTPase family. We examine their basic functional roles, their important structural features and the regulatory proteins which mediate Rab function. We speculate on outstanding issues in the field, such as the mechanisms of Rab membrane association and the co-ordinated interplay between distinct Rab proteins. Finally, we summarize the data implicating Rab proteins in an ever increasing number of diseases.
Collapse
|
16
|
Ying H, Shen X, Yue BYJT. Establishment of inducible wild type and mutant myocilin-GFP-expressing RGC5 cell lines. PLoS One 2012; 7:e47307. [PMID: 23082156 PMCID: PMC3474840 DOI: 10.1371/journal.pone.0047307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
Background Myocilin is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Gln368stop (Q368X) and Pro370Leu (P370L) have been identified in patients. The exact role of myocilin and its functional association with glaucoma are still unclear. In the present study, we established tetracycline-inducible (Tet-on) wild type and mutant myocilin-green fluorescence protein (GFP) expressing RGC5 stable cell lines and studied the changes in cell migration and barrier function upon induction. Methodology/Principal Findings After several rounds of selection, clones that displayed low, moderate, or high expression of wild type, Q368X or P370L myocilin-GFP upon doxycycline (Dox) induction were obtained. The levels of wild type and mutant myocilin-GFP in various clones were confirmed by Western blotting. Compared to non-induced controls, the cell migration was retarded, the actin stress fibers were fewer and shorter, and the trypsinization time needed for cells to round up was reduced when wild type or mutant myocilin was expressed. The barrier function was in addition aberrant following induced expression of wild type, Q368X or P370L myocilin. Immunoblotting further showed that tight junction protein occludin was downregulated in induced cells. Conclusions/Significance Tet-on inducible, stable RGC5 cell lines were established. These cell lines, expressing wild type or mutant (Q368X or P370L) myocilin-GFP upon Dox induction, are valuable in facilitating studies such as proteomics, as well as functional and pathogenesis investigations of disease-associated myocilin mutants. The barrier function was found impaired and the migration of cells was hindered with induced expression of wild type and mutant myocilin in RGC5 cell lines. The reduction in barrier function might be related to the declined level of occludin. The retarded cell migration was consistent with demonstrated myocilin phenotypes including the loss of actin stress fibers, lowered RhoA activities and compromised cell-matrix adhesiveness.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet 2012; 8:e1002611. [PMID: 22570627 PMCID: PMC3342933 DOI: 10.1371/journal.pgen.1002611] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 02/06/2012] [Indexed: 01/11/2023] Open
Abstract
Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4×10−8), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6×10−8). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4×10−2 for rs11656696 and p = 9.1×10−4 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation. Glaucoma is a major eye disease in the elderly and is the second leading cause of blindness worldwide. The numerous familial glaucoma cases, as well as evidence from epidemiological and twin studies, strongly support a genetic component in developing glaucoma. However, it has proven difficult to identify the specific genes involved. Intraocular pressure (IOP) is the major risk factor for glaucoma and the only target for the current glaucoma therapy. IOP has been shown to be highly heritable. We investigated the role of common genetic variants in IOP by performing a genome-wide association study. Discovery analyses in 11,972 participants and subsequent replication analyses in a further 7,482 participants yielded two common genetic variants that were associated with IOP. The first (rs11656696) is located in GAS7 at chromosome 17, the second (rs7555523) in TMCO1 at chromosome 1. Both variants were associated with glaucoma in a meta-analysis of 4 case-control studies. GAS7 and TMCO1 are expressed in the ocular tissues that are involved in glaucoma. Both genes functionally interact with the known glaucoma disease genes. These data suggest that we have identified two genes involved in IOP regulation and glaucomatous neuropathy.
