1
|
McCarthy D, Pulverer W, Weinhaeusel A, Diago OR, Hogan DJ, Ostertag D, Hanna MM. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples. Epigenomics 2016; 8:747-65. [PMID: 27337298 DOI: 10.2217/epi-2016-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. MATERIALS & METHODS Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. RESULTS MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. CONCLUSION MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
Collapse
Affiliation(s)
- David McCarthy
- Ribomed Biotechnologies Inc., 3469 Kurtz St., San Diego, CA 92110, USA
| | - Walter Pulverer
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria
| | - Andreas Weinhaeusel
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria
| | - Oscar R Diago
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230; San Diego, CA 92109, USA
| | - Daniel J Hogan
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230; San Diego, CA 92109, USA
| | - Derek Ostertag
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230; San Diego, CA 92109, USA
| | - Michelle M Hanna
- Ribomed Biotechnologies Inc., 3469 Kurtz St., San Diego, CA 92110, USA
| |
Collapse
|
2
|
Noehammer C, Pulverer W, Hassler MR, Hofner M, Wielscher M, Vierlinger K, Liloglou T, McCarthy D, Jensen TJ, Nygren A, Gohlke H, Trooskens G, Braspenning M, Van Criekinge W, Egger G, Weinhaeusel A. Strategies for validation and testing of DNA methylation biomarkers. Epigenomics 2015; 6:603-22. [PMID: 25531255 DOI: 10.2217/epi.14.43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers.
Collapse
Affiliation(s)
- Christa Noehammer
- Health & Environment Department, Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kabekkodu SP, Bhat S, Radhakrishnan R, Aithal A, Mascarenhas R, Pandey D, Rai L, Kushtagi P, Mundyat GP, Satyamoorthy K. DNA promoter methylation-dependent transcription of the double C2-like domain β (DOC2B) gene regulates tumor growth in human cervical cancer. J Biol Chem 2014; 289:10637-10649. [PMID: 24570007 DOI: 10.1074/jbc.m113.491506] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double C2-like domain β (DOC2B) gene encodes for a calcium-binding protein, which is involved in neurotransmitter release, sorting, and exocytosis. We have identified the promoter region of the DOC2B gene as hypermethylated in pre-malignant, malignant cervical tissues, and cervical cancer cell lines by methylation-sensitive dimethyl sulfoxide-polymerase chain reaction and bisulfite genome sequencing; whereas, it was unmethylated in normal cervical tissues (p < 0.05). The promoter hypermethylation was inversely associated with mRNA expression in SiHa, CaSki, and HeLa cells and treatment with demethylating agent 5-aza-2-deoxycytidine restored DOC2B expression. The region -630 to +25 bp of the DOC2B gene showed robust promoter activity by a luciferase reporter assay and was inhibited by in vitro artificial methylation with Sss1 methylase prior to transient transfections. Overexpression of the DOC2B gene in SiHa cells when compared with controls showed significantly reduced colony formation, cell proliferation, induced cell cycle arrest, and repressed cell migration and invasion (p < 0.05). Ectopic expression of DOC2B resulted in anoikis-mediated cell death and repressed tumor growth in a nude mice xenograft model (p < 0.05). DOC2B expressing cells showed a significant increase in intracellular calcium level (p < 0.05), impaired AKT1 and ERK1/2 signaling, and induced actin cytoskeleton remodeling. Our results show that promoter hypermethylation and silencing of the DOC2B gene is an early and frequent event during cervical carcinogenesis and whose reduced expression due to DNA promoter methylation may lead to selective cervical tumor growth.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576104, India
| | - Samatha Bhat
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576104, India
| | - Raghu Radhakrishnan
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576104, India
| | - Abhijit Aithal
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576104, India
| | - Roshan Mascarenhas
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Lavanya Rai
- Department of OBGYN, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Pralhad Kushtagi
- Department of OBGYN, Kasturba Medical College, Manipal University, Mangalore 575001, India
| | - Gopinath Puthiya Mundyat
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576104, India
| | - Kapaettu Satyamoorthy
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576104, India.
