1
|
Immobilization of Lactobacillus plantarum NCIMB 8826 ameliorates Citrobacter rodentium induced lesions and enhances the gut inflammatory response in C57BL/6 weanling mice. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractInfectious diarrhea is a major cause of infant mortality in most developing countries. In this research, we evaluated the potential of immobilized Lactobacillus plantarum NCIMB 8826 on weanimix infant cereal and its effectiveness in reducing the severity of Citrobacter rodentium-induced diarrhea in weanling mice. Thirty-six C57BL/6 weanling mice were placed into four groups (n = 9 each; negative, positive, prevention and cure). Mice received either L. plantarum (109 CFU/g) immobilized on weanimix infant cereal 3 days before C. rodentium (109 CFU/ ml) infection (Prevention) or 3 days after C. rodentium infection (Cure). A positive control group was infected with C. rodentium only, while a negative control group received neither L. plantarum nor C. rodentium. Positive control mice showed colonic mucosal and submucosal inflammation, erosion, and mucosal epithelia hyperplasia with the C. rodentium infection. Mice in the prevention and cure groups had less severe histologic alterations in the colon. Some beneficial effect of L. plantarum was observed in cecal short-chain fatty acid concentrations, which stimulates water and electrolytes absorption to reduce diarrhea. Our findings demonstrated that L. plantarum NCIMB 8826 could be immobilized on weanimix infant cereal to help reduce diarrhea during weaning.
Graphical Abstract
Collapse
|
2
|
Xue Y, Xu YF, Zhang B, Huang HB, Pan TX, Li JY, Tang Y, Shi CW, Wang N, Yang GL, Wang CF. Trichinella spiralis infection ameliorates the severity of Citrobacter rodentium-induced experimental colitis in mice. Exp Parasitol 2022; 238:108264. [PMID: 35523284 DOI: 10.1016/j.exppara.2022.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Trichinellosis is a food-borne zoonotic parasitic disease that causes serious harm to human health and the pig breeding industry. However, there are reports that Trichinella spiralis (T. spiralis) infection can treat autoimmune diseases, including enteritis and experimental autoimmune encephalitis (EAE). However, research on the mechanism of T. spiralis infection in infectious enteritis has not been fully elucidated. Therefore, this experiment used Citrobacter rodentium (C. rodentium) to induce colitis in mouse models and explored its underlying mechanisms. In this experiment, a total of 72 C57BL/6 mice were randomly divided into four groups. Experimental mice in the TS and TS + CR groups were orally inoculated with individual T. spiralis larvae. At 21 days postinfection (dpi) with T. spiralis, experimental animals in the CR and TS + CR groups were inoculated by orogastric gavage with C. rodentium. The control group received PBS only. The results indicated that the weight loss and macroscopic and microscopic colon damage of mice in the TS + CR group were significantly decreased compared with those observed in the CR group. The results of flow cytometry showed that the expression levels of IL-4, IL-10 and CD4+CD25+Foxp3+ Tregs were increased (P < 0.05), while the expression levels of IFN-γ, IL-12 and IL-17 were decreased in the spleens and MLNs of the TS + CR experimental mice compared with the colitis model mice. ELISA results revealed that the TS + CR group not only elicited a strong IgG1 response (P < 0.01) but also a low level of IgG2a response (P < 0.05) relative to the CR group. The above results demonstrated that prior exposure of mice to T. spiralis infection ameliorated the severity of C. rodentium-induced infectious colitis.
Collapse
Affiliation(s)
- Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yun-Fei Xu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yue Tang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Beukema M, Akkerman R, Jermendi É, Koster T, Laskewitz A, Kong C, Schols HA, Faas MM, de Vos P. Pectins that Structurally Differ in the Distribution of Methyl-Esters Attenuate Citrobacter rodentium-Induced Colitis. Mol Nutr Food Res 2021; 65:e2100346. [PMID: 34369649 PMCID: PMC9285458 DOI: 10.1002/mnfr.202100346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pectins have anti-inflammatory properties on intestinal immunity through direct interactions on Toll-like receptors (TLRs) in the small intestine or via stimulating microbiota-dependent effects in the large intestine. Both the degree of methyl-esterification (DM) and the distribution of methyl-esters (degree of blockiness; DB) of pectins contribute to this influence on immunity, but whether and how the DB impacts immunity through microbiota-dependent effects in the large intestine is unknown. Therefore, this study tests pectins that structurally differ in DB in a mouse model with Citrobacter rodentium induced colitis and studies the impact on the intestinal microbiota composition and associated attenuation of inflammation. METHODS AND RESULTS Both low and high DB pectins induce a more rich and diverse microbiota composition. These pectins also lower the bacterial load of C. rodentium in cecal digesta. Through these effects, both low and high DB pectins attenuate C. rodentium induced colitis resulting in reduced intestinal damage, reduced numbers of Th1-cells, which are increased in case of C. rodentium induced colitis, and reduced levels of GATA3+ Tregs, which are related to tissue inflammation. CONCLUSION Pectins prevent C. rodentium induced colonic inflammation by lowering the C. rodentium load in the caecum independently of the DB.
