1
|
Quintanal-Villalonga A, Kawasaki K, Redin E, Uddin F, Rakhade S, Durani V, Sabet A, Shafer M, Karthaus WR, Zaidi S, Zhan YA, Manoj P, Sridhar H, Kinyua D, Zhong H, Mello BP, Ciampricotti M, Bhanot UK, Linkov I, Qiu J, Patel RA, Morrissey C, Mehta S, Barnes J, Haffner MC, Socci ND, Koche RP, de Stanchina E, Molina-Pinelo S, Salehi S, Yu HA, Chan JM, Rudin CM. CDC7 inhibition impairs neuroendocrine transformation in lung and prostate tumors through MYC degradation. Signal Transduct Target Ther 2024; 9:189. [PMID: 39054323 PMCID: PMC11272780 DOI: 10.1038/s41392-024-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
Neuroendocrine (NE) transformation is a mechanism of resistance to targeted therapy in lung and prostate adenocarcinomas leading to poor prognosis. Up to date, even if patients at high risk of transformation can be identified by the occurrence of Tumor Protein P53 (TP53) and Retinoblastoma Transcriptional Corepressor 1 (RB1) mutations in their tumors, no therapeutic strategies are available to prevent or delay histological transformation. Upregulation of the cell cycle kinase Cell Division Cycle 7 (CDC7) occurred in tumors during the initial steps of NE transformation, already after TP53/RB1 co-inactivation, leading to induced sensitivity to the CDC7 inhibitor simurosertib. CDC7 inhibition suppressed NE transdifferentiation and extended response to targeted therapy in in vivo models of NE transformation by inducing the proteasome-mediated degradation of the MYC Proto-Oncogen (MYC), implicated in stemness and histological transformation. Ectopic overexpression of a degradation-resistant MYC isoform reestablished the NE transformation phenotype observed on targeted therapy, even in the presence of simurosertib. CDC7 inhibition also markedly extended response to standard cytotoxics (cisplatin, irinotecan) in lung and prostate small cell carcinoma models. These results nominate CDC7 inhibition as a therapeutic strategy to constrain lineage plasticity, as well as to effectively treat NE tumors de novo or after transformation. As simurosertib clinical efficacy trials are ongoing, this concept could be readily translated for patients at risk of transformation.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Kenta Kawasaki
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Swanand Rakhade
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vidushi Durani
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Amin Sabet
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Moniquetta Shafer
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harsha Sridhar
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dennis Kinyua
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhong
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barbara P Mello
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umesh K Bhanot
- Pathology Core Facility, Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, USA
| | - Irina Linkov
- Pathology Core Facility, Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, USA
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Radhika A Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sanjoy Mehta
- Gene Editing & Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesse Barnes
- Gene Editing & Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nicholas D Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, Seville, Spain
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helena A Yu
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Joseph M Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
3
|
Kim SJ, Maric C, Briu LM, Fauchereau F, Baldacci G, Debatisse M, Koundrioukoff S, Cadoret JC. Firing of Replication Origins Is Disturbed by a CDK4/6 Inhibitor in a pRb-Independent Manner. Int J Mol Sci 2023; 24:10629. [PMID: 37445805 DOI: 10.3390/ijms241310629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last decade, CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have emerged as promising anticancer drugs. Numerous studies have demonstrated that CDK4/6 inhibitors efficiently block the pRb-E2F pathway and induce cell cycle arrest in pRb-proficient cells. Based on these studies, the inhibitors have been approved by the FDA for treatment of advanced hormonal receptor (HR) positive breast cancers in combination with hormonal therapy. However, some evidence has recently shown unexpected effects of the inhibitors, underlining a need to characterize the effects of CDK4/6 inhibitors beyond pRb. Our study demonstrates how palbociclib impairs origin firing in the DNA replication process in pRb-deficient cell lines. Strikingly, despite the absence of pRb, cells treated with palbociclib synthesize less DNA while showing no cell cycle arrest. Furthermore, this CDK4/6 inhibitor treatment disturbs the temporal program of DNA replication and reduces the density of replication forks. Cells treated with palbociclib show a defect in the loading of the Pre-initiation complex (Pre-IC) proteins on chromatin, indicating a reduced initiation of DNA replication. Our findings highlight hidden effects of palbociclib on the dynamics of DNA replication and of its cytotoxic consequences on cell viability in the absence of pRb. This study provides a potential therapeutic application of palbociclib in combination with other drugs to target genomic instability in pRB-deficient cancers.
Collapse
Affiliation(s)
- Su-Jung Kim
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
- CNRS UMR9019, Institut Gustave Roussy, 94805 Villejuif, France
| | - Chrystelle Maric
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Lina-Marie Briu
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Fabien Fauchereau
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Giuseppe Baldacci
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Michelle Debatisse
- CNRS UMR9019, Institut Gustave Roussy, 94805 Villejuif, France
- Sorbonne Université, 75005 Paris, France
| | - Stéphane Koundrioukoff
- CNRS UMR9019, Institut Gustave Roussy, 94805 Villejuif, France
- Sorbonne Université, 75005 Paris, France
| | | |
Collapse
|
4
|
Identifying CDC7 as a synergistic target of chemotherapy in resistant small-cell lung cancer via CRISPR/Cas9 screening. Cell Death Dis 2023; 9:40. [PMID: 36725843 PMCID: PMC9892530 DOI: 10.1038/s41420-023-01315-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
There is currently a lack of efficacious treatments for patients with chemo-resistant small-cell lung cancer (SCLC), leading to poor prognoses. We examined a chemo-resistant SCLC cell line using genome-wide CRISPR/Cas9 screening and identified serine/threonine kinase cell division cycle 7 (CDC7) as a potential synergistic target. Silencing CDC7 in chemo-resistant SCLC cells decreased the IC50 and improved the efficacy of chemotherapy. Based on the highest single agent model, the CDC7 inhibitor XL413 had a synergistic effect with both cisplatin and etoposide in chemo-resistant SCLC cells, but had no such effect in chemo-sensitive SCLC cells; the combination of XL413 and chemotherapy significantly inhibited cell growth. Western blot and flow cytometry showed that the combined treatments increased apoptosis, whereas XL413 alone had little effect on apoptosis. An analysis of cell cycle and cyclin protein levels indicated that the combination of XL413 and chemotherapy-induced G1/S phase arrest and DNA damage in chemo-resistant SCLC cells. Xenografted tumor and histoculture drug response assays using patient-derived xenografts showed that XL413 improved the efficacy of chemotherapy in vivo and with SCLC tissues. These results suggest that XL413 exerts a synergistic effect with chemotherapy on chemo-resistant SCLC.
Collapse
|
5
|
Chava S, Bugide S, Malvi P, Gupta R. Co-targeting of specific epigenetic regulators in combination with CDC7 potently inhibit melanoma growth. iScience 2022; 25:104752. [PMID: 35942091 PMCID: PMC9356103 DOI: 10.1016/j.isci.2022.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melanoma is a highly aggressive skin cancer that frequently metastasizes, but current therapies only benefit some patients. Here, we demonstrate that the serine/threonine kinase cell division cycle 7 (CDC7) is overexpressed in melanoma, and patients with higher expression have shorter survival. Transcription factor ELK1 regulates CDC7 expression, and CDC7 inhibition promotes cell cycle arrest, senescence, and apoptosis, leading to inhibition of melanoma tumor growth and metastasis. Our chemical genetics screen with epigenetic inhibitors revealed stronger melanoma tumor growth inhibition when XL413 is combined with the EZH2 inhibitor GSK343 or BRPF1/2/3 inhibitor OF1. Mechanistically, XL413 with GSK343 or OF1 synergistically altered the expression of tumor-suppressive genes, leading to higher apoptosis than the single agent alone. Collectively, these results identify CDC7 as a driver of melanoma tumor growth and metastasis that can be targeted alone or in combination with EZH2 or BRPF1/2/3 inhibitors.
