1
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
2
|
Gent DG, Saif M, Dobson R, Wright DJ. Cardiovascular Disease After Hematopoietic Stem Cell Transplantation in Adults: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:475-495. [PMID: 39239331 PMCID: PMC11372032 DOI: 10.1016/j.jaccao.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 09/07/2024] Open
Abstract
The use of hematopoietic cell transplantation (HCT) has expanded in the last 4 decades to include an older and more comorbid population. These patients face an increased risk of cardiovascular disease after HCT. The risk varies depending on several factors, including the type of transplant (autologous or allogeneic). Many therapies used in HCT have the potential to be cardiotoxic. Cardiovascular complications after HCT include atrial arrhythmias, heart failure, myocardial infarction, and pericardial effusions. Before HCT, patients should undergo a comprehensive cardiovascular assessment, with ongoing surveillance tailored to their individual level of cardiovascular risk. In this review, we provide an overview of cardiotoxicity after HCT and outline our approach to risk assessment and ongoing care.
Collapse
Affiliation(s)
- David G Gent
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Muhammad Saif
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Rebecca Dobson
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - David J Wright
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
3
|
Rosell-Hidalgo A, Bruhn C, Shardlow E, Barton R, Ryder S, Samatov T, Hackmann A, Aquino GR, Fernandes Dos Reis M, Galatenko V, Fritsch R, Dohrmann C, Walker PA. In-depth mechanistic analysis including high-throughput RNA sequencing in the prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes. Expert Opin Drug Metab Toxicol 2024; 20:685-707. [PMID: 37995132 DOI: 10.1080/17425255.2023.2273378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue. RESEARCH DESIGN AND METHODS Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy. CONCLUSIONS Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.
Collapse
|
4
|
Kao TW, Huang TC, Liao CW, Shun CT, Tsai CH, Lin YH. Severe Heart Failure after Using Bortezomib in a Patient with Multiple Myeloma and Cardiac Amyloidosis of Normal Wall Thickness. ACTA CARDIOLOGICA SINICA 2024; 40:454-457. [PMID: 39045372 PMCID: PMC11261364 DOI: 10.6515/acs.202407_40(4).20240410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Tai-Chung Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
- Department of Medicine, National Taiwan University Cancer Center
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hsuan Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| |
Collapse
|
5
|
Hayek SS, Zaha VG, Bogle C, Deswal A, Langston A, Rotz S, Vasbinder A, Yang E, Okwuosa T. Cardiovascular Management of Patients Undergoing Hematopoietic Stem Cell Transplantation: From Pretransplantation to Survivorship: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1113-e1127. [PMID: 38465648 DOI: 10.1161/cir.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hematopoietic stem cell transplantation can cure various disorders but poses cardiovascular risks, especially for elderly patients and those with cardiovascular diseases. Cardiovascular evaluations are crucial in pretransplantation assessments, but guidelines are lacking. This American Heart Association scientific statement summarizes the data on transplantation-related complications and provides guidance for the cardiovascular management throughout transplantation. Hematopoietic stem cell transplantation consists of 4 phases: pretransplantation workup, conditioning therapy and infusion, immediate posttransplantation period, and long-term survivorship. Complications can occur during each phase, with long-term survivors facing increased risks for late effects such as cardiovascular disease, secondary malignancies, and endocrinopathies. In adults, arrhythmias such as atrial fibrillation and flutter are the most frequent acute cardiovascular complication. Acute heart failure has an incidence ranging from 0.4% to 2.2%. In pediatric patients, left ventricular systolic dysfunction and pericardial effusion are the most common cardiovascular complications. Factors influencing the incidence and risk of complications include pretransplantation therapies, transplantation type (autologous versus allogeneic), conditioning regimen, comorbid conditions, and patient age. The pretransplantation cardiovascular evaluation consists of 4 steps: (1) initial risk stratification, (2) exclusion of high-risk cardiovascular disease, (3) assessment of cardiac reserve, and (4) optimization of cardiovascular reserve. Clinical risk scores could be useful tools for the risk stratification of adult patients. Long-term cardiovascular management of hematopoietic stem cell transplantation survivors includes optimizing risk factors, monitoring, and maintaining a low threshold for evaluating cardiovascular causes of symptoms. Future research should prioritize refining risk stratification and creating evidence-based guidelines and strategies to optimize outcomes in this growing patient population.
Collapse
|
6
|
Kreidieh F, McQuade J. Novel insights into cardiovascular toxicity of cancer targeted and immune therapies: Beyond ischemia with non-obstructive coronary arteries (INOCA). AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100374. [PMID: 38510501 PMCID: PMC10946000 DOI: 10.1016/j.ahjo.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti-neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these agents.
Collapse
Affiliation(s)
- Firas Kreidieh
- Instructor of Clinical Medicine- Division of Hematology-Oncology; Associate Director- Internal Medicine Residency Program, American University of Beirut, Beirut, Lebanon
| | - Jennifer McQuade
- Associate Professor and Physician Scientist in Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
7
|
Tang X, Liu H, Rao R, Huang Y, Dong M, Xu M, Feng S, Shi X, Wang L, Wang Z, Zhou B. Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:301-319. [PMID: 37864082 DOI: 10.1007/s11427-023-2369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/16/2023] [Indexed: 10/22/2023]
Abstract
Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.
Collapse
Affiliation(s)
- Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China
| | - Zengwu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Department of Epidemiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China.
| |
Collapse
|
8
|
Hayal TB, Doğan A, Şenkal S, Bulut E, Şişli HB, Şahin F. Evaluation of the effect of boron derivatives on cardiac differentiation of mouse pluripotent stem cells. J Trace Elem Med Biol 2023; 79:127258. [PMID: 37451093 DOI: 10.1016/j.jtemb.2023.127258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The heart is one of the first organs to form during embryonic development and has a very important place. So much that the formation of a functional heart is completed on the 55th day of human development and the 15th day of mouse development. Myocardial, endocardial and epicardial cells, which are derived from the mesoderm layer, are the cells that form the basis of the heart. Cardiac development, like other embryonic developments, is tightly controlled and regulated by various signaling pathways. The WNT signaling pathway is the most studied of these signaling pathways and the one with the clearest relationship with heart development. It is known that boron compounds and the Wnt/β-catenin pathway are highly correlated. Therefore, this study aimed to investigate the role of boron compounds in heart development as well as its effect on pluripotency of mouse embryonic stem cells for the first time in the literature. METHODS Toxicity of boron compounds was evaluated by using MTS analysis and obtained results were supported by morphological pictures, Trypan Blue staining and Annexin V staining. Additionally, the possible boron-related change in pluripotency of embryonic stem cells were analyzed with alkaline phosphatase activity and immunocytochemical staining of Oct4 protein as well as gene expression levels of pluripotency related OCT4, SOX2 and KLF4 genes. The alterations in the embryonic body formation capacity of mouse embryonic stem cells due to the application boron derivatives were also evaluated. Three linage differentiation was conducted to clarify the real impact of boron compounds on embryonic development. Lastly, cardiac differentiation of mESCs was investigated by using morphological pictures, cytosolic calcium measurement, gene expression and immunocytochemical analysis of cardiac differentiation related genes and in the presence of boron compounds. RESULTS Obtained results show that boron treatment maintains the pluripotency of embryonic stem cells at non-toxic concentrations. Additionally, endodermal, and mesodermal fate was found to be triggered after boron treatment. Also, initiation of cardiomyocyte differentiation by boron derivative treatments caused an increased gene expression levels of cardiac differentiation related TNNT2, Nkx2.5 and ISL-1 gene expression levels. CONCLUSION This study indicates that boron application, which is responsible for maintaining pluripotency of mESCs, can be used for increased cardiomyocyte differentiation of mESCs.
