1
|
Ayers AG, Victoriano CM, Sia SK. Integrated device for plasma separation and nucleic acid extraction from whole blood toward point-of-care detection of bloodborne pathogens. LAB ON A CHIP 2024; 24:5124-5136. [PMID: 39421980 PMCID: PMC11487500 DOI: 10.1039/d4lc00571f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Sample preparation presents a major challenge in point-of-care (POC) diagnostic assays, including ones requiring whole blood as the starting specimen. This study presents an integrated sample preparation device - which we call PRECISE - that performs both plasma separation and nucleic acid extraction, enabling streamlined sample preparation from whole blood requiring only a commercially available blood collection tool and a syringe, and no other external equipment or electricity. Plasma separation is performed using a dual-membrane filter (which filters out blood components while limiting membrane clogging) integrated into the cartridge, and nucleic acid extraction is performed by users moving magnets (to mix the samples, and along a guided track). The plasma filtration demonstrated recovery on par with lab-based centrifugation, and the extraction module showed performance similar to benchtop-based magnetic bead extraction. A sample-to-result demonstration on 50 μL of whole blood spiked with virions of hepatitis C virus (HCV), operating the PRECISE cartridge in 16 minutes followed by benchtop PCR, showed a limit of detection (∼6770 IU mL-1) on the order of the minimal requirements of target product profile for POC HCV detection. Future work on the PRECISE cartridge, building on POC accessibility and fast sample preparation demonstrated in this work, may enable detection of bloodborne pathogens from whole-blood specimens collected at the POC.
Collapse
Affiliation(s)
- Abigail G Ayers
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Lee SM, Balakrishnan HK, Doeven EH, Yuan D, Guijt RM. Chemical Trends in Sample Preparation for Nucleic Acid Amplification Testing (NAAT): A Review. BIOSENSORS 2023; 13:980. [PMID: 37998155 PMCID: PMC10669371 DOI: 10.3390/bios13110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing. As the enzymatic amplification reactions can be sensitive to inhibitors from the sample, as well as from chemicals used for lysis and extraction, avoiding inhibition is a significant challenge, particularly when minimising liquid handling steps is also desirable for the translation of the assay to a portable format for PONT. The reagents used in sample preparation for nucleic acid testing, covering lysis and NA extraction (binding, washing, and elution), are reviewed with a focus on their suitability for use in PONT.
Collapse
Affiliation(s)
- Soo Min Lee
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Hari Kalathil Balakrishnan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Egan H. Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rosanne M. Guijt
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
3
|
Rodriguez-Mateos P, Ngamsom B, Ameyo D, Wakaba P, Shiluli C, Iles A, Gitaka J, Pamme N. Integrated microscale immiscible phase extraction and isothermal amplification for colorimetric detection of Neisseria gonorrhoeae. Anal Bioanal Chem 2023; 415:5129-5137. [PMID: 37198361 PMCID: PMC10191819 DOI: 10.1007/s00216-023-04734-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Gonorrhea is the second most common sexually transmitted infection (STI) with around 87 million cases worldwide estimated in 2016 by the World Health Organization. With over half of the cases being asymptomatic, potential life-threatening complications and increasing numbers of drug-resistant strains, routine monitoring of prevalence and incidence of infections are key preventive measures. Whilst gold standard qPCR tests have excellent accuracy, they are neither affordable nor accessible in low-resource settings. In this study, we developed a lab-on-a-chip platform based on microscale immiscible filtration to extract, concentrate and purify Neisseria gonorrhoeae DNA with an integrated detection assay based on colorimetric isothermal amplification. The platform was capable of detecting as low as 500 copies/mL from spiked synthetic urine and showed no cross-reactivity when challenged with DNAs from other common STIs. The credit card-size device allows DNA extraction and purification without power or centrifuges, and the detection reaction only needs a low-tech block heater, providing a straightforward and visual positive/negative result within 1 h. These advantages offer great potential for accurate, affordable and accessible monitoring of gonorrhea infection in resource-poor settings.
Collapse
Affiliation(s)
- Pablo Rodriguez-Mateos
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Bongkot Ngamsom
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Daglus Ameyo
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Patrick Wakaba
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Clement Shiluli
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Alexander Iles
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya.
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
- School of Natural Sciences, University of Hull, Hull, UK.
| |
Collapse
|
4
|
Politza AJ, Liu T, Guan W. Programmable magnetic robot (ProMagBot) for automated nucleic acid extraction at the point of need. LAB ON A CHIP 2023; 23:3882-3892. [PMID: 37551930 PMCID: PMC11218199 DOI: 10.1039/d3lc00545c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Upstream sample preparation remains the bottleneck for point-of-need nucleic acid testing due to its complexity and time-consuming nature. Sample preparation involves extracting, purifying, and concentrating nucleic acids from various matrices. These processes are critical for ensuring the accuracy and sensitivity of downstream nucleic acid amplification and detection. However, current sample preparation methods are often laboratory-based, requiring specialized equipment, trained personnel, and several hours of processing time. As a result, sample preparation often limits the speed, portability, and cost-effectiveness of point-of-need nucleic acid testing. A universal, field-deployable sample preparation device is highly desirable for this critical need and unmet challenge. Here we reported a handheld, battery-powered, reconfigurable, and field-deployable nucleic acid sample preparation device. A programmable electromagnetic actuator was developed to drive a magnetic robot (ProMagBot) in X/Y 2D space, such that various magnetic bead-based sample preparations can be readily translated from the laboratory to point-of-need settings. The control of the electromagnetic actuator requires only a 3-phase unipolar voltage in X and Y directions, and therefore, the motion space is highly scalable. We validated the ProMagBot device with a model application by extracting HIV viral RNAs from plasma samples using two widely used magnetic bead kits: ChargeSwitch and MagMAX beads. In both cases, the ProMagBot could successfully extract viral RNAs from 50 μL plasma samples containing as low as 102 copies of viral RNAs in 20 minutes. Our results demonstrated the ability of ProMagBot to prepare samples from complex mediums at the point of need. We believe such a device would enable rapid and robust sample preparation in various settings, including resource-limited or remote environments, and accelerate the development of next-generation point-of-need nucleic acid testing.
Collapse
Affiliation(s)
- Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
5
|
Ma C, Sun Y, Huang Y, Gao Z, Huang Y, Pandey I, Jia C, Feng S, Zhao J. On-Chip Nucleic Acid Purification Followed by ddPCR for SARS-CoV-2 Detection. BIOSENSORS 2023; 13:bios13050517. [PMID: 37232879 DOI: 10.3390/bios13050517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
We developed a microfluidic chip integrated with nucleic acid purification and droplet-based digital polymerase chain reaction (ddPCR) modules to realize a 'sample-in, result-out' infectious virus diagnosis. The whole process involved pulling magnetic beads through drops in an oil-enclosed environment. The purified nucleic acids were dispensed into microdroplets by a concentric-ring, oil-water-mixing, flow-focusing droplets generator driven under negative pressure conditions. Microdroplets were generated with good uniformity (CV = 5.8%), adjustable diameters (50-200 μm), and controllable flow rates (0-0.3 μL/s). Further verification was provided by quantitative detection of plasmids. We observed a linear correlation of R2 = 0.9998 in the concentration range from 10 to 105 copies/μL. Finally, this chip was applied to quantify the nucleic acid concentrations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The measured nucleic acid recovery rate of 75 ± 8.8% and detection limit of 10 copies/μL proved its on-chip purification and accurate detection abilities. This chip can potentially be a valuable tool in point-of-care testing.