Collapse
Affiliation(s)
- Suresh Chava
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
6
|
Suski JM, Ratnayeke N, Braun M, Zhang T, Strmiska V, Michowski W, Can G, Simoneau A, Snioch K, Cup M, Sullivan CM, Wu X, Nowacka J, Branigan TB, Pack LR, DeCaprio JA, Geng Y, Zou L, Gygi SP, Walter JC, Meyer T, Sicinski P. CDC7-independent G1/S transition revealed by targeted protein degradation. Nature 2022; 605:357-365. [PMID: 35508654 PMCID: PMC9106935 DOI: 10.1038/s41586-022-04698-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Nalin Ratnayeke
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wojciech Michowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Geylani Can
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Konrad Snioch
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mikolaj Cup
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Sullivan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaoji Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joanna Nowacka
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lindsey R Pack
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tobias Meyer
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Alcohol consumption, blood DNA methylation and breast cancer: a Mendelian randomisation study. Eur J Epidemiol 2022; 37:701-712. [PMID: 35708873 PMCID: PMC9329409 DOI: 10.1007/s10654-022-00886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
Alcohol intake is thought to be a risk factor for breast cancer, but the causal relationship and carcinogenic mechanisms are not clear. We performed an up-to-date meta-analysis of prospective studies to assess observational association, and then conducted MR analysis to make causal inference based on the genetic predisposition to alcohol consumption ("drinks per week") and pathological drinking behaviours ("alcohol use disorder" and "problematic alcohol use"), as well as genetically predicted DNA methylation at by alcohol-related CpG sites in blood. We found an observational dose-response association between alcohol intake and breast cancer incidence with an additional risk of 4% for per 10 g/day increase in alcohol consumption. Genetic predisposition to alcohol consumption ("drinks per week") was not causally associated with breast cancer incidence at the OR of 1.01 (95% CI 0.84, 1.23), but problematic alcohol use (PAU) was linked to a higher breast cancer risk at the OR of 1.76 (95% CI 1.04, 2.99) when conditioning on alcohol consumption. Epigenetic MR analysis identified four CpG sites, cg03260624 near CDC7 gene, cg10816169 near ZNF318 gene, cg03345232 near RIN3 gene, and cg26312998 near RP11-867G23.13 gene, where genetically predicted epigenetic modifications were associated with an increased breast cancer incidence risk. Our findings re-affirmed that alcohol consumption is of high risk for breast cancer incidence even at a very low dose, and the pathogenic effect of alcohol on breast cancer could be due to pathological drinking behaviour and epigenetic modification at several CpG sites, which could be potential intervention targets for breast cancer prevention.
Collapse
|
8
|
Irie T, Asami T, Sawa A, Uno Y, Taniyama C, Funakoshi Y, Masai H, Sawa M. Discovery of AS-0141, a Potent and Selective Inhibitor of CDC7 Kinase for the Treatment of Solid Cancers. J Med Chem 2021; 64:14153-14164. [PMID: 34607435 DOI: 10.1021/acs.jmedchem.1c01319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CDC7, a serine-threonine kinase, plays conserved and important roles in regulation of DNA replication and has been recognized as a potential anticancer target. We report here the optimization of a series of furanone analogues starting from compound 1 with a focus on ADME properties suitable for clinical development. By replacing the 2-chlorobenzene moiety in 1 with various aliphatic groups, we identified compound 24 as a potent CDC7 inhibitor with excellent kinase selectivity and favorable oral bioavailability in multiple species. Oral administration of 24 demonstrated robust in vivo antitumor efficacy in a colorectal cancer xenograft model. Compound 24 (AS-0141) is currently in phase I clinical trials for the treatment of solid cancers.
Collapse
Affiliation(s)
- Takayuki Irie
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tokiko Asami
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Ayako Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuko Uno
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Chika Taniyama
- Ginkgo Biomedical Research Institute, Research and Development Department, SBI Biotech Co., Ltd., Izumi Garden Tower 15F, 1-6- Roppongi, Minato-ku, Tokyo 106-6015, Japan
| | - Yoko Funakoshi
- Ginkgo Biomedical Research Institute, Research and Development Department, SBI Biotech Co., Ltd., Izumi Garden Tower 15F, 1-6- Roppongi, Minato-ku, Tokyo 106-6015, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
9
|
Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39:759-778. [PMID: 33891890 PMCID: PMC8206013 DOI: 10.1016/j.ccell.2021.03.010] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Liang XL, Wang YL, Wang PR. MiR-200a with CDC7 as a direct target declines cell viability and promotes cell apoptosis in Wilm's tumor via Wnt/β-catenin signaling pathway. Mol Cell Biochem 2021; 476:2409-2420. [PMID: 33599894 DOI: 10.1007/s11010-021-04090-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
MiR-200a acts as a key role in tumor malignant progression. This work purposed to assess the function of miR-200a in Wilm's tumor. Based on bioinformatics analysis, the expression, prognostic value and related pathways of miR-200a and CDC7 (a potential downstream molecule of miR-200a) in Wilm's tumor were analyzed. qRT-PCR was conducted to confirm the miR-200a level in Wilm's tumor cells. The luciferase reporter assay was carried out to verify the binding of miR-200a to 3'-UTR of CDC7. Then, the impacts of miR-200a and CDC7 on cell viability and apoptosis were measured using CCK-8 and flow cytometry assays. Also, western blot was applied to measure the expression of CDC7 as well as Wnt/β-catenin signaling pathway-related proteins and apoptosis proteins. Herein, we revealed that miR-200a was lowly expressed in Wilm's tumor tissues and cells and the low miR-200a expression is closely bound up with death and poor outcomes. Moreover, miR-200a directly targeted and inhibited CDC7 in Wilm's tumor cells. Biological function experiments illustrated that overexpression of miR-200a reduced the viability and elevated the apoptosis of Wilm's tumor cells, while overexpression of CDC7 reversed the inhibitory impact of miR-200a on cell viability and the promoting impact of miR-200a on cell apoptosis. Besides, we revealed that miR-200a/CDC7 axis can decrease the expression of β-Catenin, Cyclin D1 and C-Myc as well as the phosphorylation of GSK-3β, thus inhibiting the Wnt/β-catenin signaling pathway. Furthermore, blocking the Wnt/β-catenin signaling pathway caused an increase on cell apoptosis, while overexpression of CDC7 can reverse these impacts. Collectively, miR-200a/CDC7 axis involved in regulating the malignant phenotype of Wilm's tumor through Wnt/β-catenin signaling pathway, which provides a theoretical basis for targeted molecular therapy of Wilm's tumor.
Collapse
Affiliation(s)
- Xiu-Ling Liang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China.,Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, People's Republic of China
| | - Yu-Long Wang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China
| | - Pei-Rong Wang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China.
| |
Collapse
|
11
|
A novel evaluation method for Ki-67 immunostaining in paraffin-embedded tissues. Virchows Arch 2021; 479:121-131. [PMID: 33464376 DOI: 10.1007/s00428-020-03010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/29/2022]
Abstract
The Ki-67 labeling index is traditionally used to investigate tumor aggressiveness. However, no diagnostic or prognostic value has been associated to the heterogeneous pattern of nuclear positivity. The aims of this study were to develop a classification for the patterns of Ki-67-positive nuclei; to search scientific evidence for the Ki-67 expression and location throughout the cell cycle; and to develop a protocol to apply the classification of patterns of Ki-67-positive nuclei in squamous epithelium with different proliferative activities. Based on empirical observation of paraffin sections submitted to immunohistochemistry for the determination of Ki-67 labeling index and literature review about Ki-67 expression, we created a classification of the patterns of nuclear positivity (NP1, NP2, NP3, NP4, and mitosis). A semi-automatic protocol was developed to identify and quantify the Ki-67 immunostaining patterns in target tissues. Two observers evaluated 7000 nuclei twice to test the intraobserver reliability, and six evaluated 1000 nuclei to the interobserver evaluation. The results showed that the immunohistochemical patterns of Ki-67 are similar in the tumoral and non-tumoral epithelium and were classified without difficulty. There was a high intraobserver reliability (Spearman correlation coefficient > 0.9) and moderate interobserver agreement (k = 0.523). Statistical analysis showed that non-malignant epithelial specimens presented a higher number of NP1 (geographic tongue = 83.8 ± 21.8; no lesion = 107.6 ± 52.7; and mild dysplasia = 86.6 ± 25.8) when compared to carcinoma in Situ (46.8 ± 34.8) and invasive carcinoma (72.6 ± 37.9). The statistical evaluation showed significant difference (p < 0.05). Thus, we propose a new way to evaluate Ki-67, where the pattern of its expression may be associated with the dynamics of the cell cycle. Future proof of this association will validate the use of the classification for its possible impact on cancer prognosis and guidance on personalized therapy.