Collapse
Affiliation(s)
- Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Current affiliation: Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Bulut
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
9
|
Paterek A, Oknińska M, Pilch Z, Sosnowska A, Ramji K, Mackiewicz U, Golab J, Nowis D, Mączewski M. Arginase Inhibition Mitigates Bortezomib-Exacerbated Cardiotoxicity in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15072191. [PMID: 37046852 PMCID: PMC10093116 DOI: 10.3390/cancers15072191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is associated with increased cardiovascular morbidity and mortality, while MM therapies also result in adverse cardiac effects. Endothelial dysfunction and impaired nitric oxide (NO) pathway is their possible mediator. OBJECTIVE Since MM is associated with increased arginase expression, resulting in the consumption of ʟ-arginine, precursor for NO synthesis, our aim was to test if cardiotoxicity mediated by MM and MM therapeutic, bortezomib (a proteasome inhibitor), can be ameliorated by an arginase inhibitor through improved endothelial function. METHODS We used a mouse Vĸ*MYC model of non-light chain MM. Cardiac function was assessed by echocardiography. RESULTS MM resulted in progressive left ventricular (LV) systolic dysfunction, and bortezomib exacerbated this effect, leading to significant impairment of LV performance. An arginase inhibitor, OAT-1746, protected the heart against bortezomib- or MM-induced toxicity but did not completely prevent the effects of the MM+bortezomib combination. MM was associated with improved endothelial function (assessed as NO production) vs. healthy controls, while bortezomib did not affect it. OAT-1746 improved endothelial function only in healthy mice. NO plasma concentration was increased by OAT-1746 but was not affected by MM or bortezomib. CONCLUSIONS Bortezomib exacerbates MM-mediated LV systolic dysfunction in a mouse model of MM, while an arginase inhibitor partially prevents it. Endothelium does not mediate either these adverse or beneficial effects. This suggests that proteasome inhibitors should be used with caution in patients with advanced myeloma, where the summation of cardiotoxicity could be expected. Therapies aimed at the NO pathway, in particular arginase inhibitors, could offer promise in the prevention/treatment of cardiotoxicity in MM.
Collapse
Affiliation(s)
- Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Zofia Pilch
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Kavita Ramji
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
- Centre of Preclinical Research, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 5 Nielubowicza Street, 02-097 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| |
Collapse
|
10
|
Zheng Y, Huang S, Xie B, Zhang N, Liu Z, Tse G, Liu T. Cardiovascular Toxicity of Proteasome Inhibitors in Multiple Myeloma Therapy. Curr Probl Cardiol 2023; 48:101536. [PMID: 36481392 DOI: 10.1016/j.cpcardiol.2022.101536] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The treatment for multiple myeloma has advanced significantly over the past few decades. Proteasome inhibitors have become the cornerstone of the treatment of multiple myeloma. However, proteasome inhibitors have shown cardiovascular complications such as hypertension, pulmonary hypertension, heart failure, arrhythmias, ischaemic heart disease and thromboembolism. Detection, monitoring and management of proteasome inhibitor-related cardiovascular toxicity are essential to improve clinical outcomes for patients. Proposed mechanisms of proteasome inhibitor-related cardiovascular toxicity are apoptosis, prolonged inhibition of the ubiquitin-proteasome system, accumulation of improperly folded proteins within cardiomyocytes and higher protein phosphatase 2A activity. To better understand the mechanisms underlying cardiotoxicity, further in vitro and in vivo experiments are required to investigate these hypotheses. Combined use of metformin or angiotensin II receptor blockers with the proteasome inhibitor, carfilzomib, showed an emerging role as a prophylactic therapy because they can preserve heart function in multiple myeloma patients. Metformin is expected to be an effective therapeutic intervention for the management of carfilzomib-induced cardiotoxicity. There has been evidence that three compounds, apremilast, rutin, and dexrazoxane, can reverse carfilzomib-induced cardiotoxicity in rats. The future transition from animal experiments to clinical trials is worth waiting for.
Collapse
Affiliation(s)
- Yi Zheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin China
| | - Shan Huang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin China
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin China
| | - Zhiqiang Liu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; The province and ministry co-sponsored collaborative innovation center for medical epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin China; Kent and Medway Medical School, University of Kent and Canterbury Christ Church University, Canterbury, UK; School of Nursing and Health Studies, Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin China.
| |
Collapse
|
11
|
Georgiopoulos G, Makris N, Laina A, Theodorakakou F, Briasoulis A, Trougakos IP, Dimopoulos MA, Kastritis E, Stamatelopoulos K. Cardiovascular Toxicity of Proteasome Inhibitors: Underlying Mechanisms and Management Strategies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:1-21. [PMID: 36875897 PMCID: PMC9982226 DOI: 10.1016/j.jaccao.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023] Open
Abstract
Proteasome inhibitors (PIs) are the backbone of combination treatments for patients with multiple myeloma and AL amyloidosis, while also indicated in Waldenström's macroglobulinemia and other malignancies. PIs act on proteasome peptidases, causing proteome instability due to accumulating aggregated, unfolded, and/or damaged polypeptides; sustained proteome instability then induces cell cycle arrest and/or apoptosis. Carfilzomib, an intravenous irreversible PI, exhibits a more severe cardiovascular toxicity profile as compared with the orally administered ixazomib or intravenous reversible PI such as bortezomib. Cardiovascular toxicity includes heart failure, hypertension, arrhythmias, and acute coronary syndromes. Because PIs are critical components of the treatment of hematological malignancies and amyloidosis, managing their cardiovascular toxicity involves identifying patients at risk, diagnosing toxicity early at the preclinical level, and offering cardioprotection if needed. Future research is required to elucidate underlying mechanisms, improve risk stratification, define the optimal management strategy, and develop new PIs with safe cardiovascular profiles.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACS, acute coronary syndrome
- AE, adverse event
- AF, atrial fibrillation
- ARB, angiotensin receptor blocker
- ASCT, autologous stem cell transplantation
- BP, blood pressure
- CVAE, cardiovascular adverse event
- ESC, European Society of Cardiology
- FMD, flow-mediated dilatation
- GLS, global longitudinal strain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- IHD, ischemic heart disease
- IMiD, immunomodulatory drug
- Kd, carfilzomib and dexamethasone
- LA, left atrial
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MM, multiple myeloma
- NO, nitric oxide
- NP, natriuretic peptide
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PFS, progression-free survival
- PH, pulmonary hypertension
- PI, proteasome inhibitor
- PWV, pulse wave velocity
- PrA, proteasome activity
- RRMM, relapse or refractory multiple myeloma
- SBP, systolic blood pressure
- TMA, thrombotic microangiopathy
- UPP, ubiquitin proteasome pathway
- VTE, venous thromboembolism
- Vd, bortezomib and dexamethasone
- WM, Waldenström’s macroglobulinemia
- bortezomib
- cardiovascular toxicity
- carfilzomib
- eNOS, endothelial nitric oxide synthase
- ixazomib
- proteasome inhibition
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | | | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Sadeh TT, Baines RA, Black GC, Manson F. Ca v1.4 congenital stationary night blindness is associated with an increased rate of proteasomal degradation. Front Cell Dev Biol 2023; 11:1161548. [PMID: 37206923 PMCID: PMC10188973 DOI: 10.3389/fcell.2023.1161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Pathogenic, generally loss-of-function, variants in CACNA1F, encoding the Cav1.4α1 calcium channel, underlie congenital stationary night blindness type 2 (CSNB2), a rare inherited retinal disorder associated with visual disability. To establish the underlying pathomechanism, we investigated 10 clinically derived CACNA1F missense variants located across pore-forming domains, connecting loops, and the carboxy-tail domain of the Cav1.4α subunit. Homology modeling showed that all variants cause steric clashes; informatics analysis correctly predicted pathogenicity for 7/10 variants. In vitro analyses demonstrated that all variants cause a decrease in current, global expression, and protein stability and act through a loss-of-function mechanism and suggested that the mutant Cav1.4α proteins were degraded by the proteasome. We showed that the reduced current for these variants could be significantly increased through treatment with clinical proteasome inhibitors. In addition to facilitating clinical interpretation, these studies suggest that proteasomal inhibition represents an avenue of potential therapeutic intervention for CSNB2.