Collapse
Affiliation(s)
- Martin Beukema
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Renate Akkerman
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Éva Jermendi
- Laboratory of Food ChemistryWageningen University and ResearchWageningenThe Netherlands
| | - Taco Koster
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Anne Laskewitz
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Chunli Kong
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University and ResearchWageningenThe Netherlands
| | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
4
|
Yan Y, Li Y, Lv M, Li W, Shi HN. Role of p40 phox in host defense against Citrobacter rodentium infection. FEBS Open Bio 2021; 11:1476-1486. [PMID: 33780601 PMCID: PMC8091579 DOI: 10.1002/2211-5463.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
NADPH oxidase (NOX) is a membrane-bound enzyme complex that generates reactive oxygen species (ROS). Mutations in NOX subunit genes have been implicated in the pathogenesis of inflammatory bowel disease (IBD), indicating a crucial role for ROS in regulating host immune responses. In this study, we utilize genetically deficient mice to investigate whether defects in p40phox , one subunit of NOX, impair host immune response in the intestine and aggravate disease in an infection-based (Citrobacter rodentium) model of colitis. We show that p40phox deficiency does not increase susceptibility of mice to C. rodentium infection, as no differences in body weight loss, bacterial clearance, colonic pathology, cytokine production, or immune cell recruitment were observed between p40phox-/- and wild-type mice. Interestingly, higher IL-10 levels were observed in the supernatants of MLN cells and splenocytes isolated from infected p40phox -deficient mice. Further, a higher expression level of inducible nitric oxide synthase (iNOS) was also noted in mice lacking p40phox . In contrast to wild-type mice, p40phox-/- mice exhibited greater NO production after LPS or bacterial antigen re-stimulation. These results suggest that p40phox-/- mice do not develop worsened colitis. While the precise mechanisms are unclear, it may involve the observed alteration in cytokine responses and enhancement in levels of iNOS and NO.
Collapse
Affiliation(s)
- Yanyun Yan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationCollege of Life SciencesHunan Normal UniversityChangshaChina
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationCollege of Life SciencesHunan Normal UniversityChangshaChina
| | | | | | - Hai Ning Shi
- Mucosal Immunology and Biology Research CenterHarvard Medical SchoolMassachusetts General HospitalCharlestownMAUSA
| |
Collapse
|
5
|
Armstrong H, Bording-Jorgensen M, Chan R, Wine E. Nigericin Promotes NLRP3-Independent Bacterial Killing in Macrophages. Front Immunol 2019; 10:2296. [PMID: 31632394 PMCID: PMC6779719 DOI: 10.3389/fimmu.2019.02296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/11/2019] [Indexed: 01/23/2023] Open
Abstract
Altered microbiota has been associated with a number of diseases, including inflammatory bowel diseases, diabetes, and cancer. This dysregulation is thought to relate the host inflammatory response to enteric pathogens. Macrophages play a key role in host response to microbes and are involved in bacterial killing and clearance. This process is partially mediated through the potassium efflux-dependent, cytosolic, PYCARD-containing inflammasome protein complex. Surprisingly, we discovered an alternative mechanism for bacterial killing, independent of the NLRP3 inflammasome/PYCARD. Using the NLRP3 inflammasome-deficient Raw 264.7 and PYCARD-deficient J77 macrophages, which both lack PYCARD, we found that the potassium efflux activator nigericin enhances bacterial killing. Macrophage response to nigericin was examined by RT gene profiling and subsequent qPCR, which demonstrated altered expression of a series of genes involved in the IL-18 bacterial killing pathway. Based on our results we propose a model of bacterial killing, unrelated to NLRP3 inflammasome activation in macrophage cells. Improving understanding of the molecular pathways driving bacterial clearance within macrophage cells will aid in the development of novel immune-targeted therapeutics in a number of diseases.