Collapse
|
12
|
Jia R, Li Z, Liang W, Ji Y, Weng Y, Liang Y, Ning P. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World J Surg Oncol 2020; 18:268. [PMID: 33066779 PMCID: PMC7568373 DOI: 10.1186/s12957-020-02042-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
Background Breast cancer subtypes are statistically associated with prognosis. The search for markers of breast tumor heterogeneity and the development of precision medicine for patients are the current focuses of the field. Methods We used a bioinformatic approach to identify key disease-causing genes unique to the luminal A and basal-like subtypes of breast cancer. First, we retrieved gene expression data for luminal A breast cancer, basal-like breast cancer, and normal breast tissue samples from The Cancer Genome Atlas database. The differentially expressed genes unique to the 2 breast cancer subtypes were identified and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We constructed protein–protein interaction networks of the differentially expressed genes. Finally, we analyzed the key modules of the networks, which we combined with survival data to identify the unique cancer genes associated with each breast cancer subtype. Results We identified 1114 differentially expressed genes in luminal A breast cancer and 1042 differentially expressed genes in basal-like breast cancer, of which the subtypes shared 500. We observed 614 and 542 differentially expressed genes unique to luminal A and basal-like breast cancer, respectively. Through enrichment analyses, protein–protein interaction network analysis, and module mining, we identified 8 key differentially expressed genes unique to each subtype. Analysis of the gene expression data in the context of the survival data revealed that high expression of NMUR1 and NCAM1 in luminal A breast cancer statistically correlated with poor prognosis, whereas the low expression levels of CDC7, KIF18A, STIL, and CKS2 in basal-like breast cancer statistically correlated with poor prognosis. Conclusions NMUR1 and NCAM1 are novel key disease-causing genes for luminal A breast cancer, and STIL is a novel key disease-causing gene for basal-like breast cancer. These genes are potential targets for clinical treatment.
Collapse
Affiliation(s)
- Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
13
|
Zevallos A, Bravo L, Bretel D, Paez K, Infante U, Cárdenas N, Alvarado H, Posada AM, Pinto JA. The hispanic landscape of triple negative breast cancer. Crit Rev Oncol Hematol 2020; 155:103094. [PMID: 33027724 DOI: 10.1016/j.critrevonc.2020.103094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and complex disease characterized by the absence of immunohistochemical expression of estrogen receptor, progesterone receptor and HER2. These breast tumors present an aggressive biology and offer few opportunities to be treated with targeted therapy resulting in bad disease outcomes. The epidemiology of TNBC is intriguing where the understanding of its biology has progressed quickly. One of the peculiarities of this type of cancer is a high prevalence in Afrodescendants and Hispanic patients compared to Caucasian women. In this review we describe some features of TNBC, focusing in the Hispanic population, such as epidemiological, clinicopathological features and molecular features and the correlation between TNBC prevalence and the human development index.
Collapse
Affiliation(s)
- Alejandra Zevallos
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Leny Bravo
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Denisse Bretel
- Grupo de Estudios Clínicos Oncológicos Peruano, GECOPERU, Lima, Peru
| | - Kevin Paez
- Facultad de Ciencias Biológicas, Universidad Nacional San Luis Gonzaga de Ica, Ica, Peru
| | - Ulises Infante
- Facultad de Ciencias Biológicas, Universidad Nacional San Luis Gonzaga de Ica, Ica, Peru
| | - Nadezhda Cárdenas
- Escuela de Medicina Humana-Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Hober Alvarado
- Facultad de Ciencias Biológicas, Universidad Nacional San Luis Gonzaga de Ica, Ica, Peru
| | | | - Joseph A Pinto
- Unidad de Investigación Básica y Traslacional, Oncosalud - AUNA, Lima, Peru.
| |
Collapse
|
14
|
Rainey MD, Bennett D, O’Dea R, Zanchetta ME, Voisin M, Seoighe C, Santocanale C. ATR Restrains DNA Synthesis and Mitotic Catastrophe in Response to CDC7 Inhibition. Cell Rep 2020; 32:108096. [DOI: 10.1016/j.celrep.2020.108096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
|
15
|
Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:2057-2068. [PMID: 32295767 PMCID: PMC7263675 DOI: 10.1534/g3.120.401131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1 Δ strains display synthetic dosage lethality (SDL) with GALCSE4 We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4 We determined that cdc7 -7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4 Mutation of MCM5 (mcm5 -bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7 -7 strain. We determined that mcm5 -bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7 -7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7 -7 psh1 Δ strain were similar to that of cdc7 -7 and psh1 Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1 Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.
Collapse
|
16
|
Xiao G, Lundine D, Annor GK, Canar J, Ellison V, Polotskaia A, Donabedian PL, Reiner T, Khramtsova GF, Olopade OI, Mazo A, Bargonetti J. Gain-of-Function Mutant p53 R273H Interacts with Replicating DNA and PARP1 in Breast Cancer. Cancer Res 2020; 80:394-405. [PMID: 31776133 PMCID: PMC7002183 DOI: 10.1158/0008-5472.can-19-1036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/13/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022]
Abstract
Over 80% of triple-negative breast cancers (TNBC) express mutant p53 (mtp53) and some contain oncogenic gain-of-function (GOF) p53. We previously reported that GOF mtp53 R273H upregulates the chromatin association of mini chromosome maintenance (MCM) proteins MCM2-7 and PARP and named this the mtp53-PARP-MCM axis. In this study, we dissected the function and association between mtp53 and PARP using a number of different cell lines, patient-derived xenografts (PDX), tissue microarrays (TMA), and The Cancer Genome Atlas (TCGA) database. Endogenous mtp53 R273H and exogenously expressed R273H and R248W bound to nascent 5-ethynyl-2´-deoxyuridine-labeled replicating DNA. Increased mtp53 R273H enhanced the association of mtp53 and PARP on replicating DNA. Blocking poly-ADP-ribose gylcohydrolase also enhanced this association. Moreover, mtp53 R273H expression enhanced overall MCM2 levels, promoted cell proliferation, and improved the synergistic cytotoxicity of treatment with the alkylating agent temozolomide in combination with the PARP inhibitor (PARPi) talazoparib. Staining of p53 and PARP1 in breast cancer TMAs and comparison with the TCGA database indicated a higher double-positive signal in basal-like breast cancer than in luminal A or luminal B subtypes. Higher PARP1 protein levels and PAR proteins were detected in mtp53 R273H than in wild-type p53-expressing PDX samples. These results indicate that mtp53 R273H and PARP1 interact with replicating DNA and should be considered as dual biomarkers for identifying breast cancers that may respond to combination PARPi treatments. SIGNIFICANCE: p53 gain-of-function mutant 273H and PARP1 interact with replication forks and could serve as potential biomarkers for breast cancer sensitivity to PARP inhibitors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/394/F1.large.jpg.
Collapse
Affiliation(s)
- Gu Xiao
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, New York
| | - Devon Lundine
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, New York
- The Graduate Center Biology and Biochemistry PhD Programs of City University of New York, New York, New York
| | - George K Annor
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, New York
- The Graduate Center Biology and Biochemistry PhD Programs of City University of New York, New York, New York
| | - Jorge Canar
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, New York
| | - Viola Ellison
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, New York
| | - Alla Polotskaia
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, New York
| | - Patrick L Donabedian
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York City, New York
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Galina F Khramtsova
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, New York.
- The Graduate Center Biology and Biochemistry PhD Programs of City University of New York, New York, New York
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
17
|
Cell division cycle 7 is a potential therapeutic target in oral squamous cell carcinoma and is regulated by E2F1. J Mol Med (Berl) 2018; 96:513-525. [PMID: 29713760 DOI: 10.1007/s00109-018-1636-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Cell division cycle 7 (Cdc7) plays important roles in the regulation of the initiation of DNA replication throughout S phase. Whether inhibition of Cdc7 has a direct antitumour effect in oral squamous cell carcinoma (OSCC) remains unclear. In this study, XL413, a novel Cdc7 inhibitor, markedly inhibited the viability of OSCC cells but not that of non-tumour primary cells. There was a synergistic effect between XL413 and DNA-damaging agents (e.g. cisplatin and 5-fluorouracil) on OSCC in vitro and in vivo. Moreover, XL413 exhibited a notable antitumour effect on OSCC patients with high Cdc7 expression in mini patient-derived xenografts model. The proliferation was significantly inhibited in OSCC cells after Cdc7 silencing. Cdc7 knockdown significantly induced apoptosis in OSCC cell lines. Furthermore, we demonstrated that Cdc7 was overexpressed and transcriptionally regulated by E2F1 in OSCC by using chromatin immunoprecipitation and luciferase assays. Our results reveal that XL413 has an excellent antitumour effect in OSCC. Importantly, it does not inhibit the proliferation of non-tumour cells. These findings suggest that the overexpression of Cdc7 promotes progression in OSCC and that inhibition of Cdc7 is a very promising therapy for OSCC patients.