Collapse
Affiliation(s)
- Tal T. Sadeh
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard A. Baines
- Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Graeme C. Black
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary’s Hospital, Manchester, United Kingdom
- *Correspondence: Graeme C. Black,
| | - Forbes Manson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity. Sci Rep 2022; 12:19660. [PMID: 36385153 PMCID: PMC9668840 DOI: 10.1038/s41598-022-24137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable malignancy of plasma cells despite constantly evolving therapeutic approaches including various types of immunotherapy. Increased arginase activity has been associated with potent suppression of T-cell immune responses in different types of cancer. Here, we investigated the role of arginase 1 (ARG1) in Vκ*MYC model of MM in mice. ARG1 expression in myeloid cells correlated with tumor progression and was accompanied by a systemic drop in ʟ-arginine levels. In MM-bearing mice antigen-induced proliferation of adoptively transferred T-cells was strongly suppressed and T-cell proliferation was restored by pharmacological arginase inhibition. Progression of Vκ*MYC tumors was significantly delayed in mice with myeloid-specific ARG1 deletion. Arginase inhibition effectively inhibited tumor progression although it failed to augment anti-myeloma effects of bortezomib. However, arginase inhibitor completely prevented development of bortezomib-induced cardiotoxicity in mice. Altogether, these findings indicate that arginase inhibitors could be further tested as a complementary strategy in multiple myeloma to mitigate adverse cardiac events without compromising antitumor efficacy of proteasome inhibitors.
Collapse
|
14
|
Buck B, Kellett E, Addison D, Vallakati A. Carfilzomib-induced Cardiotoxicity: An Analysis of the FDA Adverse Event Reporting System (FAERS). J Saudi Heart Assoc 2022; 34:134-141. [PMID: 36127934 PMCID: PMC9458320 DOI: 10.37616/2212-5043.1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background Carfilzomib and other proteasome inhibitors (PIs) have revolutionized treatment of multiple myeloma (MM). PIs have proven to be highly effective, but are associated with significant cardiovascular adverse events (AEs). No prior study has compared the cardiotoxicity of carfilzomib against other PI’s and all other classes of medications. Objectives The purpose of this study is to characterize the cardiotoxicity of carfilzomib with respect to other PIs and all classes of medications using the US Food and Drug Administration Adverse Events Reporting System (FAERS) database and to define the observed cardiotoxicity profile. Methods The FAERS database was queried between years 2017 and 2020 to identify AEs associated with PIs. Data extracted included concomitant medications used, type and severity of AEs and patient characteristics including age, sex, and time from medication initiation to adverse event. Cardiotoxicities assessed included acute myocardial infarction, heart failure, and supraventricular tachycardia. The reporting odds ratio (ROR) and information component assessed the strength of association between PIs and cardiotoxicity. Results Over the study period, 21,026 adverse events were reported in patients taking carfilzomib among 55,195 total adverse events in patients taking PI’s were identified from 6,548,048 total events reported in the FAERS database. The most common AE associated with carfilzomib was development of heart failure (1116 adverse events); disproportionality analysis revealed a stronger association with hypertension and QT prolongation with carfilzomib than other PI’s. Conclusions While they have demonstrated efficacy and revolutionized treatment of MM, carfilzomib and other PI’s are associated with cardiotoxicities.
Collapse
Affiliation(s)
- Benjamin Buck
- Division of Cardiovascular Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eric Kellett
- Division of Cardiovascular Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel Addison
- Division of Cardiovascular Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA.,Division of Cardiovascular Medicine, Section of Cardio-Oncology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ajay Vallakati
- Division of Cardiovascular Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA.,Division of Cardiovascular Medicine, Section of Heart Failure, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
15
|
T-Type Calcium Channels: A Mixed Blessing. Int J Mol Sci 2022; 23:ijms23179894. [PMID: 36077291 PMCID: PMC9456242 DOI: 10.3390/ijms23179894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.
Collapse
|
16
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
17
|
Ikura H, Endo J, Kitakata H, Moriyama H, Sano M, Fukuda K. Molecular Mechanism of Pathogenesis and Treatment Strategies for AL Amyloidosis. Int J Mol Sci 2022; 23:6336. [PMID: 35683015 PMCID: PMC9181426 DOI: 10.3390/ijms23116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
In amyloid light-chain (AL) amyloidosis, small B-cell clones (mostly plasma cell clones) present in the bone marrow proliferate and secrete unstable monoclonal free light chains (FLCs), which form amyloid fibrils that deposit in the interstitial tissue, resulting in organ injury and dysfunction. AL amyloidosis progresses much faster than other types of amyloidosis, with a slight delay in diagnosis leading to a marked exacerbation of cardiomyopathy. In some cases, the resulting heart failure is so severe that chemotherapy cannot be administered, and death sometimes occurs within a few months. To date, many clinical studies have focused on therapeutics, especially chemotherapy, to treat this disease. Because it is necessary to promptly lower FLC, the causative protein of amyloid, to achieve a hematological response, various anticancer agents targeting neoplastic plasma cells are used for the treatment of this disease. In addition, many basic studies using human specimens to elucidate the pathophysiology of AL have been conducted. Gene mutations associated with AL, the characteristics of amyloidogenic LC, and the structural specificity of amyloid fibrils have been clarified. Regarding the mechanism of cellular and tissue damage, the mass effect due to amyloid deposition, as well as the toxicity of pre-fibrillar LC, is gradually being elucidated. This review outlines the pathogenesis and treatment strategies for AL amyloidosis with respect to its molecular mechanisms.
Collapse
Affiliation(s)
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-City, Tokyo 160-8582, Japan; (H.I.); (H.K.); (H.M.); (M.S.); (K.F.)