Collapse
Affiliation(s)
- Heather Armstrong
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada
| | - Michael Bording-Jorgensen
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Richard Chan
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Escherichia coli K12: An evolving opportunistic commensal gut microbe distorts barrier integrity in human intestinal cells. Microb Pathog 2019; 133:103545. [PMID: 31112772 DOI: 10.1016/j.micpath.2019.103545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023]
Abstract
Commensal enteric microbes under specific conditions viz. immunocompromised system, altered microbiota or uncompetitive niche induce their otherwise dormant pathogenic phenotype to distort host cellular functioning. Here we investigate how under in vitro environment established by using Caco-2 cells, commensal gut microbe E. coli K12 (ATCC 14849) disrupt intestinal epithelial barrier function. Caco-2 cells exposed to E. coli showed the time dependent significant (P < 0.01) decrease in transepithelial electrical resistance (TEER) and concomitantly increased phenol red flux across cell monolayer in contrast to non infected control cells. E. coli infected intestinal cells were observed with suppressed (p < 0.05) mRNA levels of ZO-1, Claudin-1, Occludin and Cingulin-1 in contrast to significantly (p < 0.05) higher PIgR and hbd-2 mRNA fold changes. Immunofluorescent and electron micrographs revealed the disrupted distribution and localisation of specific tight junction proteins (Zo-1 and Claudin-1) and actin filament in E. coli infected Caco-2 cells that ultimately resulted in deformed cellular morphology. Taken together, E. coli K12 under compromised in vitro milieu disrupted the intestinal barrier functions by decreasing the expression of important tight junction genes along with the altered distribution of associated proteins that increased the intestinal permeability as reflected by phenol red flux and TEER values.
Collapse
|
7
|
Citrobacter rodentium alters the mouse colonic miRNome. Genes Immun 2018; 20:207-213. [PMID: 29728609 DOI: 10.1038/s41435-018-0026-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/11/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Citrobacter rodentium is a murine pathogen causing transmissible colonic hyperplasia and colitis with a pathogenic mechanism similar to foodborne enterohaemorrhagic Escherichia coli in humans. Mechanisms underlying intestinal responses to C. rodentium infection are incompletely understood. We identified 24 colonic microRNAs (miRNAs) as significantly deregulated in response to C. rodentium, including miR-7a, -17, -19a, -20a, -20b, -92a, -106a, -132, -200a, and -2137; most of these miRNAs belong to the oncogenic miR-17-92 clusters. Pathways involved in cell cycle, cancers, and immune responses were enriched among the predicted targets of these miRNAs. We further demonstrated that an apoptosis facilitator, Bim, is a candidate gene target of miRNA-mediated host response to the infection. These findings suggest that host miRNAs participate in C. rodentium pathogenesis and may represent novel treatment targets.
Collapse
|
8
|
Vitamin D deficiency predisposes to adherent-invasive Escherichia coli-induced barrier dysfunction and experimental colonic injury. Inflamm Bowel Dis 2015; 21:297-306. [PMID: 25590952 DOI: 10.1097/mib.0000000000000282] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adherent-invasive Escherichia coli (AIEC) colonization has been strongly implicated in the pathogenesis of Crohn's disease. Environmental triggers such as vitamin D deficiency have emerged as key factors in the pathogenesis of inflammatory bowel diseases. The aim of this study was to investigate the effects of 1,25(OH)2D3 on AIEC infection-induced changes in vivo and in vitro. METHODS Barrier function was assessed in polarized epithelial Caco-2-bbe cells grown in medium with or without vitamin D and challenged with AIEC strain LF82. Weaned C57BL/6 mice were fed either a vitamin D-sufficient or -deficient diet for 5 weeks and then infected with AIEC, in the absence and presence of low-dose dextran sodium sulphate. Disease severity was assessed by histological analysis and in vivo intestinal permeability assay. Presence of invasive bacteria was assessed by transmission electron microscopy. RESULTS Caco-2-bbe cells incubated with 1,25(OH)2D3 were protected against AIEC-induced disruption of transepithelial electrical resistance and tight-junction protein redistribution. Vitamin D-deficient C57BL/6 mice given a course of 2% dextran sodium sulphate exhibited pronounced epithelial barrier dysfunction, were more susceptible to AIEC colonization, and showed exacerbated colonic injury. Transmission electron microscopy of colonic tissue from infected mice demonstrated invasion of AIEC and fecal microbiome analysis revealed shifts in microbial communities. CONCLUSIONS These data show that vitamin D is able to mitigate the deleterious effects of AIEC on the intestinal mucosa, by maintaining intestinal epithelial barrier homeostasis and preserving tight-junction architecture. This study highlights the association between vitamin D status, dysbiosis, and Crohn's disease.