Collapse
Affiliation(s)
- Cong Ma
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yaru Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Ikshu Pandey
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiangfu Laboratory, Jiaxing 314102, China
| |
Collapse
|
6
|
Gao Y, Wang Y, Liu X, Zhu Z, Li Z, Zhang Z, Yin Y, Cho WCS, Song Y, Wang Y. One-step self-assembly of multilayer graphene oxide via streamlined click reactions for sensitive colorimetric assays. Anal Chim Acta 2023; 1241:340806. [PMID: 36657876 DOI: 10.1016/j.aca.2023.340806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hemin-loaded graphene oxide with excellent peroxidase-like activity shows great potential for biosensing applications. However, the detection sensitivity of biosensors based on such catalytic methods is limited by the lack of a signal amplification technique. In this work, we developed a simple and rapid signal amplification method based on streamlined click reactions enabling one-step assembly of multilayer graphene oxide nanosheets on magnetic beads to immobilize large amounts of hemin serving as active catalysts, which allowed for the highly sensitive detection of various biological targets, including copper ions, DNA sequences and proteins. With this method, we achieved detection limits down to 13.74 nM, 4.89 pM and 7.77 pg/mL for Cu2+, Ebola virus DNA sequences, and carcinoembryonic antigen, respectively. The designed platform holds great promise in the self-assembly of graphene-based nanozymes and sensitive colorimetric biosensing in a wider range of applications.
Collapse
Affiliation(s)
- Yanfeng Gao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China; College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanping Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xinli Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Zhenxing Zhu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Zhun Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Zhibin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region of China.
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
7
|
Fan Y, Dai R, Guan X, Lu S, Yang C, Lv X, Li X. Rapid automatic nucleic acid purification system based on gas-liquid immiscible phase. J Sep Sci 2023; 46:e2200801. [PMID: 36661136 DOI: 10.1002/jssc.202200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
The continuous expansion of nucleic acid detection applications has resulted in constant developments in rapid, low-consumption, and highly automated nucleic acid extraction methods. Nucleic acid extraction using magnetic beads across an immiscible phase interface offers significant simplification and parallelization potential. The gas-liquid immiscible phase valve eliminates the requirement for complicated cassettes and is suitable for automation applications. By analyzing the process of magnetic beads crossing the gas-liquid interface, we utilized a low magnetic field strength to drive large magnetic bead packages to cross the gas-liquid interface, providing a solution of high magnetic bead recovery rate for solid-phase extraction with a low-surfactant system based on gas-liquid immiscible phase valve. The recovery rate of magnetic beads was further improved to 90%-95% and the carryover of the reagents was below 1%. Consequently, a chip and an automatic system were developed to verify the applicability of this method for nucleic acid extraction. The Hepatitis B virus serum standard was used for the extraction test. The extraction of four samples was performed within 7 minutes, with nucleic acid recovery maintained above 80% and good purity. Thus, through analysis and experiments, a fast, highly automated, and low-consumption nucleic acid recovery method was proposed in this study.
Collapse
Affiliation(s)
- Yunlong Fan
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Rongji Dai
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Xuejun Guan
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Shuyu Lu
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Chunhua Yang
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Xuefei Lv
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Xiaoqiong Li
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
8
|
Rodriguez-Mateos P, Ngamsom B, Iles A, Pamme N. Microscale immiscible phase magnetic processing for bioanalytical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Lee K, Tripathi A. An investigation into simplifying total RNA extraction with minimal equipment using a low volume, electrokinetically driven microfluidic protocol. BIOMICROFLUIDICS 2022; 16:044107. [PMID: 35992642 PMCID: PMC9385220 DOI: 10.1063/5.0096684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Current methods for total RNA extraction are time-consuming and require several hands-on steps and specialized equipment. Microfluidic devices can offer the opportunity to reduce the number of hands-on steps, decrease the volumes of reagents required for purification, and make extraction high throughput. Here, we investigated the translation of a high volume magnetic bead-based total RNA extraction method (from human whole blood) onto a low input volume microfluidic device. Our results first show that RNA integrity is maintained when the reagent volumes are scaled down by a factor of 22 and the wash buffers are combined 1:1. With our microfluidic method, the number of wash steps can be reduced from four to one. Thus, the time to complete RNA extraction can be reduced from 2 h to 40 min. These manipulations to the conventional protocol yielded RNA amplifiable within 40 cycles of reverse transcription quantitative PCR (RT-qPCR) when using the microfluidic device to simplify the wash steps. To improve the purification of the RNA during the bead transport through the microchannel, we also investigated the effect of a synergetic application of the electrokinetic flow. Our results show that DNase I and other contaminants surrounding the beads get washed away more effectively via electrophoretic transport. Most notably, RNA adsorption on the beads is strong enough to counter electrophoretically-driven desorption. In all, our work opens new ways to extract high-quality total RNA rapidly and simply from a small quantity of blood, making the process of RNA extraction more accessible.
Collapse
Affiliation(s)
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
10
|
Pan W, Wang X, Ma X, Chu Y, Pang S, Chen Y, Guan X, Zou B, Wu Y, Zhou G. Postsynthetic Modification of the Magnetic Zirconium-Organic Framework for Efficient and Rapid Solid-Phase Extraction of DNA. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50309-50318. [PMID: 34652138 DOI: 10.1021/acsami.1c12622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, several approaches have been applied to modify metal-organic frameworks (MOFs) owing to their excellent structural tunability such as higher extraction efficiency than that of primitive crystals. Herein, Zr-based MOFs (UiO-66-NH2) with a suitable size modulated by acetic acid were successfully synthesized for effective DNA extraction. The bonding conformations and adsorption mechanism indicated a high affinity between UiO-66-NH2 and the DNA molecules. Furthermore, Fe3O4 nanoparticles were immobilized on the UiO-66-NH2 surface to allow MOFs with magnetism. The magnetic zirconium-organic framework (MZMOF) retained the intact structure of MOFs and simplified subsequent extraction operations. In the DNA recovery investigation, MZMOF showed high recovery efficiency for both short-stranded DNA (90.4%) and pseudovirus DNA (95.1%). In addition, it showed superior DNA extraction efficiency from plasma (57.6%) and swab preservation solution (86.5%). The prepared MZMOF was employed for highly specific extraction of viral DNA and cfDNA from samples. To further simplify the extraction process, MZMOF was applied to immiscible phase filtration assisted by a surface tension (IFAST) chip for facilitating rapid DNA extraction with sensitive point-of-care testing. The developed MZMOF-based extraction method has significant potential for increasing the demand for rapid and efficient nucleic acid extraction.
Collapse
Affiliation(s)
- Wang Pan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xuemei Wang
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Ya'nan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuqiu Chen
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanzi Wu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Guohua Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Sharma S, Bhatia V. Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal. Nanomedicine (Lond) 2021; 16:1329-1342. [PMID: 34027677 DOI: 10.2217/nnm-2021-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of magnetic nanoparticles (MNPs) in microfluidics based diagnostics is a classic case of micro-, nano- and bio-technology coming together to design extremely controllable, reproducible, and scalable nano and micro 'on-chip bio sensing systems.' In this review, applications of MNPs in microfluidics ranging from molecular diagnostics and immunodiagnostics to clinical uses have been examined. In addition, microfluidic mixing and capture of analytes using MNPs, and MNPs as carriers in microfluidic devices has been investigated. Finally, the challenges and future directions of this upcoming field have been summarized. The use of MNP-based microfluidic devices, will help in developing decentralized or 'point of care' testing globally, contributing to affordable healthcare, particularly, for middle- and low-income developing countries.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital & Postgraduate Institute, Noida, U.P., India
| |
Collapse
|
12
|
Wu H, Chen Y, Shi Y, Wang L, Zhang M, Wu J, Chen H. Carrying out pseudo dual nucleic acid detection from sample to visual result in a polypropylene bag with CRISPR/Cas12a. Biosens Bioelectron 2021; 178:113001. [DOI: 10.1016/j.bios.2021.113001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022]
|
13
|
Ohashi T, Kuyama H. Magnetic particle transport through organogel - an application to DNA extraction. Anal Biochem 2020; 611:113932. [PMID: 32891594 DOI: 10.1016/j.ab.2020.113932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022]
Abstract
An observation that magnetic particles are transported through organogel encouraged us to investigate its feasibility of liquid-phase displacement in DNA extraction using magnetic particles. Organogel for this study was prepared from a gelator, 12-hydroxystearic acid (12-HSA), and an apolar solvent, methylphenylsilicone oil. The organogel is a gel-like solid material with hydrophobic and elastic properties. These properties, hydrophobicity, and elasticity were demonstrated to be advantageous for liquid compartmentalization and efficient liquid-phase displacement. The extracted DNA with using the organogel device was successfully detected off-chip by conventional real-time PCR.