| | | | | | | | | |
Collapse
|
18
|
Wang J, Fan Y, Wang C, Dube S, Poiesz BJ, Dube DK, Ma Z, Sanger JM, Sanger JW. Inhibitors of the Ubiquitin Proteasome System block myofibril assembly in cardiomyocytes derived from chick embryos and human pluripotent stem cells. Cytoskeleton (Hoboken) 2022; 78:461-491. [PMID: 35502133 DOI: 10.1002/cm.21697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Details of sarcomeric protein assembly during de novo myofibril formation closely resemble myofibrillogenesis in skeletal and cardiac myocytes in birds, rodents and zebrafish. The arrangement of proteins during myofibrillogenesis follows a three-step process: beginning with premyofibrils, followed by nascent myofibrils, and concluding with mature myofibrils (reviewed in Sanger et al., 2017). Our aim is to determine if the same pathway is followed in human cardiomyocytes derived from human inducible pluripotent stem cells. We found that the human cardiomyocytes developed patterns of protein organization identical to the three-step series seen in the model organisms cited above. Further experiments showed that myofibril assembly can be blocked at the nascent myofibril by five different inhibitors of the Ubiquitin Proteasome System (UPS) stage in both avian and human cardiomyocytes. With the exception of Carfilzomib, removal of the UPS inhibitors allows nascent myofibrils to proceed to mature myofibrils. Some proteasomal inhibitors, such as Bortezomib and Carfilzomib, used to treat multiple myeloma patients, have off-target effects of damage to hearts in three to six percent of these patients. These cardiovascular adverse events may result from prevention of mature myofibril formation in the cardiomyocytes. In summary, our results support a common three-step model for the formation of myofibrils ranging from avian to human cardiomyocytes. The Ubiquitin Proteasome System is required for progression from nascent myofibrils to mature myofibrils. Our experiments suggest a possible explanation for the cardiac and skeletal muscle off-target effects reported in multiple myeloma patients treated with proteasome inhibitors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
19
|
Gryshkova V, Lushbough I, Palmer J, Burrier R, Delaunois A, Donley E, Valentin JP. microRNAs signatures as potential biomarkers of structural cardiotoxicity in human-induced pluripotent stem-cell derived cardiomyocytes. Arch Toxicol 2022; 96:2033-2047. [PMID: 35488128 DOI: 10.1007/s00204-022-03280-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Identification of early biomarkers of heart injury and drug-induced cardiotoxicity is important to eliminate harmful drug candidates early in preclinical development and to prevent severe drug effects. The main objective of this study was to investigate the expression of microRNAs (miRNAs) in human-induced pluripotent stem cell cardiomyocytes (hiPSC-CM) in response to a broad range of cardiotoxic drugs. Next generation sequencing was applied to hiPSC-CM treated for 72 h with 40 drugs falling into the categories of functional (i.e., ion channel blockers), structural (changes in cardiomyocytes structure), and general (causing both functional and structural) cardiotoxicants as well as non-cardiotoxic drugs. The largest changes in miRNAs expression were observed after treatments with structural or general cardiotoxicants. The number of deregulated miRNAs was the highest for idarubicin, mitoxantrone, and bortezomib treatments. RT-qPCR validation confirmed upregulation of several miRNAs across multiple treatments at therapeutically relevant concentrations: hsa-miR-187-3p, hsa-miR-146b-5p, hsa-miR-182-5p (anthracyclines); hsa-miR-365a-5p, hsa-miR-185-3p, hsa-miR-184, hsa-miR-182-5p (kinase inhibitors); hsa-miR-182-5p, hsa-miR-126-3p and hsa-miR-96-5p (common some anthracyclines, kinase inhibitors and bortezomib). Further investigations showed that an upregulation of hsa-miR-187-3p and hsa-miR-182-5p could serve as a potential biomarker of structural cardiotoxicity and/or an additional endpoint to characterize cardiac injury in vitro.
Collapse
Affiliation(s)
| | - Isabel Lushbough
- UCB Biopharma SRL, Braine L'Alleud, Belgium
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
20
|
Rocca C, De Francesco EM, Pasqua T, Granieri MC, De Bartolo A, Gallo Cantafio ME, Muoio MG, Gentile M, Neri A, Angelone T, Viglietto G, Amodio N. Mitochondrial Determinants of Anti-Cancer Drug-Induced Cardiotoxicity. Biomedicines 2022; 10:biomedicines10030520. [PMID: 35327322 PMCID: PMC8945454 DOI: 10.3390/biomedicines10030520] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Ernestina Marianna De Francesco
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Maria Grazia Muoio
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Massimo Gentile
- Hematology Unit, “Annunziata” Hospital of Cosenza, 87100 Cosenza, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Hematology Fondazione Cà Granda, IRCCS Policlinico, 20122 Milan, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
- Correspondence: (T.A.); (N.A.)
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
- Correspondence: (T.A.); (N.A.)
| |
Collapse
|
21
|
Tamargo J, Caballero R, Delpón E. Cancer Chemotherapy-Induced Sinus Bradycardia: A Narrative Review of a Forgotten Adverse Effect of Cardiotoxicity. Drug Saf 2022; 45:101-126. [PMID: 35025085 DOI: 10.1007/s40264-021-01132-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Cardiotoxicity is a common adverse effect of anticancer drugs (ACDs), including the so-called targeted drugs, and increases morbidity and mortality in patients with cancer. Attention has focused mainly on ACD-induced heart failure, myocardial ischemia, hypertension, thromboembolism, QT prolongation, and tachyarrhythmias. Yet, although an increasing number of ACDs can produce sinus bradycardia (SB), this proarrhythmic effect remains an underappreciated complication, probably because of its low incidence and severity since most patients are asymptomatic. However, SB merits our interest because its incidence increases with the aging of the population and cancer is an age-related disease and because SB represents a risk factor for QT prolongation. Indeed, several ACDs that produce SB also prolong the QT interval. We reviewed published reports on ACD-induced SB from January 1971 to November 2020 using the PubMed and EMBASE databases. Published reports from clinical trials, case reports, and recent reviews were considered. This review describes the associations between ACDs and SB, their clinical relevance, risk factors, and possible mechanisms of onset and treatment.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain.
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| |
Collapse
|
22
|
Sundaravel SH, Marar RI, Abbasi MA, Baljevic M, Stone JR. Bortezomib-Induced Reversible Cardiomyopathy: Recovered with Guideline-Directed Medical Therapy. Cureus 2021; 13:e20295. [PMID: 35024253 PMCID: PMC8742456 DOI: 10.7759/cureus.20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Bortezomib (BTZ) is a proteasome inhibitor (PI) used for the treatment of several hematologic malignancies, including multiple myeloma (MM), and various lymphomas including mantle cell lymphoma (MCL). It acts via disruption of the ubiquitin-proteasome pathway which plays a major role in regulating cell cycle and inhibiting synthesis of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB). The ubiquitin-proteasome pathway is also important in maintaining the integral signaling in cardiac myocytes. By inhibiting this system, BTZ induces cellular apoptosis in cancer cells, and possibly the cardiomyocytes. BTZ-induced cardiotoxicity in monotherapy and combination treatments is not well described in the literature. We observed a series of three patients who developed cardiotoxicity after treatment with BTZ. All patients had echocardiograms every 3 months until recovery to assess ejection fraction (EF) and global longitudinal strain (GLS). Two of the patients had a cardiac MRI (CMR) conducted during follow-up to assess for late gadolinium enhancement (LGE). The median age of our patients was 55 years (range 37-74). Two of them had MM, while one patient had MCL. Table 1 demonstrates patient demographics, past medical histories, and the cumulative dose and duration of BTZ therapy. Of the three patients, only one had a heart failure exacerbation at diagnosis. The other two patients were diagnosed with asymptomatic left ventricular systolic dysfunction on routine pre-transplant echocardiograms. Most importantly, all three patients had improvement or normalization of cardiac function with discontinuation of BTZ and initiation of guideline-directed medical therapy (GDMT) for heart failure. The median duration to recovery was 5 months (range 3-13). One patient had underlying non-compaction cardiomyopathy, and although EF did not normalize, it recovered to his previous baseline. All 3 patients had improvement in GLS. Two patients underwent CMRI at the time of cardiomyopathy diagnosis and neither of them had any late gadolinium enhancement. Since there was no routine pre-treatment echocardiogram, using the GLS trend to detect subclinical cardiac dysfunction was not possible. This case series demonstrates that BTZ-induced cardiomyopathy is potentially reversible with discontinuation of the drug and early initiation of GDMT. Further studies are needed to determine the ideal surveillance strategy for BTZ-induced cardiomyopathy.