Collapse
|
18
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
19
|
Quintero M, Adamoski D, Reis LMD, Ascenção CFR, Oliveira KRSD, Gonçalves KDA, Dias MM, Carazzolle MF, Dias SMG. Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer. BMC Cancer 2017; 17:727. [PMID: 29115931 PMCID: PMC5688804 DOI: 10.1186/s12885-017-3726-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor expression (ESR and PGR, respectively) and an absence of human epithelial growth factor receptor (ERBB2) amplification. Approximately 15–20% of breast malignancies are TNBC. Patients with TNBC often have an unfavorable prognosis. In addition, TNBC represents an important clinical challenge since it does not respond to hormone therapy. Methods In this work, we integrated high-throughput mRNA sequencing (RNA-Seq) data from normal and tumor tissues (obtained from The Cancer Genome Atlas, TCGA) and cell lines obtained through in-house sequencing or available from the Gene Expression Omnibus (GEO) to generate a unified list of differentially expressed (DE) genes. Methylome and proteomic data were integrated to our analysis to give further support to our findings. Genes that were overexpressed in TNBC were then curated to retain new potentially druggable targets based on in silico analysis. Knocking-down was used to assess gene importance for TNBC cell proliferation. Results Our pipeline analysis generated a list of 243 potential new targets for treating TNBC. We finally demonstrated that knock-down of Guanylate-Binding Protein 1 (GBP1 ), one of the candidate genes, selectively affected the growth of TNBC cell lines. Moreover, we showed that GBP1 expression was controlled by epidermal growth factor receptor (EGFR) in breast cancer cell lines. Conclusions We propose that GBP1 is a new potential druggable therapeutic target for treating TNBC with enhanced EGFR expression. Electronic supplementary material The online version of this article (10.1186/s12885-017-3726-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa Quintero
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Menezes Dos Reis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolline Fernanda Rodrigues Ascenção
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Krishina Ratna Sousa de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Kaliandra de Almeida Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Marília Meira Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Marcelo Falsarella Carazzolle
- Genomic and Expression Laboratory (LGE), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
20
|
Rainey MD, Quachthithu H, Gaboriau D, Santocanale C. DNA Replication Dynamics and Cellular Responses to ATP Competitive CDC7 Kinase Inhibitors. ACS Chem Biol 2017; 12:1893-1902. [PMID: 28560864 DOI: 10.1021/acschembio.7b00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CDC7 kinase, by phosphorylating the MCM DNA helicase, is a key switch for DNA replication initiation. ATP competitive CDC7 inhibitors are being developed as potential anticancer agents; however how human cells respond to the selective pharmacological inhibition of this kinase is controversial and not understood. Here we have characterized the mode of action of the two widely used CDC7 inhibitors, PHA-767491 and XL-413, which have become important tool compounds to explore the kinase's cellular functions. We have used a chemical genetics approach to further characterize pharmacological CDC7 inhibition and CRISPR/CAS9 technology to assess the requirement for kinase activity for cell proliferation. We show that, in human breast cells, CDC7 is essential and that CDC7 kinase activity is formally required for proliferation. However, full and sustained inhibition of the kinase, which is required to block the cell-cycle progression with ATP competitor compounds, is problematic to achieve. We establish that MCM2 phosphorylation is highly sensitive to CDC7 inhibition and, as a biomarker, it lacks in dynamic range since it is easily lost at concentrations of inhibitors that only mildly affect DNA synthesis. Furthermore, we find that the cellular effects of selective CDC7 inhibitors can be altered by the concomitant inhibition of cell-cycle and transcriptional CDKs. This work shows that DNA replication and cell proliferation can occur with reduced CDC7 activity for at least 5 days and that the bulk of DNA synthesis is not tightly coupled to MCM2 phosphorylation and provides guidance for the development of next generation CDC7 inhibitors.
Collapse
Affiliation(s)
- Michael D. Rainey
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Huong Quachthithu
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| |
Collapse
|
21
|
Discovery of novel furanone derivatives as potent Cdc7 kinase inhibitors. Eur J Med Chem 2017; 130:406-418. [PMID: 28279847 DOI: 10.1016/j.ejmech.2017.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 11/24/2022]
Abstract
Cdc7 is a serine-threonine kinase and plays a conserved and important role in DNA replication, and it has been recognized as a potential anticancer target. Herein, we report the design, synthesis and structure-activity relationship of novel furanone derivatives as Cdc7 kinase inhibitors. Compound 13 was identified as a strong inhibitor of Cdc7 with an IC50 value of 0.6 nM in the presence of 1 mM ATP and showed excellent kinase selectivity. In addition, it exhibited slow off-rate characteristics, which may offer advantages over known Cdc7 inhibitors in its potential to yield prolonged inhibitory effects in vivo. Compound 13 potently inhibited Cdc7 activity in cancer cells, and effectively induced cell death.
Collapse
|
22
|
Huggett MT, Tudzarova S, Proctor I, Loddo M, Keane MG, Stoeber K, Williams GH, Pereira SP. Cdc7 is a potent anti-cancer target in pancreatic cancer due to abrogation of the DNA origin activation checkpoint. Oncotarget 2017; 7:18495-507. [PMID: 26921250 PMCID: PMC4951304 DOI: 10.18632/oncotarget.7611] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/23/2016] [Indexed: 02/06/2023] Open
Abstract
Purpose Cdc7 is a serine/threonine kinase which is responsible for the ‘firing’ of replication origins leading to initiation of DNA replication. Inhibition or depletion of Cdc7 in normal cells triggers a DNA origin activation checkpoint causing a reversible G1 arrest. Here we investigate Cdc7 as a novel therapeutic target in pancreatic cancer. Experimental design Cdc7 target validation was performed by immunoexpression profiling in a cohort of 73 patients with pancreatic adenocarcinoma including 24 controls. Secondly Cdc7 kinase was targeted in Capan-1 and PANC-1 pancreatic cancer cell line models using either an siRNA against Cdc7 or alternatively a small molecule inhibitor (SMI) of Cdc7 (PHA-767491). Results Cdc7 was significantly overexpressed in pancreatic adenocarcinoma compared to benign pancreatic tissue (median LI 34.3% vs. 1.3%; P<0.0001). Cdc7 knockdown using siRNA in Capan-1 and PANC-1 cells resulted in marked apoptotic cell death when compared with control cells. A prominent sub-G1 peak was seen on flow cytometry (sub-G1 51% vs. 3% and 45% vs. 0.7% in Capan-1 and PANC-1 cells, respectively). Annexin V labelling confirmed apoptosis in 64% vs. 11% and 75% vs. 8%, respectively. Western blotting showed cleavage of PARP-1 and caspase-3 and presence of γH2A.X. TUNEL assay showed strong staining in treated cells. These results were mirrored following Cdc7 kinase inhibition with PHA-767491. Conclusions Our findings show that Cdc7 is a potent anti-cancer target in pancreatic adenocarcinoma and that Cdc7 immunoexpression levels might be used as a companion diagnostic to predict response to therapeutic siRNAs or SMIs directed against this kinase.