Collapse
|
18
|
Ying H, Yue BYJT. Cellular and molecular biology of optineurin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:223-58. [PMID: 22364875 DOI: 10.1016/b978-0-12-394305-7.00005-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optineurin is a gene linked to glaucoma, amyotrophic lateral sclerosis, other neurodegenerative diseases, and Paget's disease of bone. This review describes the characteristics of optineurin and summarizes the cellular and molecular biology investigations conducted so far on optineurin. Data from a number of laboratories indicate that optineurin is a cytosolic protein containing 577 amino acid residues. Interacting with proteins such as myosin VI, Rab8, huntingtin, transferrin receptor, and TANK-binding kinase 1, optineurin is involved in basic cellular functions including protein trafficking, maintenance of the Golgi apparatus, as well as NF-κB pathway, antiviral, and antibacteria signaling. Mutation or alteration of homeostasis of optineurin (such as overexpression or knockdown) results in adverse consequences in the cells, leading to the development of neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
19
|
Li H, Ao X, Jia J, Wang Q, Zhang Z. Effects of optineurin siRNA on apoptotic genes and apoptosis in RGC-5 cells. Mol Vis 2011; 17:3314-25. [PMID: 22194658 PMCID: PMC3244489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 12/14/2011] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Optineurin is a pathogenic gene associated with primary open angle glaucoma (POAG), in which the retinal ganglion cells (RGCs) are targeted. However, the functions of optineurin, particularly in RGCs, are currently not clear. We introduced optineurin siRNA into cultured retinal ganglion cell 5 (RGC-5) and PC12 cells to determine the cellular and molecular mechanisms underlying the role of optineurin in POAG. METHODS We constructed four optineurin siRNA-expressing plasmids, and transiently transfected them into PC12 cells. Quantitative real-time PCR, western blot, and fluorescent microscopy were used to determine optineurin expression and select the most effective optineurin siRNA to construct RGC-5 and PC12 stable transfected cells. Dimethylthiazolyl diphenyl tetrazolium bromide (MTT) assay and flow cytometry were applied to investigate the role of optineurin siRNA in cell growth and apoptosis. Gene microarray and quantitative real-time PCR were used to screen and validate differentially expressed genes in optineurin siRNA transfected PC12 and RGC-5 cells. RESULTS siRNA effectively downregulated optineurin expression in RGC-5 and PC12 stable transfected cells. Optineurin siRNA significantly inhibited cell growth and increased apoptosis in RGC-5 and PC12 cells. Microarray analysis identified 112 differentially expressed genes in optineurin siRNA transfected RGC-5 cells. Quantitative real-time PCR and western blot confirmed that the expression of brain-derived neurotrophic factor (Bdnf), neurotrophin-3(Ntf3), synaptosomal-associated protein 25(Snap25), and neurofilament, light polypeptide(Nefl) was significantly downregulated in RGC-5 and PC12 cells transfected with optineurin siRNA. CONCLUSIONS Our study suggested that optineurin downregulation by siRNA in RGCs was an in vitro model for studying the mechanisms of optineurin effects on POAG. Neuroprotective factor and axonal transport genes may be involved in the development of POAG and could be novel targets for treating POAG due to optineurin mutation.
Collapse
Affiliation(s)
- Hongyang Li
- China Medical University, Shen Yang, Liaoning province, China
| | - Xiuqin Ao
- China Medical University, Shen Yang, Liaoning province, China
| | - Juan Jia
- China Medical University, Shen Yang, Liaoning province, China
| | | | - Zhongzhi Zhang
- China Medical University, Shen Yang, Liaoning province, China
| |
Collapse
|
20
|
Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (Lond) 2011; 26:355-69. [PMID: 22173078 DOI: 10.1038/eye.2011.309] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease.
Collapse
|
21
|
Yue BYJT. Myocilin and Optineurin: Differential Characteristics and Functional Consequences. Taiwan J Ophthalmol 2011; 1:6-11. [PMID: 24163790 DOI: 10.1016/j.tjo.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells and their axons. This review describes the characteristics of myocilin and optineurin protein products and summarizes the consequences of ectopically expressed wild type and mutant myocilin and optineurin in trabecular meshwork and/or neuronal cells. Myocilin and optineurin exhibit differential characteristics and have divergent functional consequences. They contribute to the development of glaucoma likely via distinct mechanisms.
Collapse
Affiliation(s)
- Beatrice Y J T Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
22
|
Kwon HS, Tomarev SI. Myocilin, a glaucoma-associated protein, promotes cell migration through activation of integrin-focal adhesion kinase-serine/threonine kinase signaling pathway. J Cell Physiol 2011; 226:3392-402. [PMID: 21656515 DOI: 10.1002/jcp.22701] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The MYOCILIN gene encodes a secreted glycoprotein which is highly expressed in eye drainage structures. Mutations in this gene may lead to juvenile open-angle glaucoma and adult onset primary open-angle glaucoma, one of the leading causes of irreversible blindness in the world. Functions of wild-type myocilin are still unclear. We have recently demonstrated that myocilin is a modulator of Wnt signaling and may affect actin cytoskeleton organization. Here we report that myocilin and its naturally occurring proteolytic fragments, similar to Wnt3a, are able to stimulate trabecular meshwork, NIH3T3, and FHL124 cell migration with the N-terminal proteolytic fragment of myocilin lacking the olfactomedin domain producing the highest stimulatory effect. Stimulation of cell migration occurs through activation of the integrin-focal adhesion kinase (FAK)-serine/threonine kinase (AKT) signaling pathway. Inhibition of FAK by siRNA reduced the stimulatory action of myocilin by threefold. Activation of several components of this signaling pathway was also demonstrated in the eyes of transgenic mice expressing elevated levels of myocilin in the eye drainage structures. These data extend the similarities between actions of myocilin and Wnt proteins acting through a β-catenin-independent mechanism. The modification of the migratory ability of cells by myocilin may play a role in normal functioning of the eye anterior segment and its pathology including glaucoma.