Collapse
|
23
|
Yee AJ. The role of carfilzomib in relapsed/refractory multiple myeloma. Ther Adv Hematol 2021; 12:20406207211019612. [PMID: 34163580 PMCID: PMC8191071 DOI: 10.1177/20406207211019612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Carfilzomib is the second proteasome inhibitor approved for relapsed multiple myeloma. Since its approval in 2012, carfilzomib has been an active and versatile drug, based on its efficacy as a single agent; superiority as a doublet with dexamethasone compared with bortezomib and dexamethasone; and as a partner in diverse three drug combinations such as with lenalidomide or daratumumab. While it has an established place in relapsed disease, clinicians should be aware of its cardiovascular and renal adverse event profile, which is manageable, in order to optimize outcomes. This review will provide a perspective on the current and future role of carfilzomib in relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Andrew J. Yee
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical
School, 55 Fruit St, Boston, MA 02114, USA
| |
Collapse
|
24
|
Proskuriakova E, Jada K, Kakieu Djossi S, Khedr A, Neupane B, Mostafa JA. Mechanisms and Potential Treatment Options of Heart Failure in Patients With Multiple Myeloma. Cureus 2021; 13:e15943. [PMID: 34336442 PMCID: PMC8312996 DOI: 10.7759/cureus.15943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple myeloma is a pathology of plasma cells, with one of the most common side effects of its treatment is heart failure. In addition, cardiac amyloidosis could cause heart failure by itself. Even though mechanisms of cardiac amyloidosis are known, and they involve lysosomal dysfunction, reactive oxygen species (ROS) accumulation, and infiltrative effect by fibrils, there is no specific agent that could protect from these effects. While the molecular mechanism of doxorubicin cardiotoxicity via topoisomerase II β is established, the only FDA-approved agent for treatment is dexrazoxane. Liposomal doxorubicin can potentially improve response and decrease the development of heart failure due to microscopic liposomes that can accumulate and penetrate only tumor vasculature. Supplements that enhance mitochondrial biogenesis are also shown to improve doxorubicin-induced cardiotoxicity. Other agents, such as JR-311, ICRF-193, and ursolic acid, could potentially become new treatment options. Proteasome inhibitors, novel agents, have significantly improved survival rates among multiple myeloma patients. They act on a proteasome system that is highly active in cardiomyocytes and activates various molecular cascades in malignant cells, as well as in the heart, through nuclear factor kappa B (NF-kB), endoplasmic reticulum (ER), calcineurin-nuclear factor of activated T-cells (NFAT), and adenosine monophosphate-activated protein kinase (AMPKa)/autophagy pathways. Metformin, apremilast, and rutin have shown positive results in animal studies and may become a promising therapy as cardioprotective agents. This article aims to highlight the main molecular mechanisms of heart failure among patients with multiple myeloma and potential treatment options to facilitate the development and research of new preventive strategies. Hence, this will have a positive impact on life expectancy in patients with multiple myeloma.
Collapse
Affiliation(s)
- Ekaterina Proskuriakova
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Keji Jada
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Anwar Khedr
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bandana Neupane
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry, Psychotherapy and Research Field, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
25
|
Liu C, Zhou J, Wang B, Zheng Y, Liu S, Yang W, Li D, He S, Lin J. Bortezomib alleviates myocardial ischemia reperfusion injury via enhancing of Nrf2/HO-1 signaling pathway. Biochem Biophys Res Commun 2021; 556:207-214. [PMID: 33848935 DOI: 10.1016/j.bbrc.2021.03.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 01/02/2023]
Abstract
Bortezomib is a classical proteasome inhibitor and previous researches have reported its roles of anti-oxidation and anti-inflammatory functions in various diseases. However, the role of Bortezomib in myocardial ischemia reperfusion injury (MIRI) is unclear. Thus, our research seeks to reveal the protective effects of Bortezomib pretreatment in the mice model of MIRI. First, by the optimization of Bortezomib concentration and pretreatment timepoints, we found that 0.5 mg/kg Bortezomib pretreatment 2 h before MIRI significantly attenuated pathological damage and neutrophil infiltration. Then we found that pretreatment with Bortezomib obviously increased myocardial systolic function ((left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS)) and decreased infarct size, as well as serum Troponin T levels. Meanwhile, Bortezomib pretreatment also remarkably augmented oxidative stress related protein levels of Superoxide dismutase [Cu-Zn] (SOD1), Catalase (CAT) and Glutathione (GSH), while reactive oxygen species (ROS) contents and Malonaldehyde (MDA) protein level were significantly reduced. Mechanistically, Bortezomib pretreatment significantly promoted nuclear translocation of transcriptional factor nuclear factor erythroid 2-related factor 2(Nrf2) and Heme Oxygenase 1(HO-1) expression. Interestingly, co-treatment with ML-385, a new type and selective Nrf2 inhibitor, counteracted antioxidative effects induced by Bortezomib pretreatment. In conclusion, Bortezomib pretreatment mitigates MIRI by inhibiting oxidative damage which is regulated by Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Chengxing Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangwei Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Mamoshina P, Rodriguez B, Bueno-Orovio A. Toward a broader view of mechanisms of drug cardiotoxicity. CELL REPORTS MEDICINE 2021; 2:100216. [PMID: 33763655 PMCID: PMC7974548 DOI: 10.1016/j.xcrm.2021.100216] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotoxicity, defined as toxicity that affects the heart, is one of the most common adverse drug effects. Numerous drugs have been shown to have the potential to induce lethal arrhythmias by affecting cardiac electrophysiology, which is the focus of current preclinical testing. However, a substantial number of drugs can also affect cardiac function beyond electrophysiology. Within this broader sense of cardiotoxicity, this review discusses the key drug-protein interactions known to be involved in cardiotoxic drug response. We cover adverse effects of anticancer, central nervous system, genitourinary system, gastrointestinal, antihistaminic, anti-inflammatory, and anti-infective agents, illustrating that many share mechanisms of cardiotoxicity, including contractility, mitochondrial function, and cellular signaling.
Collapse
Affiliation(s)
| | - Blanca Rodriguez
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Alfonso Bueno-Orovio
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life (Basel) 2020; 10:life10120344. [PMID: 33322351 PMCID: PMC7763613 DOI: 10.3390/life10120344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-related cardiac dysfunction, also known as cardiotoxicity, is a group of drug-related adverse events negatively affecting myocardial structure and functions in patients who received chemotherapy for cancer treatment. Clinical manifestations can vary from life-threatening arrythmias to chronic conditions, such as heart failure or hypertension, which dramatically reduce quality of life of cancer survivors. Standard chemotherapy exerts its toxic effect mainly by inducing oxidative stress and genomic instability, while new targeted therapies work by interfering with signaling pathways important not only in cancer cells but also in myocytes. For example, Bruton’s tyrosine kinase (BTK) inhibitors interfere with class I phosphoinositide 3-kinase isoforms involved in cardiac hypertrophy, contractility, and regulation of various channel forming proteins; thus, off-target effects of BTK inhibitors are associated with increased frequency of arrhythmias, such as atrial fibrillation, compared to standard chemotherapy. In this review, we summarize current knowledge of cardiotoxic effects of targeted therapies used in hematology.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672-493
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- IRCCS Neuromed (Mediterranean Neurological Institute), 86077 Pozzilli, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
28
|
Ling Y, Li R, Zhong J, Zhao Y, Chen Z. Ixazomib-associated cardiovascular adverse events in multiple myeloma: a systematic review and meta-analysis. Drug Chem Toxicol 2020; 45:1443-1448. [PMID: 33108916 DOI: 10.1080/01480545.2020.1835945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prolonged survival and expanded treatment options in myeloma patients have led to adverse events associated with treatment getting increased attention. This systematic review and meta-analysis aimed to determine the incidence of ixazomib-associated cardiovascular adverse events (CVAEs) and to compare the rates of ixazomib-associated CVAEs and related therapies. CVAEs were defined as heart failure, hypertension, ischemia, and arrhythmia. All-grade and high-grade CVAEs and study characteristics were recorded. A total of 266 potentially relevant articles were identified, and 246 were excluded after review. Twenty studies of 1715 patients with multiple myeloma were thus considered in this study. The estimated rates of all-grade and high-grade ixazomib associated CVAEs were 11.2 and 3.7%, respectively. Subgroup analysis showed that median age ≥65 years, none phase 1 trial and combination regimen were associated with higher rates of high-grade ixazomib associated CVAEs. Ixazomib was association with increased high-grade CVAEs risk (RR = 1.679, 95% CI: 1.078-2.615, P = 0.022). Ixazomib was associated with a significant rate of high-grade CVAEs. Future studies are needed to identify patients at high risk for high-grade CVAEs.