Collapse
Affiliation(s)
- Matthew T Huggett
- UCL Institute for Liver and Digestive Health and UCL Cancer Institute, University College London, London, UK.,The Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Slavica Tudzarova
- The Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Ian Proctor
- The Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Marco Loddo
- The Research Department of Pathology, UCL Cancer Institute, University College London, London, UK.,Oncologica Ltd, The Science Village, Chesterford Research Park, Cambridge, UK
| | - Margaret G Keane
- UCL Institute for Liver and Digestive Health and UCL Cancer Institute, University College London, London, UK
| | - Kai Stoeber
- The Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Gareth H Williams
- The Research Department of Pathology, UCL Cancer Institute, University College London, London, UK.,Oncologica Ltd, The Science Village, Chesterford Research Park, Cambridge, UK
| | - Stephen P Pereira
- UCL Institute for Liver and Digestive Health and UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
23
|
Erbayraktar Z, Alural B, Erbayraktar RS, Erkan EP. Cell division cycle 7-kinase inhibitor PHA-767491 hydrochloride suppresses glioblastoma growth and invasiveness. Cancer Cell Int 2016; 16:88. [PMID: 27891063 PMCID: PMC5116134 DOI: 10.1186/s12935-016-0364-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/16/2016] [Indexed: 11/10/2022] Open
Abstract
Background Genomic instability is a hallmark of cancer cells, and this cellular phenomenon can emerge as a result of replicative stress. It is possible to take advantage of replicative stress, and enhance it in a targeted way to fight cancer cells. One of such strategies involves targeting the cell division cycle 7-related protein kinase (CDC7), a protein with key roles in regulation of initiation of DNA replication. CDC7 overexpression is present in different cancers, and small molecule inhibitors of the CDC7 have well-documented anti-tumor effects. Here, we aimed to test the potential of CDC7 inhibition as a new strategy for glioblastoma treatment. Methods PHA-767491 hydrochloride was used as the CDC7 inhibitor. Two glioblastoma cell lines (U87-MG and U251-MG) and a control cell line (3T3) were used to characterize the effects of CDC7 inhibition. The effect of CDC7 inhibition on cell viability, cell proliferation, apoptosis, migration, and invasion were analyzed. In addition, real-time PCR arrays were used to identify the differentially expressed genes in response to CDC7 inhibition. Results Our results showed that CDC7 inhibition reduces glioblastoma cell viability, suppresses cell proliferation, and triggers apoptosis in glioblastoma cell lines. In addition, we determined that CDC7 inhibition also suppresses glioblastoma cell migration and invasion. To identify molecular targets of CDC7 inhibition, we used real-time PCR arrays, which showed dysregulation of several mRNAs and miRNAs. Conclusions Taken together, our findings suggest that CDC7 inhibition is a promising strategy for treatment of glioblastoma. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0364-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zubeyde Erbayraktar
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Begum Alural
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | | | - Erdogan Pekcan Erkan
- Pharmaplus Laboratories, Pharmaplus Ilac ve Saglik Urunleri Ltd. Sti, Izmir, Turkey
| |
Collapse
|
24
|
Lai WC, Chang TW, Wu CH, Yang SY, Lee TL, Li WC, Chien T, Cheng YC, Shieh JC. Candida albicans Dbf4-dependent Cdc7 kinase plays a novel role in the inhibition of hyphal development. Sci Rep 2016; 6:33716. [PMID: 27644158 PMCID: PMC5028767 DOI: 10.1038/srep33716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/01/2016] [Indexed: 11/26/2022] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen. The ability to switch among multiple cellular forms is key to its pathogenesis. The Dbf4-dependent protein kinase gene CDC7 is conserved due to its role in initiating DNA replication. Because a C. albicans Cdc7 (Cacdc7) homozygous null was not viable, we generated a C. albicans strain with a deleted C. albicans CDC7 (CaCDC7) allele and an expression-repressible allele. Surprisingly, cells of the strain grew as hyphae under the repressed conditions. The in vitro kinase assays confirmed that CaCdc7 (K232) and CaCdc7 (T437) are critical for catalytic and phosphoacceptor of activation activity, respectively. C. albicans cells formed hyphae when expressing either the catalytically inactive CaCdc7 (K232R) or the phosphoacceptor-deficient CaCdc7 (T437A). While CaCdc7 interacted with CaDbf4, cells of the strain in which CaCDC7 was repressed were not rescued by constitutively expressing C. albicans DBF4 or vice versa. We conclude that CaDBF4-dependent CaCDC7 is an essential gene suppressing the hyphal development.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Tschen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Chang Hao Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Shu-Ya Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Tai-Lin Lee
- Department of Molecular Biotechnology, Da-Yah University, Changhua County, Taiwan, Republic of China
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Ting Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Yu-Che Cheng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan, Republic of China
| |
Collapse
|
25
|
Tudzarova S, Mulholland P, Dey A, Stoeber K, Okorokov AL, Williams GH. p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress. Cell Cycle 2016; 15:2958-2972. [PMID: 27611229 PMCID: PMC5105930 DOI: 10.1080/15384101.2016.1231281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA replication initiation is a key event in the cell cycle, which is dependent on 2 kinases - CDK2 and CDC7. Here we report a novel mechanism in which p53 induces G1 checkpoint and cell cycle arrest by downregulating CDC7 kinase in response to genotoxic stress. We demonstrate that p53 controls CDC7 stability post-transcriptionally via miR-192/215 and post-translationally via Fbxw7β E3 ubiquitin ligase. The p53-dependent pathway of CDC7 downregulation is interlinked with the p53-p21-CDK2 pathway, as p21-mediated inhibition of CDK2-dependent phosphorylation of CDC7 on Thr376 is required for GSK3ß-phosphorylation and Fbxw7ß-dependent degradation of CDC7. Notably, sustained oncogenic high levels of active CDC7 exert a negative feedback onto p53, leading to unrestrained S-phase progression and accumulation of DNA damage. Thus, p53-dependent control of CDC7 levels is essential for blocking G1/S cell-cycle transition upon genotoxic stress, thereby safeguarding the genome from instability and thus representing a novel general stress response.
Collapse
Affiliation(s)
- Slavica Tudzarova
- a Wolfson Institute for Biomedical Research, Division of Medicine, University College London , London , UK.,b Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles , CA , USA
| | - Paul Mulholland
- c Department of Pathology , UCL Cancer Institute, University College London , London , UK
| | - Ayona Dey
- a Wolfson Institute for Biomedical Research, Division of Medicine, University College London , London , UK
| | - Kai Stoeber
- c Department of Pathology , UCL Cancer Institute, University College London , London , UK
| | - Andrei L Okorokov
- a Wolfson Institute for Biomedical Research, Division of Medicine, University College London , London , UK
| | - Gareth H Williams
- c Department of Pathology , UCL Cancer Institute, University College London , London , UK.,d Oncologica Ltd, The Science Village, Chesterford Research Park , Cambridge , UK
| |
Collapse
|
26
|
Maculins T, Nkosi PJ, Nishikawa H, Labib K. Tethering of SCF(Dia2) to the Replisome Promotes Efficient Ubiquitylation and Disassembly of the CMG Helicase. Curr Biol 2015; 25:2254-9. [PMID: 26255844 PMCID: PMC4562905 DOI: 10.1016/j.cub.2015.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023]
Abstract
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase, which unwinds the parental DNA duplex at eukaryotic replication forks, is the key regulated step during replication termination but is poorly understood [1, 2]. In budding yeast, the F-box protein Dia2 drives ubiquitylation of the CMG helicase at the end of replication, leading to a disassembly pathway that requires the Cdc48 segregase [3]. The substrate-binding domain of Dia2 comprises leucine-rich repeats, but Dia2 also has a TPR domain at its amino terminus that interacts with the Ctf4 and Mrc1 subunits of the replisome progression complex [4, 5], which assembles around the CMG helicase at replication forks [6]. Previous studies suggested two disparate roles for the TPR domain of Dia2, either mediating replisome-specific degradation of Mrc1 and Ctf4 [4] or else tethering SCFDia2 (SCF [Skp1/cullin/F-box protein]) to the replisome to increase its local concentration at replication forks [5]. Here, we show that SCFDia2 does not mediate replisome-specific degradation of Mrc1 and Ctf4, either during normal S phase or in response to replication stress. Instead, the tethering of SCFDia2 to the replisome progression complex increases the efficiency of ubiquitylation of the Mcm7 subunit of CMG, both in vitro and in vivo. Correspondingly, loss of tethering reduces the efficiency of CMG disassembly in vivo and is synthetic lethal in combination with a disassembly-defective allele of CDC48. Residual ubiquitylation of Mcm7 in dia2-ΔTPR cells is still CMG specific, highlighting the complex regulation of the final stages of chromosome replication, about which much still remains to be learned. Replisome tethering of SCFDia2 promotes efficient ubiquitylation of the CMG helicase Loss of tethering and mutation of Cdc48 cause synthetic CMG disassembly defects
Collapse
Affiliation(s)
- Timurs Maculins
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Pedro Junior Nkosi
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Hiroko Nishikawa
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
27
|
Melling N, Muth J, Simon R, Bokemeyer C, Terracciano L, Sauter G, Izbicki JR, Marx AH. Cdc7 overexpression is an independent prognostic marker and a potential therapeutic target in colorectal cancer. Diagn Pathol 2015. [PMID: 26208856 PMCID: PMC4514957 DOI: 10.1186/s13000-015-0360-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Cdc7 is a widely expressed protein kinase implicated in cell division, cell cycle checkpoint mechanisms and cancer progression. Recently, it has been suggested as a target for anti-cancer therapy. Methods To determine the relationship of Cdc7 protein expression with tumor phenotype, molecular features and prognosis, 1800 colorectal carcinomas were analyzed by immunohistochemistry on a tissue microarray. Results Cdc7 expression was considered negative in 33.6 %, weak in 57.2 % and strong in 9.2 % of 1711 interpretable CRCs. Loss of Cdc7 expression was significantly associated with high tumor stage (p < 0.0001) and high tumor grade (p = 0.0077), but was unrelated to the nodal status (p = 0.5957). Moreover, a link between Cdc7 expression and the tubular histological tumor type was seen (p < 0.0001). p53 and Cdc7 expression were significantly linked to each other (p = 0.0013). In a multivariate survival analysis, strong Cdc7 expression of CRC was an independent marker of improved patient survival (p = 0.0031). Conclusion Our data show that Cdc7 is highly expressed in CRC and a potential therapeutic target in a subset of cancers with high p53 expression. Moreover, our findings strongly argue for a clinical utility of Cdc7 immunostaining as an independent prognostic biomarker in colorectal cancer enabling to select patients for adjuvant treatment.