Collapse
Affiliation(s)
- Heung Sun Kwon
- Molecular Mechanisms of Glaucoma Section, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, Bethesda, Maryland 20892-9303, USA
| | | |
Collapse
|
23
|
Current World Literature. Curr Opin Ophthalmol 2011; 22:141-6. [DOI: 10.1097/icu.0b013e32834483fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Shen X, Ying H, Qiu Y, Park JS, Shyam R, Chi ZL, Iwata T, Yue BYJT. Processing of optineurin in neuronal cells. J Biol Chem 2010; 286:3618-29. [PMID: 21059646 DOI: 10.1074/jbc.m110.175810] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Optineurin is a gene linked to amyotrophic lateral sclerosis, Paget disease of bone, and glaucoma, a major blinding disease. Mutations such as E50K were identified in glaucoma patients. We investigated herein the involvement of ubiquitin-proteasome pathway (UPP) and autophagy, two major routes for protein clearance, in processing of optineurin in a retinal ganglion cell model line RGC5 and neuronal PC12 cells. It was found that the endogenous optineurin level in neuronal cells was increased by treatment of proteasomal inhibitor but not by autophagic and lysosomal inhibitors. Multiple bands immunoreactive to anti-ubiquitin were seen in the optineurin pulldown, indicating that optineurin was ubiquitinated. In cells overexpressing wild type and E50K optineurin, the level of the proteasome regulatory β5 subunit (PSMB5, indicative of proteasome activity) was reduced, whereas that for autophagy marker microtubule-associated protein 1 light chain 3 was enhanced compared with controls. Autophagosome formation was detected by electron microscopy. The foci formed after optineurin transfection were increased upon treatment of an autophagic inhibitor but were decreased by treatment of an inducer, rapamycin. Moreover, the level of optineurin-triggered apoptosis was reduced by rapamycin. This study thus provides compelling evidence that in a normal homeostatic situation, the turnover of endogenous optineurin involves mainly UPP. When optineurin is up-regulated or mutated, the UPP function is compromised, and autophagy comes into play. A decreased PSMB5 level and an induced autophagy were also demonstrated in vivo in retinal ganglion cells of E50K transgenic mice, validating and making relevant the in vitro findings.
Collapse
Affiliation(s)
- Xiang Shen
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Park B, Ying H, Shen X, Park JS, Qiu Y, Shyam R, Yue BYJT. Impairment of protein trafficking upon overexpression and mutation of optineurin. PLoS One 2010; 5:e11547. [PMID: 20634958 PMCID: PMC2902519 DOI: 10.1371/journal.pone.0011547] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/17/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Glaucoma is a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Optineurin is one of the candidate genes identified so far. A mutation of Glu(50) to Lys (E50K) has been reported to be associated with a more progressive and severe disease. Optineurin, known to interact with Rab8, myosin VI and transferrin receptor (TfR), was speculated to have a role in protein trafficking. Here we determined whether, and how optineurin overexpression and E50K mutation affect the internalization of transferrin (Tf), widely used as a marker for receptor-mediated endocytosis. METHODOLOGY/PRINCIPAL FINDINGS Human retinal pigment epithelial (RPE) and rat RGC5 cells transfected to overexpress wild type optineurin were incubated with Texas Red-Tf to evaluate Tf uptake. Granular structures or dots referred to as foci formed in perinuclear regions after transfection. An impairment of the Tf uptake was in addition observed in transfected cells. Compared to overexpression of the wild type, E50K mutation yielded an increased foci formation and a more pronounced defect in Tf uptake. Co-transfection with TfR, but not Rab8 or myosin VI, construct rescued the optineurin inhibitory effect, suggesting that TfR was the factor involved in the trafficking phenotype. Forced expression of both wild type and E50K optineurin rendered TfR to colocalize with the foci. Surface biotinylation experiments showed that the surface level of TfR was also reduced, leading presumably to an impeded Tf uptake. A non-consequential Leu(157) to Ala (L157A) mutation that displayed much reduced foci formation and TfR binding had normal TfR distribution, normal surface TfR level and normal Tf internalization. CONCLUSIONS/SIGNIFICANCE The present study demonstrates that overexpression of wild type optineurin results in impairment of the Tf uptake in RPE and RGC5 cells. The phenotype is related to the optineurin interaction with TfR. Our results further indicate that E50K induces more dramatic effects than the wild type optineurin, and is thus a gain-of-function mutation. The defective protein trafficking may be one of the underlying bases why glaucoma pathology develops in patients with E50K mutation.
Collapse
Affiliation(s)
- BumChan Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Jeong-Seok Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Ye Qiu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|