Collapse
Affiliation(s)
- Yiwen Ling
- Department of Hematology, First People's Hospital of Foshan, Foshan, China
| | - Rui Li
- Department of Internal Medicine, Foshan Maternal and Child Health Hospital, Foshan, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University, Guangdong, China
| | - Ying Zhao
- Department of Hematology, First People's Hospital of Foshan, Foshan, China
| | - Zhuowen Chen
- Department of Hematology, First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
29
|
The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res 2020; 163:105248. [PMID: 33065283 DOI: 10.1016/j.phrs.2020.105248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.
Collapse
|
30
|
Rassaf T, Totzeck M, Backs J, Bokemeyer C, Hallek M, Hilfiker-Kleiner D, Hochhaus A, Lüftner D, Müller OJ, Neudorf U, Pfister R, von Haehling S, Lehmann LH, Bauersachs J. Onco-Cardiology: Consensus Paper of the German Cardiac Society, the German Society for Pediatric Cardiology and Congenital Heart Defects and the German Society for Hematology and Medical Oncology. Clin Res Cardiol 2020; 109:1197-1222. [PMID: 32405737 PMCID: PMC7515958 DOI: 10.1007/s00392-020-01636-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
The acute and long-lasting side effects of modern multimodal tumour therapy significantly impair quality of life and survival of patients afflicted with malignancies. The key components of this therapy include radiotherapy, conventional chemotherapy, immunotherapy and targeted therapies. In addition to established tumour therapy strategies, up to 30 new therapies are approved each year with only incompletely characterised side effects. This consensus paper discusses the risk factors that contribute to the development of a potentially adverse reaction to tumour therapy and, in addition, defines specific side effect profiles for different treatment groups. The focus is on novel therapeutics and recommendations for the surveillance and treatment of specific patient groups.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre Essen, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre Essen, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Johannes Backs
- Institute for Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Centre for Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany
| | | | - Andreas Hochhaus
- Department of Hematology and Medical Oncology, University Hospital Jena, Jena, Germany
| | - Diana Lüftner
- Department of Haematology, Oncology and Tumour Immunology, Charité, Humboldt University Berlin, Berlin, Germany
| | - Oliver J Müller
- Department of Internal Medicine III (Cardiology, Angiology and Internal Intensive Care Medicine), University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Ulrich Neudorf
- Department of Pediatrics III, West German Heart and Vascular Centre Essen, University Hospital Essen, Essen, Germany
| | - Roman Pfister
- Clinic III for Internal Medicine, General and Interventional Cardiology, Electrophysiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Hospital Cologne, Cologne, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Heart Center Göttingen, University of Göttingen Medical Center and German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lorenz H Lehmann
- Department of Cardiology, Angiology, Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
32
|
Sampat PJ, Martinez F, Riaz S, Aiello D. Bortezomib Plus Melphalan-Induced Cardiomyopathy Presenting as Sinus Tachycardia and Systolic Heart Failure. Cureus 2020; 12:e9488. [PMID: 32775113 PMCID: PMC7402422 DOI: 10.7759/cureus.9488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Chemotherapy-induced cardiotoxicity is a known condition, however, bortezomib and melphalan do not typically cause cardiotoxicity. With the rise in the use of newer chemotherapeutic agents, it is important to identify and understand the cardiac implications of chemotherapeutic agents. We present a case of a 70-year-old female with no known significant cardiac history presenting with partially reversible cardiomyopathy with initial presentation only being as sinus tachycardia.
Collapse
|
33
|
Wu P, Oren O, Gertz MA, Yang EH. Proteasome Inhibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Curr Oncol Rep 2020; 22:66. [DOI: 10.1007/s11912-020-00931-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
35
|
Sandy EB, Weerasinghe C, Terjanian T. Carfilzomib Induced Tumor Lysis Syndrome and Other Adverse Events. J Pharm Pract 2020; 33:213-216. [DOI: 10.1177/0897190018802129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the area of multiple myeloma (MM) therapy, proteasome inhibitors (PI) have emerged with promising responses both in the first- and second-line setting. Carfilzomib (CFZ) is a second-generation, selective PI approved in 2012 for the treatment of relapsed/refractory multiple myeloma (RRMM) in patients who received 2 prior therapies or have evidence of disease progression within 60 days of completion of last therapy. Its safety profile reported adverse events (AEs) ranging from drug-related AEs (nausea and vomiting), hematologic AEs (neutropenia and thrombocytopenia), and nonhematologic AEs (electrolyte imbalances). As CFZ use is gaining popularity, various hematological, renal, cardiovascular, pulmonary, and neurological toxicities have been reported. We are presenting this case to describe a rare occurrence of tumor lysis syndrome (TLS) with the use of this novel targeted therapy.
Collapse
Affiliation(s)
- El Bitar Sandy
- Department of Internal Medicine, Northwell Health Staten Island University Hospital, Staten Island, NY, USA
| | - Chanudi Weerasinghe
- Department of Hematology and Oncology, Northwell Health Staten Island University Hospital, Staten Island, NY, USA
| | - Terenig Terjanian
- Department of Hematology and Oncology, Northwell Health Staten Island University Hospital, Staten Island, NY, USA
| |
Collapse
|
36
|
In vitro and in vivo investigation of cardiotoxicity associated with anticancer proteasome inhibitors and their combination with anthracycline. Clin Sci (Lond) 2019; 133:1827-1844. [PMID: 31409729 DOI: 10.1042/cs20190139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023]
Abstract
Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several in vitro studies on immature cardiomyocytes. In the present study, we investigated the toxicity of clinically used PIs alone (bortezomib (BTZ), carfilzomib (CFZ)) as well as their combinations with an ANT (daunorubicin (DAU)) in both neonatal and adult ventricular cardiomyocytes (NVCMs and AVCMs) and in a chronic rabbit model of DAU-induced HF. Using NVCMs, we found significant cytotoxicity of both PIs around their maximum plasma concentration (cmax) as well as significant augmentation of DAU cytotoxicity. In AVCMs, BTZ did not induce significant cytotoxicity in therapeutic concentrations, whereas the toxicity of CFZ was significant and more profound. Importantly, neither PI significantly augmented the cardiotoxicity of DAU despite even more profound proteasome-inhibitory activity in AVCMs compared with NVCMs. Furthermore, in young adult rabbits, no significant augmentation of chronic ANT cardiotoxicity was noted with respect to any functional, morphological, biochemical or molecular parameter under study, despite significant inhibition of myocardial proteasome activity. Our experimental data show that combination of PIs with ANTs is not accompanied by an exaggerated risk of cardiotoxicity and HF in young adult animal cardiomyocytes and hearts.
Collapse
|
37
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
38
|
Left ventricular diastolic function as a possible predictor of severe carfilzomib-induced cardiovascular events. Blood Adv 2019; 3:1725-1728. [PMID: 31171510 DOI: 10.1182/bloodadvances.2019000247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
|
39
|
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez‐Vizarra E, Rehling P, Dadlez M, Zeviani M, Chacinska A. Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med 2019; 11:emmm.201809561. [PMID: 30885959 PMCID: PMC6505684 DOI: 10.15252/emmm.201809561] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.