Collapse
Affiliation(s)
- Nathaniel Melling
- Department of Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Johanna Muth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Carsten Bokemeyer
- Department of Oncology, Hematology, BMT with section Pneumology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Jakob Robert Izbicki
- Department of Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Andreas Holger Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
28
|
Balasubramanian PK, Balupuri A, Cho SJ. Molecular Modeling Studies of Trisubstituted Thiazoles as Cdc7 Kinase Inhibitors through 3D-QSAR and Molecular Docking Simulation. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pavithra K. Balasubramanian
- Department of Bio-New Drug Development, College of Medicine; Chosun University; Gwangju 501-759 Republic of Korea
| | - Anand Balupuri
- Department of Bio-New Drug Development, College of Medicine; Chosun University; Gwangju 501-759 Republic of Korea
| | - Seung Joo Cho
- Department of Bio-New Drug Development, College of Medicine; Chosun University; Gwangju 501-759 Republic of Korea
- Department of Cellular Molecular Medicine, College of Medicine; Chosun University; Gwangju 501-759 Republic of Korea
| |
Collapse
|
29
|
Dobbelstein M, Sørensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 2015; 14:405-23. [PMID: 25953507 DOI: 10.1038/nrd4553] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms that govern replicative stress, thus providing ample opportunities to enhance replicative stress for therapeutic purposes. Rather than trying to halt cell cycle progression, cancer therapeutics could aim to increase replicative stress by further loosening the checkpoints that remain available to cancer cells and ultimately inducing the catastrophic failure of proliferative machineries. In this Review, we outline current and future approaches to achieve this, emphasizing the combination of conventional chemotherapy with targeted approaches.
Collapse
Affiliation(s)
- Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, Ernst Caspari Haus, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
30
|
Yong-Deok K, Eun-Hyoung J, Yeon-Sun K, Kang-Mi P, Jin-Yong L, Sung-Hwan C, Tae-Yun K, Tae-Sung P, Soung-Min K, Myung-Jin K, Jong-Ho L. Molecular genetic study of novel biomarkers for early diagnosis of oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2015; 20:e167-79. [PMID: 25475780 PMCID: PMC4393979 DOI: 10.4317/medoral.20229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/07/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives: Early detection and treatment of an oral squamous cell carcinoma (OSCC) is critical because of its rapid growth, frequent lymph-node metastasis, and poor prognosis. However, no clinically-valuable methods of early diagnosis exist, and genetic analysis of OSCCs has yielded no biomarkers.
Study Design: We investigated the expression of genes associated with inflammation in OSCCs via a quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis of microarray data. Tumor and normal tissues from five patients with an OSCC were used for microarray analysis. Differentially-expressed genes, identified using permutation, local pooled error (LPE), t-tests, and significance analysis of microarrays (SAM), were selected as candidate genetic markers.
Results: Two groups corresponding to tissue identity were evident, implying that their differentially-expressed genes represented biological differences between tissues. Fifteen genes were identified using the Student’s paired t-test (p<0.05) and the SAM, with a false discovery rate of less than 0.02. Based on gene expression, these 15 genes can be used to classify an OSCC. A genetic analysis of functional networks and ontologies, validated by using a qRT-PCR analysis of the tissue samples, identified four genes, ADAM15, CDC7, IL12RB2 and TNFRSF8, that demonstrated excellent concordance with the microarray data.
Conclusions: Our study demonstrated that four genes (ADAM15, CDC7, IL12RB2 and TNFRSF8) had potential as novel biomarkers for the diagnosis and the treatment of an OSCC.
Key words:Biomarker, microarray, quantitative reverse transcription polymerase chain reaction, oral squamous cell carcinoma, gene expression profiling.
Collapse
Affiliation(s)
- Kim Yong-Deok
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 275-1, Yeongeon-dong, Jongno-gu, Seoul, Republic of Korea,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Loddo M, Andryszkiewicz J, Rodriguez-Acebes S, Stoeber K, Jones A, Dafou D, Apostolidou S, Wollenschlaeger A, Widschwendter M, Sainsbury R, Tudzarova S, Williams GH. Pregnancy-associated plasma protein A regulates mitosis and is epigenetically silenced in breast cancer. J Pathol 2014; 233:344-56. [PMID: 24931331 DOI: 10.1002/path.4393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 01/23/2023]
Abstract
Aberrant mitosis is a common feature of cancer, yet little is known about the altered genes causing mitotic defects. We screened human tumours for cells with morphological signatures of highly specific mitotic defects previously assigned to candidate genes in a genome-wide RNA interference screen carried out in HeLa cells (www.mitocheck.org). We discovered a striking enrichment of early mitotic configurations indicative of prophase/prometaphase delay in breast cancer. Promoter methylation analysis of MitoCheck candidate genes assigned to the corresponding 'mitotic delay' class linked this defect to epigenetic silencing of the gene encoding pregnancy-associated plasma protein-A (PAPPA), a secreted protease. PAPPA silencing was highly prevalent in precursor lesions and invasive breast cancer. Experimental manipulation of PAPPA protein levels in human mammary epithelial cells and in breast cancer cell lines demonstrates that progression through early mitosis is dependent on PAPPA function, and that breast cancer cells become more invasive after down-regulation of this protease. PAPPA regulates mitotic progression through modulating the IGF-1 signalling pathway resulting in activation of the forkhead transcription factor FoxM1, which drives a transcriptional cluster of essential mitotic genes. Our results show that PAPPA has a critical function in normal cell division and is targeted early in breast cancer development.