Collapse
Affiliation(s)
- Tetsuo Ohashi
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan.
| | - Hiroki Kuyama
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| |
Collapse
|
14
|
Kim S, Mertens-Talcott SU, Vaidya B, Venancio VP, Cho SY, Song JA, Chew BP, Kwon J, Kim D. Performance of concanavalin A-immobilized on polyacrylate beads for the detection of human norovirus and hepatitis A virus in fecal specimens. Food Sci Biotechnol 2020; 29:1727-1733. [PMID: 33282439 PMCID: PMC7708564 DOI: 10.1007/s10068-020-00833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Quantitative reverse transcription PCR (qRT-PCR) is a sensitive method for the detection of foodborne viruses in fecal samples. However, the performance of qRT-PCR depends on the efficiency of virus concentration methods. In this study, the effect of Concanavalin A (Con A)-immobilized on polyacrylate beads (Con A-PAB) on the qRT-PCR performance, in terms of sensitivity and specificity to detect foodborne viruses in human fecal specimens was compared with commercial viral RNA extraction kit (VRNA). The detection of foodborne viruses by qRT-PCR was validated by viral genome sequencing. Both Con A-PAB and VRNA methods were equally sensitive and specific for detecting hepatitis A virus in fecal specimens. Even though both methods showed high specificity (100% vs. 100%) for detecting human norovirus (HuNoV), Con A-PAB method exhibited higher sensitivity (100% vs. 42.9%) and accuracy (100% vs. 73.3%) compared to VRNA method. In conclusion, the application of Con A-PAB would improve the performance of qRT-PCR for the detection of HuNoV in fecal samples.
Collapse
Affiliation(s)
- Songhak Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | | | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Vinicius Paula Venancio
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2252 USA
| | - Se-Young Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jong-Am Song
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133 Republic of Korea
| | - Boon P. Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2252 USA
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133 Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
15
|
Chen Y, Liu Y, Shi Y, Ping J, Wu J, Chen H. Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. Trends Analyt Chem 2020; 127:115912. [PMID: 32382202 PMCID: PMC7202819 DOI: 10.1016/j.trac.2020.115912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid amplification based detection plays an important role in food safety, environmental monitoring and clinical diagnosis. However, traditional nucleic acid detection process involves transferring liquid from one tube to another by pipetting. It requires trained persons, equipped labs and consumes lots of time. The ideal nucleic acid detection is integrated, closed, simplified and automated. Magnetic particles actuated by magnetic fields can efficiently adsorb nucleic acids and promote integrated nucleic acid assays without pipetting driven by pumps and centrifuges. We will comprehensively review magnetic particles assisted integrated system for nucleic acid detection and hope it can inspire further related study.
Collapse
Key Words
- ATP, adenosine triphosphate
- DLS, dynamic light scattering
- FMR, ferromagnetic resonance
- GTC, guanidinium thiocyanate
- ICP-AES, inductively coupled plasma atomic emission spectroscopy
- IFAST, immiscible filtration assisted by surface tension
- Immiscible interface
- Integrated detection
- LAMP, loop-mediated isothermal amplification
- Magnetic particles
- Nucleic acid
- PCR, polymerase chain reaction
- PEG, polyethylene glycol
- POCT, point-of-care testing
- RPA, recombinase polymerase amplification
- SQUID, superconducting quantum interference device magnetometer
- TEM, transmission electron microscopy
- XRD, X-Ray diffraction
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Yanju Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Ya Shi
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, 310058, China
| | - Huan Chen
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
16
|
Lee K, Tripathi A. Parallel DNA Extraction From Whole Blood for Rapid Sample Generation in Genetic Epidemiological Studies. Front Genet 2020; 11:374. [PMID: 32411178 PMCID: PMC7201099 DOI: 10.3389/fgene.2020.00374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/26/2020] [Indexed: 01/12/2023] Open
Abstract
Large-scale genetic epidemiological studies require high-quality analysis of samples such as blood or saliva from multiple patients, which is challenging at the point of care. To expand these studies’ impact, minimal sample storage time and less complex extraction of a substantial quantity and good purity of DNA or RNA for downstream applications are necessary. Here, a simple microfluidics-based system that performs genomic DNA (gDNA) extraction from whole blood was developed. In this system, a mixture of blood lysate, paramagnetic beads, and binding buffer are first placed into the input well. Then, the gDNA-bound paramagnetic beads are pulled using a magnet through a central channel containing a wash buffer to the output well, which contains elution buffer. The gDNA is eluted at 55°C off the chip. The 40-minute microfluidic protocol extracts gDNA from six samples simultaneously and requires an input of 4 μL of diluted blood and a total reagent volume of 75 μL per reaction. Techniques including quantitative PCR (qPCR) and spectrofluorimetry were used to test the purity and quantity of gDNA eluted from the chip following extraction. Bead transport and molecular diffusional analysis showed that an input of less than 4 ng of gDNA (∼667 white blood cells) is optimal for on-chip extraction. There was no observable transport of inhibitors into the eluate that would greatly affect qPCR, and a sample was successfully prepared for next-generation sequencing (NGS). The microfluidics-based extraction of DNA from whole blood described here is paramount for future work in DNA-based point-of-care diagnostics and NGS library workflows.
Collapse
Affiliation(s)
- Kiara Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
17
|
Pearlman S, Leelawong M, Richardson KA, Adams NM, Russ PK, Pask ME, Wolfe AE, Wessely C, Haselton FR. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12457-12467. [PMID: 32039572 PMCID: PMC7082792 DOI: 10.1021/acsami.9b21564] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/10/2020] [Indexed: 05/26/2023]
Abstract
Nucleic acid-based diagnostic tests often require isolation and concentration of nucleic acids from biological samples. Commercial purification kits are difficult to use in low-resource settings because of their cost and insufficient laboratory infrastructure. Several recent approaches based on the use of magnetic beads offer a potential solution but remain limited to small volume samples. We have developed a simple and low-cost nucleic acid extraction method suitable for isolation and concentration of nucleic acids from small or large sample volumes. The method uses magnetic beads, a transfer pipette, steel wool, and an external magnet to implement high-gradient magnetic separation (HGMS) to retain nucleic acid-magnetic bead complexes within the device's steel wool matrix for subsequent processing steps. We demonstrate the method's utility by extracting tuberculosis DNA from both sputum and urine, two typical large volume sample matrices (5-200 mL), using guanidine-based extraction chemistry. Our HGMS-enabled extraction method is statistically indistinguishable from commercial extraction kits when detecting a spiked 123-base DNA sequence. For our HGMS-enabled extraction method, we obtained extraction efficiencies for sputum and urine of approximately 10 and 90%, whereas commercial kits obtained 10-17 and 70-96%, respectively. We also used this method previously in a blinded sample preparation comparison study published by Beall et al., 2019. Our manual extraction method is insensitive to high flow rates and sample viscosity, with capture of ∼100% for flow rates up to 45 mL/min and viscosities up to 55 cP, possibly making it suitable for a wide variety of sample volumes and types and point-of-care users. This HGMS-enabled extraction method provides a robust instrument-free method for magnetic bead-based nucleic acid extraction, potentially suitable for field implementation of nucleic acid testing.