Collapse
Affiliation(s)
- Karthik Mohanraj
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,ReMedy International Research Agenda UnitCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Michal Wasilewski
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Dominik Cysewski
- Mass Spectrometry LabDepartment of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Jaroslaw Poznanski
- Department of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Paulina Sakowska
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Zaneta Bugajska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Markus Deckers
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany
| | - Sven Dennerlein
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany
| | | | - Peter Rehling
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany,Max Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Michal Dadlez
- Mass Spectrometry LabDepartment of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,ReMedy International Research Agenda UnitCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| |
Collapse
|
40
|
Braumann S, Baldus S, Pfister R. Molecular mechanisms underlying cardiotoxicity of novel cancer therapeutics. J Thorac Dis 2019; 10:S4335-S4343. [PMID: 30701101 DOI: 10.21037/jtd.2018.10.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Novel cancer therapeutics contribute to a steadily declining cancer mortality. However, several of these new therapies target pathways also involved in the cardiovascular system thus causing cardiotoxic side effects such as chemotherapy-induced heart failure (CIHF). This might limit the applicability of these effective treatments in a relevant number of patients. Furthermore, given the improving cancer survival rates, chemotherapy-induced cardiotoxic complications receive increasing attention given their potential impact on long-term morbidity and mortality. The understanding of molecular mechanisms that underlie CIHF is crucial for future improvement of pharmacodynamics of these therapeutics but also for developing specific interventions to prevent CIHF. Here, we discuss molecular mechanisms underlying CIHF of novel cancer therapeutics including a short synopsis on clinical management of patients suffering from CIHF.
Collapse
Affiliation(s)
- Simon Braumann
- Department of Cardiology, Heart Center, University of Cologne, Cologne Cardiovascular Research Center, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center, University of Cologne, Cologne Cardiovascular Research Center, Cologne, Germany
| | - Roman Pfister
- Department of Cardiology, Heart Center, University of Cologne, Cologne Cardiovascular Research Center, Cologne, Germany
| |
Collapse
|
41
|
Guha A, Armanious M, Fradley MG. Update on cardio-oncology: Novel cancer therapeutics and associated cardiotoxicities. Trends Cardiovasc Med 2019; 29:29-39. [DOI: 10.1016/j.tcm.2018.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
|
42
|
Hungria VTDM, Crusoé EDQ, Bittencourt RI, Maiolino A, Magalhães RJP, Sobrinho JDN, Pinto JV, Fortes RC, Moreira EDS, Tanaka PY. New proteasome inhibitors in the treatment of multiple myeloma. Hematol Transfus Cell Ther 2019; 41:76-83. [PMID: 30793108 PMCID: PMC6371737 DOI: 10.1016/j.htct.2018.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023] Open
Abstract
The treatment of patients with relapsed and/or refractory multiple myeloma has improved considerably in the last 15 years, after the introduction of proteasome inhibitors and immunomodulatory drugs. The first clinical trials with new proteasome inhibitors have produced exciting results, particularly those comparing triplet regimens with standard doublet regimens, with a gain in progression-free survival accompanied by an acceptable safety profile and either similar or better health-related quality of life. New proteasome inhibitors hold the potential to fill unmet needs in multiple myeloma management regarding improvement of clinical outcomes, including delayed progression of disease in high-risk patients. This review summarizes the main pharmacological properties and clinical outcomes of these agents, and discusses their potential to change the whole multiple myeloma therapeutic landscape.
Collapse
Affiliation(s)
| | - Edvan de Queiroz Crusoé
- Universidade Federal da Bahia, Hospital Universitário Professor Edgar Santos, Serviço de Hematologia, Salvador, BA, Brazil
| | | | - Angelo Maiolino
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Heckmann MB, Doroudgar S, Katus HA, Lehmann LH. Cardiovascular adverse events in multiple myeloma patients. J Thorac Dis 2018; 10:S4296-S4305. [PMID: 30701098 PMCID: PMC6328391 DOI: 10.21037/jtd.2018.09.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease, caused by an uncontrolled clonal proliferation of a specific group of white blood cells, the plasma cells. Clinical manifestations include bone pain due to osteolysis, hypercalcemia, anemia, and renal insufficiency. Proteasome inhibitors have substantially improved survival of patients suffering from multiple myeloma, providing an efficient treatment option mainly for relapsed and refractory multiple myeloma. Although constituting one substance class, bortezomib, carfilzomib, and ixazomib differ greatly regarding their non-hematologic side effects. This article reviews the clinical and preclinical data on approved proteasome inhibitors in an attempt to decipher the underlying pathomechanisms related to cardiovascular adverse events seen in clinical trials.
Collapse
Affiliation(s)
- Markus B. Heckmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Heitner SB, Minnier J, Naher A, Van Woerkom RC, Ritts A, Ferencik M, Broberg C, Medvedova E, Silbermann R, Scott EC. Bortezomib-based Chemotherapy for Multiple Myeloma Patients Without Comorbid Cardiovascular Disease Shows No Cardiotoxicity. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:796-802. [PMID: 30217616 DOI: 10.1016/j.clml.2018.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proteasome inhibitors used in the treatment of multiple myeloma act primarily through the disruption of intrinsic cellular protein quality maintenance, resulting in proteotoxic stress, cellular dysfunction, and, ultimately, cell death. We assessed whether evidence has shown off-target myocardial dysfunction related to the administration of bortezomib-based chemotherapy for multiple myeloma. PATIENTS AND METHODS Patients aged 18 to 70 years who were free of significant cardiovascular disease were included. They underwent evaluations before and after each dose of bortezomib to assess for clinical, subclinical, and transient cardiotoxicity using echocardiography and serum biomarker measurement. Cardiac magnetic resonance imaging was performed at 3 separately defined intervals. The primary modality for determining subclinical myocardial dysfunction was echocardiographic assessment of the global longitudinal strain (GLS). RESULTS Eleven patients (7 men) with an average age of 55 years were included. No evidence of cumulative myocardial dysfunction was found using echocardiographic markers, primarily GLS (average change in absolute GLS, -1.17; P = .064). Additionally, no echocardiographic evidence of transient cardiotoxicity was found. The left ventricular ejection fraction (LVEF) also did not show any significant changes (ΔLVEF, -2.17%; P = .15). Magnetic resonance imaging confirmed no changes in structure or function (ΔLVEF, -2.6%; P = .54) and extracellular volume fraction (Δ = 2%; P = .46). The serum biomarker levels also did not change significantly over time. CONCLUSION We did not observe cardiotoxicity from bortezomib-based chemotherapy despite very intensive evaluation with multiple modalities. Neither cumulative nor transient alterations were found in our metrics, suggesting that bortezomib is safe from a cardiovascular standpoint for patients free of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen B Heitner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR.
| | - Jessica Minnier
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR; OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| | - Aynun Naher
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Ryan C Van Woerkom
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Alexandra Ritts
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Craig Broberg
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Eva Medvedova
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| | - Rebecca Silbermann
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| | - Emma C Scott
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| |
Collapse
|
45
|
Dorsch LM, Schuldt M, Knežević D, Wiersma M, Kuster DWD, van der Velden J, Brundel BJJM. Untying the knot: protein quality control in inherited cardiomyopathies. Pflugers Arch 2018; 471:795-806. [PMID: 30109411 PMCID: PMC6475634 DOI: 10.1007/s00424-018-2194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins, and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensatory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Maike Schuldt
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Dora Knežević
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Marit Wiersma
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Burkhart T, Keith MCL, Lenneman CAG, Fernando RR. Bortezomib-Induced Cardiac Tamponade in a 49-Year-Old Man. Tex Heart Inst J 2018; 45:260-263. [PMID: 30374242 DOI: 10.14503/thij-17-6242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proteasome inhibitors such as bortezomib and carfilzomib have been used effectively to treat patients who have certain hematologic malignancies. Proteasome activity is elevated in the heart, and potent inhibition results in accumulation of misfolded intracellular protein aggregates and apoptosis. Heart failure, conduction disturbances, and premature atherosclerosis have been associated with bortezomib therapy. We describe the case of a 49-year-old man who was taking bortezomib for graft-versus-host disease, when he developed cardiac tamponade and needed emergency pericardiocentesis. At that time, there was no evidence of graft-versus-host disease. To our knowledge, this is the first time that a pericardial effusion without underlying cardiac dysfunction has been reported in relation to bortezomib therapy. The diagnosis of pericardial effusion during bortezomib therapy, the absence of other causative agents-including graft-versus-host disease-and no recurrence of pericardial effusion after discontinuing bortezomib therapy suggest that bortezomib caused our patient's tamponade.