Collapse
Affiliation(s)
- Marco Loddo
- UCL Cancer Institute, University College London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Brandão LN, Ferguson R, Santoro I, Jinks-Robertson S, Sclafani RA. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 2014; 197:1111-22. [PMID: 24875188 PMCID: PMC4125387 DOI: 10.1534/genetics.114.165308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
The yeast Dbf4-dependent kinase (DDK) (composed of Dbf4 and Cdc7 subunits) is an essential, conserved Ser/Thr protein kinase that regulates multiple processes in the cell, including DNA replication, recombination and induced mutagenesis. Only DDK substrates important for replication and recombination have been identified. Consequently, the mechanism by which DDK regulates mutagenesis is unknown. The yeast mcm5-bob1 mutation that bypasses DDK's essential role in DNA replication was used here to examine whether loss of DDK affects spontaneous as well as induced mutagenesis. Using the sensitive lys2ΔA746 frameshift reversion assay, we show DDK is required to generate "complex" spontaneous mutations, which are a hallmark of the Polζ translesion synthesis DNA polymerase. DDK co-immunoprecipitated with the Rev7 regulatory, but not with the Rev3 polymerase subunit of Polζ. Conversely, Rev7 bound mainly to the Cdc7 kinase subunit and not to Dbf4. The Rev7 subunit of Polζ may be regulated by DDK phosphorylation as immunoprecipitates of yeast Cdc7 and also recombinant Xenopus DDK phosphorylated GST-Rev7 in vitro. In addition to promoting Polζ-dependent mutagenesis, DDK was also important for generating Polζ-independent large deletions that revert the lys2ΔA746 allele. The decrease in large deletions observed in the absence of DDK likely results from an increase in the rate of replication fork restart after an encounter with spontaneous DNA damage. Finally, nonepistatic, additive/synergistic UV sensitivity was observed in cdc7Δ pol32Δ and cdc7Δ pol30-K127R,K164R double mutants, suggesting that DDK may regulate Rev7 protein during postreplication "gap filling" rather than during "polymerase switching" by ubiquitinated and sumoylated modified Pol30 (PCNA) and Pol32.
Collapse
Affiliation(s)
- Luis N Brandão
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Rebecca Ferguson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Irma Santoro
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Sue Jinks-Robertson
- Department of Biology, Emory University, Atlanta, Georgia 30322 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Robert A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
33
|
Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ. Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol 2014; 4:130138. [PMID: 24403013 PMCID: PMC3909274 DOI: 10.1098/rsob.130138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/03/2013] [Indexed: 01/31/2023] Open
Abstract
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Wei Theng Poh
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| |
Collapse
|
34
|
Li Z, Zhang X, Jiang X, Wei D, Zhang C. Preparation and identification of a novel antibody against human CDC7 kinase. Monoclon Antib Immunodiagn Immunother 2013; 32:349-53. [PMID: 24111867 DOI: 10.1089/mab.2013.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell division cycle 7-related protein kinase (CDC7), which is conservatively expressed in the eukaryotic cells, is being intensely studied because of its significant function in DNA replication. In order to get further information on human CDC7, we generated a novel antibody against human CDC7. The steady strain of hybridoma (2G12) that can secrete specific monoclonal antibodies against human CDC7 was obtained by hybridoma technique. It is poised to contribute novel ways to study the cell cycle. The isotope of the monoclonal antibody was tested to be IgG2a/κ, and its characterizations were shown by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. The affinity constant (Kaff) of the monoclonal antibody was measured by non-competitive ELISA. By Western blot analysis, we found that CDC7 was largely expressed on the HCCLM3 cell line. Further identifications were adopted by the HRP-labeled MAbs. Thus, the antibody might boost studies on tumor cell lines.
Collapse
Affiliation(s)
- Zhiguang Li
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University , Chengdu, China
| | | | | | | | | |
Collapse
|
35
|
Wang X, Simon R. Identification of potential synthetic lethal genes to p53 using a computational biology approach. BMC Med Genomics 2013; 6:30. [PMID: 24025726 PMCID: PMC3847148 DOI: 10.1186/1755-8794-6-30] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Identification of genes that are synthetic lethal to p53 is an important strategy for anticancer therapy as p53 mutations have been reported to occur in more than half of all human cancer cases. Although genome-wide RNAi screening is an effective approach to finding synthetic lethal genes, it is costly and labor-intensive. METHODS To illustrate this approach, we identified potentially druggable genes synthetically lethal for p53 using three microarray datasets for gene expression profiles of the NCI-60 cancer cell lines, one next-generation sequencing (RNA-Seq) dataset from the Cancer Genome Atlas (TCGA) project, and one gene expression data from the Cancer Cell Line Encyclopedia (CCLE) project. We selected the genes which encoded kinases and had significantly higher expression in the tumors with functional p53 mutations (somatic mutations) than in the tumors without functional p53 mutations as the candidates of druggable synthetic lethal genes for p53. We identified important regulatory networks and functional categories pertinent to these genes, and performed an extensive survey of literature to find experimental evidence that support the synthetic lethality relationships between the genes identified and p53. We also examined the drug sensitivity difference between NCI-60 cell lines with functional p53 mutations and NCI-60 cell lines without functional p53 mutations for the compounds that target the kinases encoded by the genes identified. RESULTS Our results indicated that some of the candidate genes we identified had been experimentally verified to be synthetic lethal for p53 and promising targets for anticancer therapy while some other genes were putative targets for development of cancer therapeutic agents. CONCLUSIONS Our study indicated that pre-screening of potential synthetic lethal genes using gene expression profiles is a promising approach for improving the efficiency of synthetic lethal RNAi screening.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | | |
Collapse
|
36
|
Cheng AN, Jiang SS, Fan CC, Lo YK, Kuo CY, Chen CH, Liu YL, Lee CC, Chen WS, Huang TS, Wang TY, Lee AYL. Increased Cdc7 expression is a marker of oral squamous cell carcinoma and overexpression of Cdc7 contributes to the resistance to DNA-damaging agents. Cancer Lett 2013; 337:218-25. [PMID: 23684929 DOI: 10.1016/j.canlet.2013.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 01/28/2023]
Abstract
Cdc7-Dbf4 kinase (Dbf4-dependent kinase, DDK) is an essential factor of DNA replication and DNA damage response (DDR), which is associated with tumorigenesis. However, Cdc7 expression has never been associated to the outcome of oral squamous cell carcinoma (OSCC) patients, and the mechanism underlying cancer cell survival mediated by Cdc7 remains unclear. The Cdc7 protein expression of 105 OSCC tumor and 30 benign tissues was examined by immunohistochemistry assay. Overall survival rates of 80 OSCC patients were measured using Kaplan-Meier estimates and the log-rank tests. Cdc7 overexpression by adenovirus system was used to scrutinize the underlying mechanism contributed to cancer cell survival upon DDR. In silico analysis showed that increased Cdc7 is a common feature of cancer. Cdc7 overexpression was found in 96 of 105 (91.4%) studied cases of OSCC patients. Patients with higher Cdc7 expression, either categorized into two groups: Cdc7 high expression (2+ to 3+) versus Cdc7 low expression (0 to 1+) [hazard ratios (HR)=2.6; 95% confidence interval (CI)=1.28-5.43; P=0.0087] or four groups (0 to 3+) [HR=1.71; 95% CI=1.20-2.44; P=0.0032], exhibited a poorer outcome. Multivariate analysis showed that Cdc7 is an independent marker for survival prediction. Overexpressed Cdc7 inhibits genotoxin-induced apoptosis to increase the survival of cancer cells. In summary, Cdc7 expression, which is universally upregulated in cancer, is an independent prognostic marker of OSCC. Cdc7 inhibits genotoxin-induced apoptosis and increases survival in cancer cells upon DDR, suggesting that high expression of Cdc7 enhances the resistance to chemotherapy.
Collapse
Affiliation(s)
- An Ning Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bryan MC, Falsey JR, Frohn M, Reichelt A, Yao G, Bartberger MD, Bailis JM, Zalameda L, Miguel TS, Doherty EM, Allen JG. N-substituted azaindoles as potent inhibitors of Cdc7 kinase. Bioorg Med Chem Lett 2013; 23:2056-60. [DOI: 10.1016/j.bmcl.2013.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 01/30/2023]
|
38
|
Mulvey CM, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA replication origin activation checkpoint. J Proteome Res 2013; 12:1436-53. [PMID: 23320540 PMCID: PMC4261602 DOI: 10.1021/pr3010919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depletion of DNA replication initiation factors such as CDC7 kinase triggers the origin activation checkpoint in healthy cells and leads to a protective cell cycle arrest at the G1 phase of the mitotic cell division cycle. This protective mechanism is thought to be defective in cancer cells. To investigate how this checkpoint is activated and maintained in healthy cells, we conducted a quantitative SILAC analysis of the nuclear- and cytoplasmic-enriched compartments of CDC7-depleted fibroblasts and compared them to a total cell lysate preparation. Substantial changes in total abundance and/or subcellular location were detected for 124 proteins, including many essential proteins associated with DNA replication/cell cycle. Similar changes in protein abundance and subcellular distribution were observed for various metabolic processes, including oxidative stress, iron metabolism, protein translation and the tricarboxylic acid cycle. This is accompanied by reduced abundance of two karyopherin proteins, suggestive of reduced nuclear import. We propose that altered nucleo-cytoplasmic trafficking plays a key role in the regulation of cell cycle arrest. The results increase understanding of the mechanisms underlying maintenance of the DNA replication origin activation checkpoint and are consistent with our proposal that cell cycle arrest is an actively maintained process that appears to be distributed over various subcellular locations.