Collapse
|
9
|
Johnson-Henry KC, Pinnell LJ, Waskow AM, Irrazabal T, Martin A, Hausner M, Sherman PM. Short-chain fructo-oligosaccharide and inulin modulate inflammatory responses and microbial communities in Caco2-bbe cells and in a mouse model of intestinal injury. J Nutr 2014; 144:1725-33. [PMID: 25143376 DOI: 10.3945/jn.114.195081] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Few studies have focused on the ability of prebiotics to prevent pathogen-induced cellular changes or alter the composition of the intestinal microbiota in complimentary relevant cell and animal models of inflammatory bowel disease. OBJECTIVE The objective of this study was to determine if pretreatment with inulin and a short-chain fructo-oligosaccharide (sc-FOS) prevents enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection in Caco2-bbe epithelial cells and what effect 10% wt:v sc-FOS or inulin has on C57BL/6 mice under sham conditions or pretreatment with prebiotics before Citrobacter rodentium infection (10(8) colony-forming units). METHODS Actin rearrangement and tight junction protein (zona occludin-1) were examined with immunofluorescence. Barrier function was assessed by a fluorescent probe and by measuring transepithelial electrical resistance (TER). Alterations in cytokine gene expression and microbiome were assessed with quantitative reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization. Short-chain fatty acids (SCFAs) were measured by GC. RESULTS sc-FOS added to monolayers altered actin polymerization without affecting TER or permeability to a fluorescein isothiocyanate (FITC) probe, whereas inulin increased TER (P < 0.005) and altered actin arrangement without affecting FITC permeability. Neither prebiotic attenuated EHEC-induced decreases in barrier function. Prebiotics increased interleukin 10 (Il10) and transforming growth factor-β (Tgfβ) cytokine responses alone (P < 0.05) or with EHEC O157:H7 infection (P < 0.05) in vitro. Increases in tumor necrosis factor-α (Tnfα) (P < 0.05) and decreases in chemokine CXC motif ligand 8 (Cxcl8) (P < 0.05) expression were observed with prebiotic treatment prior to EHEC infection. No differences were noted in barrier function or cytokine responses in the absence or presence of C. rodentium in vivo. Alterations in microbiome were evident at 6 d and 10 d postinfection in treatment groups, but a change in C. rodentium load was not observed. Inulin and sc-FOS (P < 0.05) increased fecal SCFAs in the absence of infection. CONCLUSION This study provides new insights as to how prebiotics act in complementary in vitro and in vivo models of intestinal injury.
Collapse
Affiliation(s)
| | - Lee J Pinnell
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Alexandra M Waskow
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada; and
| | | | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Martina Hausner
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada; and
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada;
| |
Collapse
|
10
|
Alipour M, Lou Y, Zimmerman D, Bording-Jorgensen MW, Sergi C, Liu JJ, Wine E. A balanced IL-1β activity is required for host response to Citrobacter rodentium infection. PLoS One 2013; 8:e80656. [PMID: 24312491 PMCID: PMC3846666 DOI: 10.1371/journal.pone.0080656] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022] Open
Abstract
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.