Collapse
Affiliation(s)
- Stephanie
I. Pearlman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mindy Leelawong
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kelly A. Richardson
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas M. Adams
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Patricia K. Russ
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Megan E. Pask
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anna E. Wolfe
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cassandra Wessely
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Frederick R. Haselton
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
18
|
Deraney RN, Schneider L, Tripathi A. Synergistic use of electroosmotic flow and magnetic forces for nucleic acid extraction. Analyst 2020; 145:2412-2419. [PMID: 32057055 DOI: 10.1039/c9an02191d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nucleic acid sample preparation is essential for biological sample-based diagnostics. It is crucial that diagnostic tests be both specific and sensitive as to provide the most accurate diagnosis possible. Inefficient sample preparation can hinder the specificity and sensitivity of these tests since carryover contaminants can inhibit downstream processes, such as amplification. Microfluidic devices have been used previously to extract nucleic acids from a biological sample due to lower reagent volumes and ease of use. A novel microfluidic chip has been designed for nucleic acid sample preparation which combines electroosmotic flow and magnetic bead-based extraction to isolate DNA from a plasma sample. A steady electric field was incorporated into the microfluidic chip design, which when combined with a glass clover slip and a voltage differential, creates electroosmotic flow. With the goal of isolating nucleic acids into a clean, inhibitor free solution, the electroosmotic flow is the driving force and separation mechanism purifying the DNA sample captured on magnetic beads in the microfluidic chip system. Carryover volume, or the volume of unwanted sample contaminants that accompany the nucleic acids into the final elution buffer, was minimized to 0.22 ± 0.03%. In combination with magnetic bead based nucleic acid extraction techniques, a 15% increase in DNA extraction yield is reported for the microfluidic chip with the voltage applied versus without. Although the literature on nucleic acid separation in microfluidic chips is abundant, this is the first to combine microfluidic chip design, magnetic bead-based isolation and electroosmotic flow.
Collapse
Affiliation(s)
- Rachel N Deraney
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA.
| | | | | |
Collapse
|
19
|
Jue E, Witters D, Ismagilov RF. Two-phase wash to solve the ubiquitous contaminant-carryover problem in commercial nucleic-acid extraction kits. Sci Rep 2020; 10:1940. [PMID: 32029846 PMCID: PMC7004994 DOI: 10.1038/s41598-020-58586-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
The success of fundamental and applied nucleic acid (NA) research depends on NA purity, but obtaining pure NAs from raw, unprocessed samples is challenging. Purification using solid-phase NA extractions utilizes sequential additions of lysis and wash buffers followed by elution. The resulting eluent contains NAs and carryover of extraction buffers. Typically, these inhibitory buffers are heavily diluted by the reaction mix (e.g., 10x dilution is 1 µL eluent in 9 µL reaction mix), but in applications requiring high sensitivity (e.g., single-cell sequencing, pathogen diagnostics) it is desirable to use low dilutions (e.g., 2x) to maximize NA concentration. Here, we demonstrate pervasive carryover of inhibitory buffers into eluent when several commercial sample-preparation kits are used following manufacturer protocols. At low eluent dilution (2-2.5x) we observed significant reaction inhibition of polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and reverse transcription (RT). We developed a two-phase wash (TPW) method by adding a wash buffer with low water solubility prior to the elution step. The TPW reduces carryover of extraction buffers, phase-separates from the eluent, and does not reduce NA yield (measured by digital PCR). We validated the TPW for silica columns and magnetic beads by demonstrating significant improvements in performance and reproducibility of qPCR, LAMP, and RT reactions.
Collapse
Affiliation(s)
- Erik Jue
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Blvd., Pasadena, CA, 91125, United States
| | - Daan Witters
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd., Pasadena, CA, 91125, United States
| | - Rustem F Ismagilov
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Blvd., Pasadena, CA, 91125, United States.
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd., Pasadena, CA, 91125, United States.
| |
Collapse
|
20
|
Hu F, Li J, Zhang Z, Li M, Zhao S, Li Z, Peng N. Smartphone-Based Droplet Digital LAMP Device with Rapid Nucleic Acid Isolation for Highly Sensitive Point-of-Care Detection. Anal Chem 2019; 92:2258-2265. [PMID: 31841633 DOI: 10.1021/acs.analchem.9b04967] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While advances in microfluidics have enabled rapid and highly integrated detection of nucleic acid targets, the detection sensitivity is still unsatisfactory in the current POC (point-of-care) detection systems, especially for low abundance samples. In this study, a chip that integrates rapid nucleic acid extraction based on IFAST (immiscible phase filtration assisted by surface tension) and digital isothermal detection was developed to achieve highly sensitive POC detection within 60 min. Based on the interface theory, the factors influencing the interface stability of the IFAST process were studied, and the IFAST nucleic acid extraction conditions were optimized to increase the nucleic acid extraction recovery rate to 75%. Spiral mixing channel and flow-focusing droplet generation structure were designed to achieve the mixing and sample partitioning by applying negative pressure. A portable microdroplet fluorescence detection device was developed based on smartphone imaging. Validation tests were carried out for quantification of low-abundance cfDNA and detection of mutations.
Collapse
Affiliation(s)
- Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , 710054 , Shaanxi China
| | - Juan Li
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , 710054 , Shaanxi China
| | - Zengming Zhang
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , 710054 , Shaanxi China
| | - Ming Li
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , 710054 , Shaanxi China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , 710054 , Shaanxi China
| | - Zhipeng Li
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , 710054 , Shaanxi China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , 710054 , Shaanxi China
| |
Collapse
|
21
|
Juang DS, Berry SM, Li C, Lang JM, Beebe DJ. Centrifugation-Assisted Immiscible Fluid Filtration for Dual-Bioanalyte Extraction. Anal Chem 2019; 91:11848-11855. [PMID: 31411020 DOI: 10.1021/acs.analchem.9b02572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extraction of bioanalytes is the first step in many diagnostic and analytical assays. However, most bioanalyte extraction methods require extensive dilution-based washing processes that are not only time-consuming and laborious but can also result in significant sample loss, limiting their applications in rare sample analyses. Here, we present a method that enables the efficient extraction of multiple different bioanalytes from rare samples (down to 10 cells) without washing-centrifugation-assisted immiscible fluid filtration (CIFF). CIFF utilizes centrifugal force to drive the movement of analyte-bound glass microbeads from an aqueous sample into an immiscible hydrophobic solution to perform an efficient, simple, and nondilutive extraction. The method can be performed using conventional polymerase chain reaction (PCR) tubes with no requirement of specialized devices, columns, or instruments, making it broadly accessible and cost-effective. The CIFF process can effectively remove approximately 99.5% of the aqueous sample in one extraction with only 0.5% residual carryover, whereas a traditional "spin-down and aspirate" operation results in a higher 3.6% carryover. Another unique aspect of CIFF is its ability to perform two different solid-phase bioanalytes extractions simultaneously within a single vessel without fractionating the sample or performing serial extractions. Here we demonstrate efficient mRNA and DNA extraction from low-input samples (down to 10 cells) with slightly higher to comparable recovery compared to a traditional column-based extraction technique and the simultaneous extraction of two different proteins in the same tube using CIFF.