| |
Collapse
|
4
|
Tomaz RA, Cavaco BM, Leite V. Differential methylation as a cause of allele dropout at the imprinted GNAS locus. Genet Test Mol Biomarkers 2010; 14:455-60. [PMID: 20642365 DOI: 10.1089/gtmb.2010.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION We detected false homozygosity at the NESP55 differentially methylated region of the imprinted GNAS locus while analyzing the segregation of single-nucleotide polymorphisms (SNPs) in families with pseudohypoparathyroidism type Ib (PHP-Ib). We hypothesized that differential methylation of NESP55 could affect polymerase chain reaction (PCR) amplification, resulting in allele dropout. METHODS We genotyped 10 normal controls for four SNPs in NESP55 differentially methylated region. SNPs were amplified by standard PCR conditions and with the addition of dimethyl sulfoxide. The methylated allele was identified by HpaII analysis, and haplotypes were confirmed using subcloning strategies. All SNPs were also genotyped in a PHP-Ib patient (P1), carrying methylation at both NESP55 alleles, and in an in vitro methylated control DNA (SSSI-N4). RESULTS In the control samples, we identified allele dropout of the methylated allele in 85% of the amplifications, using standard PCR conditions. Addition of dimethyl sulfoxide to the PCR successfully prevented dropout in all cases. No amplification bias was observed for P1 and SSSI-N4 samples. CONCLUSIONS For the first time, we report that differential methylation of imprinted regions can lead to preferential amplification of unmethylated alleles. Addition of coadjuvants to the PCR may facilitate amplification of both alleles, providing an accurate genotyping in cases with methylation-related diseases.
Collapse
Affiliation(s)
- Rute A Tomaz
- Centro de Investigação de Patobiologia Molecular (CIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | | | | |
Collapse
|
5
|
OMARUDDIN RA, CHAUDHRY MA. Detection of genomic DNA methylation with denaturing high performance liquid chromatography. Hum Cell 2010; 23:41-9. [DOI: 10.1111/j.1749-0774.2010.00084.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Irahara N, Nosho K, Baba Y, Shima K, Lindeman NI, Hazra A, Schernhammer ES, Hunter DJ, Fuchs CS, Ogino S. Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn 2010; 12:177-83. [PMID: 20093385 DOI: 10.2353/jmoldx.2010.090106] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genome-wide DNA hypomethylation plays an important role in epigenomic and genomic instability and colorectal carcinogenesis. DNA methylation in the long interspersed nucleotide element-1, L1 (LINE-1) repetitive element is a good indicator of global DNA methylation level. In addition, LINE-1 hypomethylation in blood cells has been associated with colorectal adenoma risk, and LINE-1 hypomethylation in colorectal cancer is related with prognosis and linearly predicts shorter patient survival. However, no study has comprehensively evaluated the precision of sodium bisulfite conversion and PCR-pyrosequencing to measure LINE-1 methylation. Using 10 paraffin-embedded colon cancers, 5 matched normal colon mucosa, and 5 unrelated peripheral blood buffy coat leukocyte specimens, we enriched tumor DNA by macrodissection and laser capture microdissection. LINE-1 methylation was calculated as an average of 100 * C/(C + T) at 4 CpG sites after bisulfite-PCR-pyrosequencing. The LINE-1 methylation value in colon cancers varied, ranging approximately from 30 to 80. To measure assay precision, we performed bisulfite conversion on seven different DNA specimen aliquots and repeated PCR-pyrosequencing seven times. Run-to-run (between-run) SD ranged from 1.3 to 4.4 (median, 3.0) in macrodissected colon cancers; 1.1 to 10.5 (median, 3.8) in laser capture microdissection specimens; 1.3 to 2.5 (median, 1.9) in normal colon; and 1.5 to 3.4 (median, 1.9) in leukocyte DNA. In conclusion, bisulfite conversion and PCR-pyrosequencing assay can measure LINE-1 methylation in macrodissected colon cancer, normal colon, and blood DNA, and may be useful in clinical and research settings.
Collapse
Affiliation(s)
- Natsumi Irahara
- Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, 44 Binney St., Room JF-215C, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dehan P, Kustermans G, Guenin S, Horion J, Boniver J, Delvenne P. DNA methylation and cancer diagnosis: new methods and applications. Expert Rev Mol Diagn 2009; 9:651-7. [PMID: 19817550 DOI: 10.1586/erm.09.53] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methylation of cytosines in cytosine-guanine (CpG) dinucleotides is one of the most important epigenetic alterations in animals. The presence of methylcytosine in the promoter of specific genes has profound consequences on local chromatin structure and on the regulation of gene expression. Changes in DNA methylation play a central role in carcinogenesis. Hypermethylation and consecutive transcriptional silencing of tumor-suppressor genes has been documented in numerous cancers. The identification of target genes silenced by this modification has a great impact on diagnosis, classification, definition of risk groups and prognosis of cancer patients. Here we outline genome-wide techniques aiming at the identification of relevant methylated promoters. Methods and applications allowing clinicians to monitor the methylation of target genes will be also reviewed.
Collapse
Affiliation(s)
- Pierre Dehan
- Experimental Pathology, University of Liege, CHU Sart-Tilman, Boulevard de l'Hopital, 4000 Liege, Belgium.
| | | | | | | | | | | |
Collapse
|