Collapse
|
47
|
Bringhen S, Milan A, Ferri C, Wäsch R, Gay F, Larocca A, Salvini M, Terpos E, Goldschmidt H, Cavo M, Petrucci MT, Ludwig H, Auner HW, Caers J, Gramatzki M, Boccadoro M, Einsele H, Sonneveld P, Engelhardt M. Cardiovascular adverse events in modern myeloma therapy - Incidence and risks. A review from the European Myeloma Network (EMN) and Italian Society of Arterial Hypertension (SIIA). Haematologica 2018; 103:1422-1432. [PMID: 30049825 PMCID: PMC6119131 DOI: 10.3324/haematol.2018.191288] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease in patients with multiple myeloma may derive from factors unrelated to the disease (age, diabetes, dyslipidemia, obesity, prior cardiovascular diseases), related to the disease (cardiac AL-amyloidosis, hyperviscosity, high-output failure, arteriovenous shunting, anemia, renal dysfunction) and/or related to anti-myeloma treatment (anthracyclines, corticosteroids, alkylating agents, immunomodulatory drugs, proteasome inhibitors). Good knowledge of cardiovascular events, effective dose reductions, prevention and management of early and late cardiovascular side effects of chemotherapeutic agents are essential in current clinical practice. Myeloma experts are obliged to carefully balance the efficacy and toxicity of drugs for each individual patient. This review summarizes current data and novel insights into cardiovascular adverse events of today’s anti-myeloma treatment, focusing on carfilzomib, as a starting point for developing consensus recommendations on preventing and managing cardiovascular side effects in patients with multiple myeloma.
Collapse
Affiliation(s)
- Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Alberto Milan
- Department of Medical Sciences, Internal Medicine and Hypertension Division, University of Torino, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Italy; Rete Oncologica Piemontese, Italy
| | - Claudio Ferri
- University of L'Aquila, MeSVA Department, San Salvatore Hospital, Division of Internal Medicine & Nephrology, Coppito, Italy
| | - Ralph Wäsch
- Department of Medicine I, Hematology, Oncology & Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Alessandra Larocca
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Marco Salvini
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Evangelos Terpos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Greece
| | - Hartmut Goldschmidt
- Medizinische Klinik, Abteilung Innere Medizin V, Universitätsklinikum Heidelberg und National Centrum für Tumorerkrankungen (NCT), Heidelberg, Germany
| | - Michele Cavo
- "Seràgnoli" Institute of Hematology and Medical Oncology, University of Bologna, Italy
| | - Maria Teresa Petrucci
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Italy
| | - Heinz Ludwig
- 1. Medical Department and Oncology, Wilhelminenspital Wien, Austria
| | | | - Jo Caers
- Department of Hematology, Domaine University, Liege, Belgium
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, University of Kiel, Germany
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Germany
| | | | - Monika Engelhardt
- Department of Medicine I, Hematology, Oncology & Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | | |
Collapse
|
48
|
Gavazzoni M, Vizzardi E, Gorga E, Bonadei I, Rossi L, Belotti A, Rossi G, Ribolla R, Metra M, Raddino R. Mechanism of cardiovascular toxicity by proteasome inhibitors: New paradigm derived from clinical and pre-clinical evidence. Eur J Pharmacol 2018; 828:80-88. [DOI: 10.1016/j.ejphar.2018.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
|
49
|
Zhao F, Yang B, Wang J, Zhang R, Liu J, Yin F, Xu W, He C. Incidence and risk of cardiac toxicities in patients with relapsed and refractory multiple myeloma treated with carfilzomib. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1525-1531. [PMID: 29881259 PMCID: PMC5985801 DOI: 10.2147/dddt.s159818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose Carfilzomib has been approved for use in relapsed and refractory multiple myeloma (RRMM). Cardiac toxicities have been reported with the use of carfilzomib. We aimed to determine the overall incidence and risk of cardiac toxicities in RRMM patients treated with carfilzomib using a meta-analysis. Methods We searched several databases for relevant articles. Prospective trials evaluating carfilzomib in RRMM patients with adequate data on cardiac toxicities were included for analysis. Pooled incidence, Peto ORs, and 95% CIs were calculated according to the heterogeneity of selected studies. Results A total of 2,607 RRMM patients from eight prospective trials were included. The pooled incidence of all-grade congestive heart failure (CHF) and ischemic heart disease (IHD) related to carfilzomib in RRMM patients was 5.5% (95% CI: 4.3%–6.9%) and 2.7% (95% CI: 1.1%–6.7%), respectively. In addition, the use of carfilzomib significantly increased all-grade (Peto OR 2.33, 95% CI: 1.56–3.48, p<0.001) and high-grade (Peto OR 3.22, 95% CI: 1.84–5.61, p<0.001) CHF when compared to controls, whereas there was no significantly increased risk of developing all-grade (Peto OR 1.31, 95% CI: 0.79–2.18, p=0.30) and high-grade (Peto OR 1.41, 95% CI: 0.73–2.72, p=0.31) IHD in RRMM patients receiving carfilzomib. Conclusion The use of carfilzomib in RRMM patients significantly increases the risk of developing CHF but not IHD. Clinicians should be cautious about the risk of CHF associated with carfilzomib to maximize the benefits and minimize the toxicities.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Juan Wang
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Rui Zhang
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Jing Liu
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Fenglei Yin
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Weixing Xu
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Chunyuan He
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| |
Collapse
|
50
|
Abstract
The objective of this study was to assess the effects of proteasome inhibition on the development of burn-induced hypermetabolism. Rats underwent 30-40% total BSA scald burn or sham injury. The proteasome inhibitor bortezomib (0.1 mg/kg) or vehicle (n = 10) was administered i.p. 3× weekly starting at 2 hours (early bortezomib, n = 20) or 48 hours (late-bortezomib, n = 13) postburn. Body weights were determined weekly. Resting energy expenditures (REE) were measured at days 0 (baseline), 7, 14, 21, and 42 postburn. At day 42, blood and pectoral muscle were harvested. Routine blood chemistry parameters were analyzed. Proteasome content, proteasome peptidase activities, and ubiquitin-protein conjugates were measured in muscle extracts. As compared with sham-vehicle-treated animals, specific proteasome activities were increased after burn and vehicle treatment. Bortezomib treatment inhibited proteasome activities and increased ubiquitin-protein conjugates after sham and burn injury. Bortezomib treatment did not affect REE after sham procedure. REE significantly increased by 47% within 7 days and remained elevated until day 42 after burn and vehicle treatment. After early-bortezomib treatment, burn-induced increases in REE were delayed and significantly reduced by 42% at day 42, as compared with vehicle treatment. With late-bortezomib treatment, burn-induced increases in REE were also delayed but not attenuated at day 42. Mortality was 20% with vehicle, 65% (median survival time: 1.875 days) with early-bortezomib and 25% with late-bortezomib treatment after burns (P < .05 early-bortezomib vs vehicle and late-bortezomib). Proteasome inhibition delays development of burn-induced hypermetabolism. Although proteasome inhibition early after burn injury reduces the hypermetabolic response, it significantly increases early burn-associated mortality.
Collapse
|