Collapse
|
22
|
Deraney RN, Troiano D, Joseph R, Sam SS, Caliendo AM, Tripathi A. Vortex- and Centrifugation-Free Extraction of HIV-1 RNA. Mol Diagn Ther 2019; 23:419-427. [PMID: 30911908 PMCID: PMC11289783 DOI: 10.1007/s40291-019-00394-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE HIV viral load measurements play a critical role in monitoring disease progression in those who are on antiretroviral treatment. In order to obtain an accurate measurement, rapid sample preparation techniques are required. There is an unmet need for HIV extraction instruments in resource-limited settings, where HIV prevalence is high. Therefore, the objective of our study was to develop a three-dimensional (3D) microfluidic system to extract HIV-1 RNA with minimal electricity and without complex laboratory instruments. METHODS A 3D microfluidic system was designed in which magnetic beads bound with nucleic acids move through immiscible oil-water interfaces to separate HIV-1 RNA from the sample. Polymerase chain reaction (PCR) amplification was used to quantify the total amount of HIV-1 RNA extracted as we optimized the system through chip design, bead type, carry-over volume, carrier RNA concentration, and elution buffer temperature. Additionally, the extraction efficiency of the 3D microfluidic system was evaluated by comparing with a Qiagen EZ1 Advanced XL instrument using 20 HIV-1-positive plasma samples. RESULTS Our method has near-perfect (100%) extraction efficiency in spiked serum samples with as little as 50 copies/mL starting sample. Furthermore, we report carry-over volumes of 0.31% ± 0.006% of total sample volume. Using the EZ1 Advanced XL as a gold standard, the average percentage HIV-1 RNA extracted using the microchip was observed to be 65.4% ± 24.6%. CONCLUSIONS From a clinical perspective, the success of our method opens up its possible use in diagnostic tests for HIV in the remote areas where access to vortexes and centrifuges is not available. Here we present a proof-of-concept device which, with further development, could be used for sample preparation at the point of care.
Collapse
Affiliation(s)
- Rachel N Deraney
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, RI, 02912, USA
| | - Derek Troiano
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, RI, 02912, USA
| | | | - Soya S Sam
- Division of Infectious Diseases, The Miriam Hospital, Providence, RI, USA
| | - Angela M Caliendo
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, RI, 02912, USA.
| |
Collapse
|
23
|
Point-of-Care HIV Viral Load Testing: an Essential Tool for a Sustainable Global HIV/AIDS Response. Clin Microbiol Rev 2019; 32:32/3/e00097-18. [PMID: 31092508 DOI: 10.1128/cmr.00097-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The global public health community has set ambitious treatment targets to end the HIV/AIDS pandemic. With the notable absence of a cure, the goal of HIV treatment is to achieve sustained suppression of an HIV viral load, which allows for immunological recovery and reduces the risk of onward HIV transmission. Monitoring HIV viral load in people living with HIV is therefore central to maintaining effective individual antiretroviral therapy as well as monitoring progress toward achieving population targets for viral suppression. The capacity for laboratory-based HIV viral load testing has increased rapidly in low- and middle-income countries, but implementation of universal viral load monitoring is still hindered by several barriers and delays. New devices for point-of-care HIV viral load testing may be used near patients to improve HIV management by reducing the turnaround time for clinical test results. The implementation of near-patient testing using these new and emerging technologies may be an essential tool for ensuring a sustainable response that will ultimately enable an end to the HIV/AIDS pandemic. In this report, we review the current and emerging technology, the evidence for decentralized viral load monitoring by non-laboratory health care workers, and the additional considerations for expanding point-of-care HIV viral load testing.
Collapse
|
24
|
Development of Tubing-based Stationary Liquid-phase Enzyme-linked Immunosorbent Assay. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-018-3208-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Hu F, Li J, Peng N, Li Z, Zhang Z, Zhao S, Duan M, Tian H, Li L, Zhang P. Rapid isolation of cfDNA from large-volume whole blood on a centrifugal microfluidic chip based on immiscible phase filtration. Analyst 2019; 144:4162-4174. [DOI: 10.1039/c9an00493a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The C-IFAST device enabled the rapid isolation of cfDNA, from 4 ml whole blood to 50 μl elution, within 15 min.
Collapse
Affiliation(s)
- Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Juan Li
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Zheng Li
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Zengming Zhang
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Mingyue Duan
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Hui Tian
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Lei Li
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Peng Zhang
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| |
Collapse
|
26
|
Zhang H, Huang F, Cai G, Li Y, Lin J. Rapid and sensitive detection of Escherichia coli O157:H7 using coaxial channel-based DNA extraction and microfluidic PCR. J Dairy Sci 2018; 101:9736-9746. [DOI: 10.3168/jds.2018-14730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/21/2018] [Indexed: 01/09/2023]
|
27
|
Mauk MG, Song J, Liu C, Bau HH. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests. BIOSENSORS 2018; 8:E17. [PMID: 29495424 PMCID: PMC5872065 DOI: 10.3390/bios8010017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/10/2023]
Abstract
Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges ('chips') that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed.
Collapse
Affiliation(s)
- Michael G Mauk
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| | - Jinzhao Song
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| | - Changchun Liu
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| | - Haim H Bau
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Poenitzsch Strong AM, Berry SM, Beebe DJ, Li JL, Spiegelman VS. miFAST: A novel and rapid microRNA target capture method. Mol Carcinog 2018; 57:559-566. [PMID: 29350431 DOI: 10.1002/mc.22780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs), small 22-25 nucleotide non-coding RNAs, play important roles in cellular and tumor biology. However, characterizing miRNA function remains challenging due to an abundance of predicted targets and an experimental bottleneck in identifying biologically relevant direct targets. Here, we developed a novel technique (miFAST) to identify direct miRNA target genes. Using miFAST, we confirmed several previously reported miR-340 target genes and identified five additional novel direct miR-340 targets in melanoma cells. This methodology can also be efficiently applied for the global characterization of miRNA targets. Utilizing miFAST to characterize direct miRNA targetomes will further our understanding of miRNA biology and function.
Collapse
Affiliation(s)
| | - Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
29
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
30
|
Chan K, Wong PY, Parikh C, Wong S. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA. Anal Biochem 2018; 545:4-12. [PMID: 29339059 DOI: 10.1016/j.ab.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Traditionally, the majority of nucleic acid amplification-based molecular diagnostic tests are done in centralized settings. In recent years, point-of-care tests have been developed for use in low-resource settings away from central laboratories. While most experts agree that point-of-care molecular tests are greatly needed, their availability as cost-effective and easy-to-operate tests remains an unmet goal. In this article, we discuss our efforts to develop a recombinase polymerase amplification reaction-based test that will meet these criteria. First, we describe our efforts in repurposing a low-cost 3D printer as a platform that can carry out medium-throughput, rapid, and high-performing nucleic acid extraction. Next, we address how these purified templates can be rapidly amplified and analyzed using the 3D printer's heated bed or the deconstructed, low-cost thermal cycler we have developed. In both approaches, real-time isothermal amplification and detection of template DNA or RNA can be accomplished using a low-cost portable detector or smartphone camera. Last, we demonstrate the capability of our technologies using foodborne pathogens and the Zika virus. Our low-cost approach does not employ complicated and high-cost components, making it suitable for resource-limited settings. When integrated and commercialized, it will offer simple sample-to-answer molecular diagnostics.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Pui-Yan Wong
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Season Wong
- AI Biosciences, Inc., College Station, TX 77845, USA.
| |
Collapse
|
31
|
Serra M, Ferraro D, Pereiro I, Viovy JL, Descroix S. The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications. LAB ON A CHIP 2017; 17:3979-3999. [PMID: 28948991 DOI: 10.1039/c7lc00582b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiphase and droplet microfluidic systems are growing in relevance in bioanalytical-related fields, especially due to the increased sensitivity, faster reaction times and lower sample/reagent consumption of many of its derived bioassays. Often applied to homogeneous (liquid/liquid) reactions, innovative strategies for the implementation of heterogeneous (typically solid/liquid) processes have recently been proposed. These involve, for example, the extraction and purification of target analytes from complex matrices or the implementation of multi-step protocols requiring efficient washing steps. To achieve this, solid supports such as functionalized particles (micro or nanometric) presenting different physical properties (e.g. magnetic, optical or others) are used for the binding of specific entities. The manipulation of such supports with different microfluidic principles has both led to the miniaturization of existing biomedical protocols and the development of completely new strategies for diagnostics and research. In this review, multiphase and droplet-based microfluidic systems using solid suspensions are presented and discussed with a particular focus on: i) working principles and technological developments of the manipulation strategies and ii) applications, critically discussing the level of maturity of these systems, which can range from initial proofs of concept to real clinical validations.