Collapse
Affiliation(s)
- Misagh Alipour
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
| | - Yuefei Lou
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Zimmerman
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
| | - Michael W. Bording-Jorgensen
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Department of Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia J. Liu
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
MARCHELLETTA RONALDR, GAREAU MELANIEG, MCCOLE DECLANF, OKAMOTO SHARON, ROEL ELISE, KLINKENBERG RACHEL, GUINEY DONALDG, FIERER JOSHUA, BARRETT KIME. Altered expression and localization of ion transporters contribute to diarrhea in mice with Salmonella-induced enteritis. Gastroenterology 2013; 145:1358-1368.e1-4. [PMID: 24001788 PMCID: PMC3899031 DOI: 10.1053/j.gastro.2013.08.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Salmonella enterica serovar Typhimurium is an enteropathogen that causes self-limiting diarrhea in healthy individuals, but poses a significant health threat to vulnerable populations. Our understanding of the pathogenesis of Salmonella-induced diarrhea has been hampered by the lack of a suitable mouse model. After a dose of oral kanamycin, Salmonella-infected congenic BALB/c.D2(NrampG169) mice, which carry a wild-type Nramp1 gene, develop clear manifestations of diarrhea. We used this model to elucidate the pathophysiology of Salmonella-induced diarrhea. METHODS BALB /c.D2(NrampG169) mice were treated with kanamycin and then infected with wild-type or mutant Salmonella by oral gavage. Colon tissues were isolated and Ussing chambers, quantitative polymerase chain reaction, immunoblot, and confocal microscopy analyses were used to study function and expression of ion transporters and cell proliferation. RESULTS Studies with Ussing chambers demonstrated reduced basal and/or adenosine 3',5'-cyclic monophosphate-mediated electrogenic ion transport in infected colonic tissues, attributable to changes in chloride or sodium transport, depending on the segment studied. The effects of infection were mediated, at least in part, by effector proteins secreted by the bacterial Salmonella pathogenicity island 1- and Salmonella pathogenicity island-2-encoded virulence systems. Infected tissue showed reduced expression of the chloride-bicarbonate exchanger down-regulated in adenoma in surface colonic epithelial cells. Cystic fibrosis transmembrane conductance regulator was internalized in colonic crypt epithelial cells without a change in overall expression levels. Confocal analyses, densitometry, and quantitative polymerase chain reaction revealed that expression of epithelial sodium channel β was reduced in distal colons of Salmonella-infected mice. The changes in transporter expression, localization, and/or function were accompanied by crypt hyperplasia in Salmonella-infected mice. CONCLUSIONS Salmonella infection induces diarrhea by altering expression and/or function of transporters that mediate water absorption in the colon, likely reflecting the fact that epithelial cells have less time to differentiate into surface cells when proliferation rates are increased by infection.
Collapse
Affiliation(s)
- RONALD R. MARCHELLETTA
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - MELANIE G. GAREAU
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - DECLAN F. MCCOLE
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - SHARON OKAMOTO
- Department of Medicine, VA San Diego Medical Center, San Diego, California
| | - ELISE ROEL
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - RACHEL KLINKENBERG
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - DONALD G. GUINEY
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - JOSHUA FIERER
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California,Department of Medicine, VA San Diego Medical Center, San Diego, California
| | - KIM E. BARRETT
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Assi K, Bergstrom K, Vallance B, Owen D, Salh B. Requirement of epithelial integrin-linked kinase for facilitation of Citrobacter rodentium-induced colitis. BMC Gastroenterol 2013; 13:137. [PMID: 24024606 PMCID: PMC3848714 DOI: 10.1186/1471-230x-13-137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 09/06/2013] [Indexed: 12/31/2022] Open
Abstract
Background Integrin-linked kinase (ILK) is a serine-threonine kinase that transduces extracellular matrix-related cues into intracellular signals, with fundamental roles in cell motility, development and cancer. Recently ILK been shown to have an important role in bacterial epithelial cell attachment, through ILK-bacterial OspE binding. Here we report on the role of epithelial derived ILK in response to Citrobacter rodentium infection. Methods C. rodentium was administered to both control and intestinal epithelial cell ILK knockout mice. Histological inflammatory scores were assessed, and cytokines measured by ELISA as well as RT-PCR, in mouse colons. Bacterial colonization was determined by plating homogenates onto MacConkey agar, and immunofluorescence microscopy performed using anti-LPS and anti-Tir antibodies. Results ILK-ko mice exhibited reduced weight loss at 15 days post-infection (p < 0.01) and demonstrated reduced histological inflammatory scores (p < 0.01), reduced CCL2 and pro-inflammatory cytokines. This was not due to reduced colonization, but was associated with an altered pattern of C. rodentium bacterial migration. Attenuated fibronectin expression was found in the ILK-ko mice. C. rodentium exposure was shown to increase ILK expression in cell lines, and in murine epithelium in vivo. In ILK-ko mice reduced activation of ser473Akt and reduced crypt proliferation, together with reduced cyclin D1 expression were observed. Conclusions ILK influences the host response to C. rodentium -induced infection, independently of reduced colonization in the ILK knockout mice. The reduced inflammation and dramatically attenuated hyperplastic cryptal response to infection in this group, are at least in part the result of, the reduction in CCL2 and cyclin D1 expression respectively.