Collapse
Affiliation(s)
- Claire M. Mulvey
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Slavica Tudzarova
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark Crawford
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Gareth H. Williams
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
39
|
Ito S, Ishii A, Kakusho N, Taniyama C, Yamazaki S, Fukatsu R, Sakaue-Sawano A, Miyawaki A, Masai H. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One 2012; 7:e36372. [PMID: 22574151 PMCID: PMC3344859 DOI: 10.1371/journal.pone.0036372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/30/2012] [Indexed: 01/17/2023] Open
Abstract
Background Depletion of replication factors often causes cell death in cancer cells. Depletion of Cdc7, a kinase essential for initiation of DNA replication, induces cancer cell death regardless of its p53 status, but the precise pathways of cell death induction have not been characterized. Methodology/Principal Findings We have used the recently-developed cell cycle indicator, Fucci, to precisely characterize the cell death process induced by Cdc7 depletion. We have also generated and utilized similar fluorescent cell cycle indicators using fusion with other cell cycle regulators to analyze modes of cell death in live cells in both p53-positive and -negative backgrounds. We show that distinct cell-cycle responses are induced in p53-positive and -negative cells by Cdc7 depletion. p53-negative cells predominantly arrest temporally in G2-phase, accumulating CyclinB1 and other mitotic regulators. Prolonged arrest at G2-phase and abrupt entry into aberrant M-phase in the presence of accumulated CyclinB1 are followed by cell death at the post-mitotic state. Abrogation of cytoplasmic CyclinB1 accumulation partially decreases cell death. The ATR-MK2 pathway is responsible for sequestration of CyclinB1 with 14-3-3σ protein. In contrast, p53-positive cancer cells do not accumulate CyclinB1, but appear to die mostly through entry into aberrant S-phase after Cdc7 depletion. The combination of Cdc7 inhibition with known anti-cancer agents significantly stimulates cell death effects in cancer cells in a genotype-dependent manner, providing a strategic basis for future combination therapies. Conclusions Our results show that the use of Fucci, and similar fluorescent cell cycle indicators, offers a convenient assay system with which to identify cell cycle events associated with cancer cell death. They also indicate genotype-specific cell death modes induced by deficient initiation of DNA replication in cancer cells and its potential exploitation for development of efficient cancer therapies.
Collapse
Affiliation(s)
- Sayuri Ito
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Williams GH, Stoeber K. The cell cycle and cancer. J Pathol 2011; 226:352-64. [PMID: 21990031 DOI: 10.1002/path.3022] [Citation(s) in RCA: 475] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 12/25/2022]
Abstract
Deregulation of the cell cycle underlies the aberrant cell proliferation that characterizes cancer and loss of cell cycle checkpoint control promotes genetic instability. During the past two decades, cancer genetics has shown that hyperactivating mutations in growth signalling networks, coupled to loss of function of tumour suppressor proteins, drives oncogenic proliferation. Gene expression profiling of these complex and redundant mitogenic pathways to identify prognostic and predictive signatures and their therapeutic targeting has, however, proved challenging. The cell cycle machinery, which acts as an integration point for information transduced through upstream signalling networks, represents an alternative target for diagnostic and therapeutic interventions. Analysis of the DNA replication initiation machinery and mitotic engine proteins in human tissues is now leading to the identification of novel biomarkers for cancer detection and prognostication, and is providing target validation for cell cycle-directed therapies.
Collapse
Affiliation(s)
- Gareth H Williams
- Department of Pathology and Cancer Institute, University College London, UK.
| | | |
Collapse
|
41
|
Lindvall M, McBride C, McKenna M, Gesner TG, Yabannavar A, Wong K, Lin S, Walter A, Shafer CM. 3D Pharmacophore Model-Assisted Discovery of Novel CDC7 Inhibitors. ACS Med Chem Lett 2011; 2:720-3. [PMID: 24900258 DOI: 10.1021/ml200029w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/15/2011] [Indexed: 01/22/2023] Open
Abstract
A ligand-based 3D pharmacophore model for serine/threonine kinase CDC7 inhibition was created and successfully applied in the discovery of novel 2-(heteroaryl)-6,7-dihydrothieno[3,2-c]pyridin-4(5H)-ones. The pharmacophore model provided a hypothesis for lead generation missed by docking to a homology model. Medicinal chemistry exploration of the series revealed clear structure-activity relationships consistent with the pharmacophore model and pointed to further optimization opportunities.
Collapse
Affiliation(s)
- Mika Lindvall
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Christopher McBride
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Maureen McKenna
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Thomas G. Gesner
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Asha Yabannavar
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Kent Wong
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Song Lin
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Annette Walter
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Cynthia M. Shafer
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| |
Collapse
|
42
|
Mulvey C, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Quantitative proteomics reveals a "poised quiescence" cellular state after triggering the DNA replication origin activation checkpoint. J Proteome Res 2010; 9:5445-60. [PMID: 20707412 DOI: 10.1021/pr100678k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An origin activation checkpoint has recently been discovered in the G1 phase of the mitotic cell cycle, which can be triggered by loss of DNA replication initiation factors such as the Cdc7 kinase. Insufficient levels of Cdc7 activate cell cycle arrest in normal cells, whereas cancer cells appear to lack this checkpoint response, do not arrest, and proceed with an abortive S phase, leading to cell death. The differential response between normal and tumor cells at this checkpoint has led to widespread interest in the development of pharmacological Cdc7 inhibitors as novel anticancer agents. We have used RNAi against Cdc7 in combination with SILAC-based high resolution MS proteomics to investigate the cellular mechanisms underlying the maintenance of the origin activation checkpoint in normal human diploid fibroblasts. Bioinformatics analysis identified clear changes in wide-ranging biological processes including altered cellular energetic flux, moderate stress response, reduced proliferative capacity, and a spatially distributed response across the mitochondria, lysosomes, and the cell surface. These results provide a quantitative overview of the processes involved in maintenance of the arrested state, show that this phenotype involves active rather than passive cellular adaptation, and highlight a diverse set of proteins responsible for cell cycle arrest and ultimately for promotion of cellular survival. We propose that the Cdc7-depleted proteome maintains cellular arrest by initiating a dynamic quiescence-like response and that the complexities of this phenotype will have important implications for the continued development of promising Cdc7-targeted cancer therapies.
Collapse
Affiliation(s)
- Claire Mulvey
- Centre for Molecular Medicine, Rayne Institute, Division of Medicine, University College London, London, U.K
| | | | | | | | | | | |
Collapse
|
43
|
Molecular architecture of the DNA replication origin activation checkpoint. EMBO J 2010; 29:3381-94. [PMID: 20729811 DOI: 10.1038/emboj.2010.201] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/27/2010] [Indexed: 12/13/2022] Open
Abstract
Perturbation of DNA replication initiation arrests human cells in G1, pointing towards an origin activation checkpoint. We used RNAi against Cdc7 kinase to inhibit replication initiation and dissect this checkpoint in fibroblasts. We show that the checkpoint response is dependent on three axes coordinated through the transcription factor FoxO3a. In arrested cells, FoxO3a activates the ARF-∣Hdm2-∣p53 → p21 pathway and mediates p15(INK4B) upregulation; p53 in turn activates expression of the Wnt/β-catenin signalling antagonist Dkk3, leading to Myc and cyclin D1 downregulation. The resulting loss of CDK activity inactivates the Rb-E2F pathway and overrides the G1-S transcriptional programme. Fibroblasts concomitantly depleted of Cdc7/FoxO3a, Cdc7/p15, Cdc7/p53 or Cdc7/Dkk3 can bypass the arrest and proceed into an abortive S phase followed by apoptosis. The lack of redundancy between the checkpoint axes and reliance on several tumour suppressor proteins commonly inactivated in human tumours provides a mechanistic basis for the cancer-cell-specific killing observed with emerging Cdc7 inhibitors.
Collapse
|