Collapse
Affiliation(s)
- M Serra
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.
| | | | | | | | | |
Collapse
|
32
|
Koo KM, Wee EJH, Wang Y, Trau M. Enabling miniaturised personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. LAB ON A CHIP 2017; 17:3200-3220. [PMID: 28850136 DOI: 10.1039/c7lc00587c] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The concept of personalised diagnostics is to direct accurate clinical decisions based on an individual's unique disease molecular profile. Lab-on-a-chip (LOC) systems are prime personalised diagnostics examples which seek to perform an entire sample-to-outcome detection of disease nucleic acid (NA) biomarkers on a single miniaturised platform with minimal user handling. Despite the great potential of LOC devices in providing rapid, portable, and inexpensive personalised diagnosis at the point-of-care (POC), the translation of this technology into widespread use has still been hampered by the need for sophisticated and complex engineering. As an alternative miniaturised diagnostics platform free of precision fabrication, there have been recent developments towards a solution-based lab-in-a-drop (LID) system by which an entire laboratory-based diagnostics workflow could be downscaled and integrated within a singular fluid droplet for POC detection of NA biomarkers. In contrast to existing excellent reviews on miniaturised LOC fabrication and individual steps of NA biomarker sensing, we herein focus on miniaturised solution-based NA biosensing strategies suited for integrated LID personalised diagnostics development. In this review, we first evaluate the three fundamental bioassay steps for miniaturised NA biomarker detection: crude sample preparation, isothermal target amplification, and detection readout of amplicons. Then, we provide insights into research advancements towards a functional LID system which integrates all three of the above-mentioned fundamental steps. Finally, we discuss perspectives and future directions of LID diagnostic platforms in personalised medicine applications.
Collapse
Affiliation(s)
- Kevin M Koo
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
33
|
Neto MF, Butzler MA, Reed JL, Rui X, Fisher MJ, Kelso DM, McFall SM. Immiscible phase filter extraction and equivalent amplification of genotypes 1-6 of hepatitis C RNA: The building blocks for point-of-care diagnosis. J Virol Methods 2017; 248:107-115. [PMID: 28673855 DOI: 10.1016/j.jviromet.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
The lack of hepatitis C virus (HCV) diagnostic tests designed for use in decentralized settings is a major obstacle for providing access to treatment and prevention services particularly in low and middle income countries. Here we describe the development and validation of two building blocks of the HCV Quant Assay, a test in development for point-of-care use: 1) an RT-qPCR assay with noncompetitive internal control that equivalently detects the 6 major HCV genotypes and 2) an automated sample prep method using immiscible phase filter technology. This novel assay has wide dynamic range of HCV quantification and a limit of detection of 30IU/ml with 200μl specimen volume. In a preliminary study of 61 clinical specimens, the HCV Quant Assay demonstrated 100% sensitivity and specificity and gave comparable viral load results across 4 logs of IU/ml when compared to the Abbott RealTime HCV Assay.
Collapse
Affiliation(s)
- Mário F Neto
- Center for Innovation in Global Health Technologies, Northwestern University, Evanston, IL 60208, USA; University of Illinois Incubator Lab Facility, Chicago, IL 60612, USA
| | - Matthew A Butzler
- Center for Innovation in Global Health Technologies, Northwestern University, Evanston, IL 60208, USA
| | - Jennifer L Reed
- Center for Innovation in Global Health Technologies, Northwestern University, Evanston, IL 60208, USA
| | - Xiang Rui
- Center for Innovation in Global Health Technologies, Northwestern University, Evanston, IL 60208, USA
| | - Mark J Fisher
- Center for Innovation in Global Health Technologies, Northwestern University, Evanston, IL 60208, USA
| | - David M Kelso
- Center for Innovation in Global Health Technologies, Northwestern University, Evanston, IL 60208, USA
| | - Sally M McFall
- Center for Innovation in Global Health Technologies, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
34
|
Mauk M, Song J, Bau HH, Gross R, Bushman FD, Collman RG, Liu C. Miniaturized devices for point of care molecular detection of HIV. LAB ON A CHIP 2017; 17:382-394. [PMID: 28092381 PMCID: PMC5285266 DOI: 10.1039/c6lc01239f] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The HIV pandemic affects 36.7 million people worldwide, predominantly in resource-poor settings. Nucleic acid-based molecular detection of HIV plays a significant role in antiretroviral treatment monitoring for HIV patients, as well as diagnosis of HIV infection in infants. Currently available molecular diagnostic methods are complex, time-consuming and relatively expensive, thus limiting their use in resource-poor settings. Recent advances in microfluidics technology have made possible low-cost integrated miniaturized devices for molecular detection and quantification of HIV at the point of care. We review recent technical advances in molecular testing of HIV using microfluidic technology, with a focus on assays based on isothermal nucleic acid amplification. Microfluidic components for sample preparation, isothermal amplification and result detection are discussed and compared. We also discuss the challenges and future directions for developing an integrated "sample-to-result" microfluidic platform for HIV molecular detection.
Collapse
Affiliation(s)
- Michael Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Robert Gross
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
35
|
van der Toom EE, Verdone JE, Jun C, Petrisor D, Lim S, de la Rosette JJMCH, de Reijke TM, Gorin MA, Pienta KJ, Stoianovici D. A surface tension magnetophoretic device for rare cell isolation and characterization. Med Oncol 2017; 34:22. [PMID: 28058627 DOI: 10.1007/s12032-016-0877-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/27/2016] [Indexed: 12/18/2022]
Abstract
The cancer community continues to search for an efficient and cost-effective technique to isolate and characterize circulating cells (CTCs) as a 'real-time liquid biopsy'. Existing methods to isolate and analyze CTCs require various transfer, wash, and staining steps that can be time consuming, expensive, and led to the loss of rare cells. To overcome the limitations of existing CTC isolation strategies, we have developed an inexpensive 'lab on a chip' device for the enrichment, staining, and analysis of rare cell populations. This device utilizes immunomagnetic positive selection of antibody-bound cells, isolation of cells through an immiscible interface, and filtration. The isolated cells can then be stained utilizing immunofluorescence or used for other downstream detection methods. We describe the construction and initial preclinical testing of the device. Initial tests suggest that the device may be well suited for the isolation of CTCs and could allow the monitoring of cancer progression and the response to therapy over time.
Collapse
Affiliation(s)
- Emma E van der Toom
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.,Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - James E Verdone
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Changhan Jun
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Doru Petrisor
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sunghwan Lim
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | | | - Theo M de Reijke
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael A Gorin
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Dan Stoianovici
- Department of Urology, The James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
36
|
Troiano D, Deraney RN, Tripathi A. Effect of surfactants on carryover liquid volume in immiscible phase magnetic bead separation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Microchip-based ultrafast serodiagnostic assay for tuberculosis. Sci Rep 2016; 6:35845. [PMID: 27775039 PMCID: PMC5075771 DOI: 10.1038/srep35845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022] Open
Abstract
Access to point-of-care (POC), rapid, inexpensive, sensitive, and instrument-free tests for the diagnosis of tuberculosis (TB) remains a major challenge. Here, we report a simple and low-cost microchip-based TB ELISA (MTBE) platform for the detection of anti-mycobacterial IgG in plasma samples in less than 15 minutes. The MTBE employs a flow-less, magnet-actuated, bead-based ELISA for simultaneous detection of IgG responses against multiple mycobacterial antigens. Anti-trehalose 6,6′-dimycolate (TDM) IgG responses were the strongest predictor for differentiating active tuberculosis (ATB) from healthy controls (HC) and latent tuberculosis infections (LTBI). The TDM-based MTBE demonstrated superior sensitivity compared to sputum microscopy (72% vs. 56%) with 80% and 63% positivity among smear-positive and smear-negative confirmed ATB samples, respectively. Receiver operating characteristic analysis indicated good accuracy for differentiating ATB from HC (AUC = 0.77). Thus, TDM-based MTBE can be potentially used as a screening device for rapid diagnosis of active TB at the POC.