Collapse
Affiliation(s)
- Kiran Assi
- Division of Gastroenterology, Department of Medicine, The University of British Columbia, 5th Floor, 2775 Laurel Street, V5Z 1M9 Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
13
|
Mann EA, Harmel-Laws E, Cohen MB, Steinbrecher KA. Guanylate cyclase C limits systemic dissemination of a murine enteric pathogen. BMC Gastroenterol 2013; 13:135. [PMID: 24004613 PMCID: PMC3766218 DOI: 10.1186/1471-230x-13-135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023] Open
Abstract
Background Guanylate Cyclase C (GC-C) is an apically-oriented transmembrane receptor that is expressed on epithelial cells of the intestine. Activation of GC-C by the endogenous ligands guanylin or uroguanylin elevates intracellular cGMP and is implicated in intestinal ion secretion, cell proliferation, apoptosis, intestinal barrier function, as well as the susceptibility of the intestine to inflammation. Our aim was to determine if GC-C is required for host defense during infection by the murine enteric pathogen Citrobacter rodentium of the family Enterobacteriacea. Methods GC-C+/+ control mice or those having GC-C genetically ablated (GC-C−/−) were administered C. rodentium by orogastric gavage and analyzed at multiple time points up to post-infection day 20. Commensal bacteria were characterized in uninfected GC-C+/+ and GC-C−/− mice using 16S rRNA PCR analysis. Results GC-C−/− mice had an increase in C. rodentium bacterial load in stool relative to GC-C+/+. C. rodentium infection strongly decreased guanylin expression in GC-C+/+ mice and, to an even greater degree, in GC-C−/− animals. Fluorescent tracer studies indicated that mice lacking GC-C, unlike GC-C+/+ animals, had a substantial loss of intestinal barrier function early in the course of infection. Epithelial cell apoptosis was significantly increased in GC-C−/− mice following 10 days of infection and this was associated with increased frequency and numbers of C. rodentium translocation out of the intestine. Infection led to significant liver histopathology in GC-C−/− mice as well as lymphocyte infiltration and elevated cytokine and chemokine expression. Relative to naïve GC-C+/+ mice, the commensal microflora load in uninfected GC-C−/− mice was decreased and bacterial composition was imbalanced and included outgrowth of the Enterobacteriacea family. Conclusions This work demonstrates the novel finding that GC-C signaling is an essential component of host defense during murine enteric infection by reducing bacterial load and preventing systemic dissemination of attaching/effacing-lesion forming bacterial pathogens such as C. rodentium.
Collapse
Affiliation(s)
- Elizabeth A Mann
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
14
|
|
15
|
Rodrigues DM, Sousa AJ, Johnson-Henry KC, Sherman PM, Gareau MG. Probiotics are effective for the prevention and treatment of Citrobacter rodentium-induced colitis in mice. J Infect Dis 2012; 206:99-109. [PMID: 22430833 DOI: 10.1093/infdis/jis177] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Probiotics prevent disease induced by Citrobacter rodentium, a murine-specific enteric pathogen. Whether probiotics can be used to interrupt the infectious process following initiation of infection was determined. METHODS C57BL/6 adult and neonatal mice were challenged with C. rodentium, and a probiotic mixture containing Lactobacillus helveticus and Lactobacillus rhamnosus was provided 1 week before bacterial challenge, concurrently with infection, or 3 days and 6 days after infection. Mice were sacrificed 10 days after infection, and disease severity was assessed by histological analysis and in vivo intestinal permeability assay. Inflammatory pathways and the composition of the fecal microbiome were assessed in adult mice. RESULTS Preadministration and coadministration of probiotics ameliorated C. rodentium-induced barrier dysfunction, epithelial hyperplasia, and binding of the pathogen to host colonocytes in adults, with similar findings in neonatal mice. Upregulated tumor necrosis factor α and interferon γ transcripts were suppressed in the pretreated probiotic group, whereas interleukin 17 transcription was suppressed with probiotics given up to 3 days after infection. Probiotics promoted transcription of interleukin 10 and FOXP3, and increased follicular T-regulatory cells in pretreatment mice. C. rodentium infection resulted in an altered fecal microbiome, which was normalized with probiotic intervention. CONCLUSIONS This study provides evidence that probiotics can prevent illness and treat disease in an animal model of infectious colitis.
Collapse
Affiliation(s)
- David M Rodrigues
- Research Institute, Hospital for Sick Children, University of Toronto, Canada
| | | | | | | | | |
Collapse
|