Collapse
|
38
|
Guckenberger DJ, Pezzi HM, Regier MC, Berry SM, Fawcett K, Barrett K, Beebe DJ. Magnetic System for Automated Manipulation of Paramagnetic Particles. Anal Chem 2016; 88:9902-9907. [PMID: 27598856 DOI: 10.1021/acs.analchem.6b02257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The simple, rapid magnetic manipulation of paramagnetic particles (PMPs) paired with the wide range of available surface chemistries has strongly positioned PMPs in the field of analyte isolation. One recent technology, sliding lid for immobilized droplet extractions (SLIDE), presents a simple, rapid alternative to traditional PMP isolation protocols. Rather than remove fluid from PMP-bound analyte, SLIDE directly removes the PMPs from the fluid. SLIDE collects the PMPs on a hydrophobic, removable surface, which allows PMPs to be captured from one well and then transferred and released into a second well. Despite several key advantages, SLIDE remains limited by its passive magnetic manipulation that only allows for a one-time capture-and-release of PMPs, preventing wash steps and limiting purity. Furthermore, the strategy employed by SLIDE constrains the position of the wells, thereby limiting throughput and integration into automated systems. Here, we introduce a new, mechanically and operationally simplistic magnetic manipulation system for integration with the SLIDE technology to overcome the previously stated limitations. This magnetic system is compatible with nearly any plate design, can be integrated into automated workflows, enables high-throughput formats, simplifies mechanical requirements, and is amenable to a range of analytes. Using this magnetic system, PMPs can be collected, released, and resuspended throughout multiple wells regardless of proximity. We demonstrate this system's capabilities to isolate whole cells, mRNA, and DNA, demonstrating up to a 28-fold improvement of purity via the multiwash protocols enabled by this magnetic technology.
Collapse
Affiliation(s)
- David J Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| | - Hannah M Pezzi
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| | - Mary C Regier
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Gilson, Inc. , 3000 Parmenter Street, Middleton, Wisconsin 53562, United States
| | - Scott M Berry
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| | - Kevin Fawcett
- Gilson, Inc. , 3000 Parmenter Street, Middleton, Wisconsin 53562, United States
| | - Kevin Barrett
- Gilson, Inc. , 3000 Parmenter Street, Middleton, Wisconsin 53562, United States
| | - David J Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| |
Collapse
|
39
|
Sperger JM, Strotman LN, Welsh A, Casavant BP, Chalmers Z, Horn S, Heninger E, Thiede SM, Tokar J, Gibbs BK, Guckenberger DJ, Carmichael L, Dehm SM, Stephens PJ, Beebe DJ, Berry SM, Lang JM. Integrated Analysis of Multiple Biomarkers from Circulating Tumor Cells Enabled by Exclusion-Based Analyte Isolation. Clin Cancer Res 2016; 23:746-756. [PMID: 27401243 DOI: 10.1158/1078-0432.ccr-16-1021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE There is a critical clinical need for new predictive and pharmacodynamic biomarkers that evaluate pathway activity in patients treated with targeted therapies. A microscale platform known as VERSA (versatile exclusion-based rare sample analysis) was developed to integrate readouts across protein, mRNA, and DNA in circulating tumor cells (CTC) for a comprehensive analysis of the androgen receptor (AR) signaling pathway. EXPERIMENTAL DESIGN Utilizing exclusion-based sample preparation principles, a handheld chip was developed to perform CTC capture, enumeration, quantification, and subcellular localization of proteins and extraction of mRNA and DNA. This technology was validated across integrated endpoints in cell lines and a cohort of patients with castrate-resistant prostate cancer (CRPC) treated with AR-targeted therapies and chemotherapies. RESULTS The VERSA was validated in cell lines to analyze AR protein expression, nuclear localization, and gene expression targets. When applied to a cohort of patients, radiographic progression was predicted by the presence of multiple AR splice variants and activity in the canonical AR signaling pathway. AR protein expression and nuclear localization identified phenotypic heterogeneity. Next-generation sequencing with the FoundationOne panel detected copy number changes and point mutations. Longitudinal analysis of CTCs identified acquisition of multiple AR variants during targeted treatments and chemotherapy. CONCLUSIONS Complex mechanisms of resistance to AR-targeted therapies, across RNA, DNA, and protein endpoints, exist in patients with CRPC and can be quantified in CTCs. Interrogation of the AR signaling pathway revealed distinct patterns relevant to tumor progression and can serve as pharmacodynamic biomarkers for targeted therapies. Clin Cancer Res; 1-11. ©2016 AACR.
Collapse
Affiliation(s)
- Jamie M Sperger
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lindsay N Strotman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Benjamin P Casavant
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Sacha Horn
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Erika Heninger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie M Thiede
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jacob Tokar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin K Gibbs
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - David J Guckenberger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lakeesha Carmichael
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Scott M Dehm
- Masonic Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
40
|
Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection. PLoS One 2016; 11:e0158502. [PMID: 27362424 PMCID: PMC4928953 DOI: 10.1371/journal.pone.0158502] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022] Open
Abstract
Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.
Collapse
|
41
|
Berry SM, Pezzi HM, LaVanway AJ, Guckenberger D, Anderson M, Beebe DJ. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15040-5. [PMID: 27249333 PMCID: PMC5058634 DOI: 10.1021/acsami.6b02555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility.
Collapse
|
42
|
Mosley O, Melling L, Tarn MD, Kemp C, Esfahani MMN, Pamme N, Shaw KJ. Sample introduction interface for on-chip nucleic acid-based analysis of Helicobacter pylori from stool samples. LAB ON A CHIP 2016; 16:2108-15. [PMID: 27164181 DOI: 10.1039/c6lc00228e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite recent advances in microfluidic-based integrated diagnostic systems, the sample introduction interface, especially with regards to large volume samples, has often been neglected. We present a sample introduction interface that allows direct on-chip processing of crude stool samples for the detection of Helicobacter pylori (H. pylori). The principle of IFAST (immiscible filtration assisted by surface tension) was adapted to include a large volume sample chamber with a septum-based interface for stool sample introduction. Solid chaotropic salt and dry superparamagnetic particles (PMPs) could be stored on-chip and reconstituted upon sample addition, simplifying the process of release of DNA from H. pylori cells and its binding to the PMPs. Finally, the PMPs were pulled via a magnet through a washing chamber containing an immiscible oil solution and into an elution chamber where the DNA was released into aqueous media for subsequent analysis. The entire process required only 7 min while enabling a 40-fold reduction in working volume from crude biological samples. The combination of a real-world interface and rapid DNA extraction offers the potential for the methodology to be used in point-of-care (POC) devices.
Collapse
Affiliation(s)
- O Mosley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - L Melling
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - M D Tarn
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - C Kemp
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - M M N Esfahani
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - N Pamme
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - K J Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
43
|
Scherr TF, Ryskoski HB, Doyle AB, Haselton FR. A two-magnet strategy for improved mixing and capture from biofluids. BIOMICROFLUIDICS 2016; 10:024118. [PMID: 27158286 PMCID: PMC4833749 DOI: 10.1063/1.4946014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/30/2016] [Indexed: 05/25/2023]
Abstract
Magnetic beads are a popular method for concentrating biomolecules from solution and have been more recently used in multistep pre-arrayed microfluidic cartridges. Typical processing strategies rely on a single magnet, resulting in a tight cluster of beads and requiring long incubation times to achieve high capture efficiencies, especially in highly viscous patient samples. This report describes a two-magnet strategy to improve the interaction of the bead surface with the surrounding fluid inside of a pre-arrayed, self-contained assay-in-a-tube. In the two-magnet system, target biomarker capture occurs at a rate three times faster than the single-magnet system. In clinically relevant biomatrices, we find a 2.5-fold improvement in biomarker capture at lower sample viscosities with the two-magnet system. In addition, we observe a 20% increase in the amount of protein captured at high viscosity for the two-magnet configuration relative to the single magnet approach. The two-magnet approach offers a means to achieve higher biomolecule extraction yields and shorter assay times in magnetic capture assays and in self-contained processor designs.
Collapse
Affiliation(s)
- Thomas F Scherr
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Hayley B Ryskoski
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Andrew B Doyle
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| |
Collapse
|
44
|
Cui FR, Wang J, Opal SM, Tripathi A. Isolating Influenza RNA from Clinical Samples Using Microfluidic Oil-Water Interfaces. PLoS One 2016; 11:e0149522. [PMID: 26886007 PMCID: PMC4757531 DOI: 10.1371/journal.pone.0149522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/02/2016] [Indexed: 11/21/2022] Open
Abstract
The effective and robust separation of biomolecules of interest from patient samples is an essential step in diagnostic applications. We present a platform for the fast extraction of nucleic acids from clinical specimens utilizing paramagnetic PMPs, an oil-water interface, a small permanent magnet and a microfluidic channel to separate and purify captured nucleic acids from lysate in less than one minute, circumventing the need for multiple washing steps and greatly simplifying and expediting the purification procedure. Our device was able to isolate influenza RNA from clinical nasopharyngeal swab samples with high efficiency when compared to the Ambion® MagMAXTM Viral RNA Isolation Kit, sufficiently separating nucleic acid analytes from PCR-inhibiting contaminants within the lysate while also critically maintaining high integrity of the viral genome. We find that this design has great potential for rapid, efficient and sensitive nucleic acid separation from patient sample.
Collapse
Affiliation(s)
- Francis R. Cui
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Jingjing Wang
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Steven M. Opal
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
- Memorial Hospital of Rhode Island, Pawtucket, Rhode Island, United States of America
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
45
|
|
46
|
Zhang L, Deraney RN, Tripathi A. Adsorption and isolation of nucleic acids on cellulose magnetic beads using a three-dimensional printed microfluidic chip. BIOMICROFLUIDICS 2015; 9:064118. [PMID: 26734116 PMCID: PMC4693444 DOI: 10.1063/1.4938559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/11/2015] [Indexed: 05/04/2023]
Abstract
While advances in genomics have enabled sensitive and highly parallel detection of nucleic acid targets, the isolation and extraction of the nucleic acids remain a critical bottleneck in the workflow. We present here a simple 3D printed microfluidic chip that allows for the vortex and centrifugation free extraction of nucleic acids. This novel microfluidic chip utilizes the presence of a water and oil interface to filter out the lysate contaminants. The pure nucleic acids, while bound on cellulose particles, are magnetically moved across the oil layer. We demonstrated efficient and rapid extraction of spiked Human Papillomavirus (HPV) 18 plasmids in specimen transport medium, in under 15 min. An overall extraction efficiency of 61% is observed across a range of HPV plasmid concentrations (5 × 10(1) to 5 × 10(6) copies/100 μl). The magnetic, interfacial, and viscous drag forces inside the microgeometries of the chip are modeled. We have also developed a kinetics model for the adsorption of nucleic acids on cellulose functionalized superparamagnetic beads. We also clarify here the role of carrier nucleic acids in the adsorption and isolation of nucleic acids. Based on the various mechanistic insights detailed here, customized microfluidic devices can be designed to meet the range of current and emerging point of care diagnostics needs.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Biomedical Engineering, School of Engineering, Brown University , Providence, Rhode Island 02912, USA
| | - Rachel N Deraney
- Center for Biomedical Engineering, School of Engineering, Brown University , Providence, Rhode Island 02912, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University , Providence, Rhode Island 02912, USA
| |
Collapse
|
47
|
Abstract
Fast and reliable diagnoses are invaluable in clinical care. Samples (e.g., blood, urine, and saliva) are collected and analyzed for various biomarkers to quickly and sensitively assess disease progression, monitor response to treatment, and determine a patient's prognosis. Processing conventional samples entails many manual time-consuming steps. Consequently, clinical specimens must be processed by skilled technicians before antigens or nucleic acids are detected, and these are often present at dilute concentrations. Recently, several automated microchip technologies have been developed that potentially offer many advantages over traditional bench-top extraction methods. The smaller length scales and more refined transport mechanisms that characterize these microfluidic devices enable faster and more efficient biomarker enrichment and extraction. Additionally, they can be designed to perform multiple tests or experimental steps on one integrated, automated platform. This review explores the current research on microfluidic methods of sample preparation that are designed to aid diagnosis, and covers a broad spectrum of extraction techniques and designs for various types of samples and analytes.
Collapse
Affiliation(s)
- Francis Cui
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912;
| | - Minsoung Rhee
- Sandia National Laboratories, Livermore, California 94551-0969
| | - Anup Singh
- Sandia National Laboratories, Livermore, California 94551-0969
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912;
| |
Collapse
|
48
|
Bitting AL, Bordelon H, Baglia ML, Davis KM, Creecy AE, Short PA, Albert LE, Karhade AV, Wright DW, Haselton FR, Adams NM. Automated Device for Asynchronous Extraction of RNA, DNA, or Protein Biomarkers from Surrogate Patient Samples. ACTA ACUST UNITED AC 2015; 21:732-742. [DOI: 10.1177/2211068215596139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 11/16/2022]
|
49
|
Adams NM, Bordelon H, Wang KKA, Albert LE, Wright DW, Haselton FR. Comparison of three magnetic bead surface functionalities for RNA extraction and detection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6062-9. [PMID: 25710198 DOI: 10.1021/am506374t] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Magnetic beads are convenient for extracting nucleic acid biomarkers from biological samples prior to molecular detection. These beads are available with a variety of surface functionalities designed to capture particular subsets of RNA. We hypothesized that bead surface functionality affects binding kinetics, processing simplicity, and compatibility with molecular detection strategies. In this report, three magnetic bead surface chemistries designed to bind nucleic acids, silica, oligo (dT), and a specific oligonucleotide sequence were evaluated. Commercially available silica-coated and oligo (dT) beads, as well as beads functionalized with oligonucleotides complementary to respiratory syncytial virus (RSV) nucleocapsid gene, respectively recovered ∼75, ∼71, and ∼7% target RSV mRNA after a 1 min of incubation time in a surrogate patient sample spiked with the target. RSV-specific beads required much longer incubation times to recover amounts of the target comparable to the other beads (∼77% at 180 min). As expected, silica-coated beads extracted total RNA, oligo (dT) beads selectively extracted total mRNA, and RSV-specific beads selectively extracted RSV N gene mRNA. The choice of bead functionality is generally dependent on the target detection strategy. The silica-coated beads are most suitable for applications that require nucleic acids other than mRNA, especially with detection strategies that are tolerant of a high concentration of nontarget background nucleic acids, such as RT-PCR. On the other hand, oligo (dT) beads are best-suited for mRNA targets, as they bind biomarkers rapidly, have relatively high recovery, and enable detection strategies to be performed directly on the bead surface. Sequence-specific beads may be best for applications that are not tolerant of a high concentration of nontarget nucleic acids that require short RNA sequences without poly(A) tails, such as microRNAs, or that perform RNA detection directly on the bead surface.
Collapse
Affiliation(s)
- Nicholas M Adams
- †Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- ‡Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hali Bordelon
- †Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kwo-Kwang A Wang
- ‡Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Laura E Albert
- †Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David W Wright
- ‡Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Frederick R Haselton
- †Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
50
|
|